期刊文献+
共找到8,893篇文章
< 1 2 250 >
每页显示 20 50 100
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
1
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search Algorithm
在线阅读 下载PDF
Microwave-enabled rapid,continuous,and substrate-free synthesis of few-layer graphdiyne nanosheets for enhanced potassium metal battery performance 被引量:1
2
作者 KONG Ya ZHANG Shi-peng +6 位作者 YIN Yu-ling ZHANG Zi-xuan FENG Xue-ting DING Feng ZHANG Jin TONG Lian-ming GAO Xin 《新型炭材料(中英文)》 北大核心 2025年第3期642-650,共9页
Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.... Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies. 展开更多
关键词 Graphdiyne Microwave-assisted synthesis Few-layer Potassium metal battery Dendrite-free
在线阅读 下载PDF
Thermal hazard comparison and assessment of Li-ion battery and Na-ion battery 被引量:6
3
作者 Wenxin Mei Zhixiang Cheng +5 位作者 Longbao Wang Anqi Teng Zhiyuan Li Kaiqiang Jin Jinhua Sun Qingsong Wang 《Journal of Energy Chemistry》 2025年第3期18-26,共9页
Na-ion batteries are considered a promising next-generation battery alternative to Li-ion batteries,due to the abundant Na resources and low cost.Most efforts focus on developing new materials to enhance energy densit... Na-ion batteries are considered a promising next-generation battery alternative to Li-ion batteries,due to the abundant Na resources and low cost.Most efforts focus on developing new materials to enhance energy density and electrochemical performance to enable it comparable to Li-ion batteries,without considering thermal hazard of Na-ion batteries and comparison with Li-ion batteries.To address this issue,our work comprehensively compares commercial prismatic lithium iron phosphate(LFP) battery,lithium nickel cobalt manganese oxide(NCM523) battery and Na-ion battery of the same size from thermal hazard perspective using Accelerating Rate Calorimeter.The thermal hazard of the three cells is then qualitatively assessed from thermal stability,early warning and thermal runaway severity perspectives by integrating eight characteristic parameters.The Na-ion cell displays comparable thermal stability with LFP while LFP exhibits the lowest thermal runaway hazard and severity.However,the Na-ion cell displays the lowest safety venting temperature and the longest time interval between safety venting and thermal runaway,allowing the generated gas to be released as early as possible and detected in a timely manner,providing sufficient time for early warning.Finally,a database of thermal runaway characteristic temperature for Li-ion and Na-ion cells is collected and processed to delineate four thermal hazard levels for quantitative assessment.Overall,LFP cells exhibit the lowest thermal hazard,followed by the Na-ion cells and NCM523 cells.This work clarifies the thermal hazard discrepancy between the Na-ion cell and prevalent Li-ion cells,providing crucial guidance for development and application of Na-ion cell. 展开更多
关键词 Li-ion battery Na-ion battery Thermal runaway Characteristic parameters Thermal hazard assessment
在线阅读 下载PDF
Recycling technologies of spent lithium-ion batteries and future directions:A review 被引量:4
4
作者 Xue-song GAO Meng WU +5 位作者 Guang-jin ZHAO Kun-hong GU Jia-jia WU Hong-bo ZENG Wen-qing QIN Jun-wei HAN 《Transactions of Nonferrous Metals Society of China》 2025年第1期271-295,共25页
Lithium-ion batteries(LIBs)are the most popular energy storage devices due to their high energy density,high operating voltage,and long cycle life.However,green and effective recycling methods are needed because LIBs ... Lithium-ion batteries(LIBs)are the most popular energy storage devices due to their high energy density,high operating voltage,and long cycle life.However,green and effective recycling methods are needed because LIBs contain heavy metals such as Co,Ni,and Mn and organic compounds inside,which seriously threaten human health and the environment.In this work,we review the current status of spent LIB recycling,discuss the traditional pyrometallurgical and hydrometallurgical recovery processes,and summarize the existing short-process recovery technologies such as salt-assisted roasting,flotation processes,and direct recycling.Finally,we analyze the problems and potential research prospects of the current recycling process,and point out that the multidisciplinary integration of recycling will become the mainstream technology for the development of spent LIBs. 展开更多
关键词 spent lithium battery short-process recycling secondary resources PRETREATMENT metal recovery
在线阅读 下载PDF
High-areal-capacity and long-life sulfde-based all-solid-state lithium battery achieved by regulating surface-to-bulk oxygen activity 被引量:4
5
作者 Yanchen Liu Yang Lu +6 位作者 Zongliang Zhang Bin Xu Fangbo He Yang Liu Yongle Chen Kun Zhang Fangyang Liu 《Journal of Energy Chemistry》 2025年第2期795-807,I0017,共14页
Sulfide-based all-solid-state lithium batteries(ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries,owing to their superior safety and energy densi... Sulfide-based all-solid-state lithium batteries(ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries,owing to their superior safety and energy density.However,the all-solid-state batteries with nickel-rich oxide cathodes suffer from performance degradation due to the reactions between the highly reactive surface oxygen of the cathode and the electrolyte,as well as the instability of the bulk oxygen structure in the cathode.Herein,we propose a synergistic modification design scheme to adjust the oxygen activity from surface to bulk.The LiBO_(2)coating inhibits the reactivity of surface lattice oxygen ions.Meanwhile,Zr doping in the bulk phase forms strong Zr-O covalent bonds that stabilize the bulk lattice oxygen structure.The synergistic effect of these modifications prevents the release of oxygen,thus avoiding the degradation of the cathode/SE interface.Additionally,the regulation of surface-to-bulk oxygen activity establishes a highly stable interface,thereby enhancing the lithium ion diffusion kinetics and mechanical stability of the cathode.Consequently,cathodes modified with this synergistic strategy exhibit outstanding performance in sulfide-based ASSLBs,including an ultra-long cycle life of 100,000 cycles,ultra-high rate capability at 45C,and 85% high active material content in the composite cathode.Additionally,ASSLB exhibits stable cycling under high loading conditions of 82.82 mg cm^(-2),achieving an areal capacity of 17.90 mA h cm^(-2).These encouraging results pave the way for practical applications of ASSLBs in fast charging,long cycle life,and high energy density in the future. 展开更多
关键词 Zr4+doping LiBO_(2)coating Surface-to-bulk Oxygen activity Interface stability Nickel-rich oxide cathodes All-solid-state batteries
在线阅读 下载PDF
Flammability of sulfide solid-state electrolytesβ-Li_(3)PS_(4)and Li_(6)PS_(5)Cl:Volatilization and autoignition of sulfur vapor-New insight into all-solid-state battery thermal runaway 被引量:2
6
作者 Thomas A.Yersak Hernando J.Gonzalez Malabet +3 位作者 Vamakshi Yadav Nicholas P.W.Pieczonka Will Collin Mei Cai 《Journal of Energy Chemistry》 2025年第3期651-660,共10页
This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature&l... This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature<300℃.Sulfur vapor is a highly flammable gas,which then auto-ignites to produce a flame.This behavior suggests that an O_(2)-S gas-gas reaction mechanism may contribute to all-solid-state battery thermal runaway.To improve all-solid-state battery safety,current work focuses on eliminating the O_(2)source by changing the cathode active material.The conclusion of this study suggests that all-solidstate battery safety can also be realized by the development of solid-state electrolytes with less susceptibility to sulfur volatilization. 展开更多
关键词 SULFIDE Solid-state electrolyte FLAMMABILITY ALL-SOLID-STATE Battery Thermal runaway
在线阅读 下载PDF
Functionalized Separators Boosting Electrochemical Performances for Lithium Batteries 被引量:2
7
作者 Zixin Fan Xiaoyu Chen +5 位作者 Jingjing Shi Hui Nie Xiaoming Zhang Xingping Zhou Xiaolin Xie Zhigang Xue 《Nano-Micro Letters》 2025年第6期55-92,共38页
The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separat... The growing demands for energy storage systems,electric vehicles,and portable electronics have significantly pushed forward the need for safe and reliable lithium batteries.It is essential to design functional separators with improved mechanical and electrochemical characteristics.This review covers the improved mechanical and electrochemical performances as well as the advancements made in the design of separators utilizing a variety of techniques.In terms of electrolyte wettability and adhesion of the coating materials,we provide an overview of the current status of research on coated separators,in situ modified separators,and grafting modified separators,and elaborate additional performance parameters of interest.The characteristics of inorganics coated separators,organic framework coated separators and inorganic-organic coated separators from different fabrication methods are compared.Future directions regarding new modified materials,manufacturing process,quantitative analysis of adhesion and so on are proposed toward next-generation advanced lithium batteries. 展开更多
关键词 SEPARATORS Polymer electrolytes Lithium batteries Electrochemical performances FUNCTIONALIZATION
在线阅读 下载PDF
Advancements in metal-iodine batteries: progress and perspectives 被引量:2
8
作者 Zi-Zhou Shen Dian-Heng Yu +6 位作者 Hong-Ye Ding Yi Peng Yi-Hao Chen Jing-Wen Zhao Heng-Yue Xu Xiao-Tian Guo Huan Pang 《Rare Metals》 2025年第4期2143-2179,共37页
Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the c... Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the challenges of the iodine cathode and metal anode,including the hydrogen evolution reaction(HER),sluggish kinetics,shuttle effect of polyiodine ion at the cathode and dendrite formation,corrosion and passivation at the anode.This review summarizes recent developments in metaliodine batteries,including zinc-iodine batteries,lithiumiodine batteries,sodium-iodine batteries,etc.The challenges in the cathode,anode,electrolyte and separator of metal-iodine batteries are discussed,along with the corresponding design and synthesis strategies and specific methods to improve the electrochemical performance.Selecting appropriate cathode hosts,constructing surface protective layers,adding anode additives,making threedimensional anode designs and employing better electrolytes and functional separators to obstruct the production and shuttling of polyiodine ions are highlighted.Finally,future guidelines and directions for the development of metal-iodine batteries are proposed. 展开更多
关键词 Metal-iodine battery Shuttle effect Metal dendrite Functional modification
原文传递
Mini review:Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries 被引量:2
9
作者 Lingjiang Kou Yong Wang +5 位作者 Jiajia Song Taotao Ai Wenhu Li Mohammad Yeganeh Ghotbi Panya Wattanapaphawong Koji Kajiyoshi 《Chinese Chemical Letters》 2025年第1期214-224,共11页
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability... As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage. 展开更多
关键词 Aqueous zinc ion battery High-voltage cathode materials Stability enhancement Failure mechanisms Electrolyte optimization
原文传递
Degradation mechanism,direct regeneration and upcycling of ternary cathode material for retired lithium-ion power batteries 被引量:2
10
作者 Juan Wang Dongqi Li +6 位作者 Weihao Zeng Xingye Chen Yixin Zhang Shaojie Zhang Zhongpeng Li Changhao Li Shichun Mu 《Journal of Energy Chemistry》 2025年第3期534-554,共21页
With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power ... With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power batteries,especially for those high recovery value cathode materials,have not been greenly,sustainably,and efficiently recycled.Compared to the traditional recovery method for cathode materials with high energy consumption and severe secondary pollution,the direct repair regeneration,as a new type of short-process and efficient treatment methods,has attracted widespread attention.However,it still faces challenges in homogenization repair,electrochemical performance decline,and scaling-up production.To promote the direct regeneration technology development of failed NCM materials,herein we deeply discuss the failure mechanism of nickel-cobalt-manganese(NCM)ternary cathode materials,including element loss,Li/Ni mixing,phase transformation,structural defects,oxygen release,and surface degradation and reconstruction.Based on this,the detailed analysis and summary of the direct regeneration method embracing solid-phase sintering,eutectic salt assistance,solvothermal synthesis,sol-gel process,spray drying,and redox mediation are provided.Further,the upcycling strategy for regeneration materials,such as single-crystallization and high-nickelization,structural regulation,ion doping,and surface engineering,are discussed in deep.Finally,the challenges faced by the direct regeneration and corresponding countermeasures are pointed out.Undoubtedly,this review provides valuable guidance for the efficient and high-value recovery of failed cathode materials. 展开更多
关键词 Spent NCM materials Retired lithium-ion power battery Degradation mechanism Direct regeneration Upcycling strategy
在线阅读 下载PDF
Confined soft carbon in hard carbon with enhanced ion transport kinetics as anode for high-rate and stable potassium-ion batteries 被引量:2
11
作者 Yong Li Aoyang Zhu +5 位作者 Guodong Peng Jun He Hongqiang Li Dedong Jia Jieshan Qiu Xiaojun He 《Journal of Energy Chemistry》 2025年第4期97-105,共9页
Biomass-derived hard carbon is becoming promising anodes for potassium-ion batteries(PIBs)thanks to their resource abundance.Yet,it is a big challenge to improve the charge carrier kinetics of the disordered carbon la... Biomass-derived hard carbon is becoming promising anodes for potassium-ion batteries(PIBs)thanks to their resource abundance.Yet,it is a big challenge to improve the charge carrier kinetics of the disordered carbon lattice in hard carbon.Herein,confined pitch-based soft carbon in pollen-derived hard carbon(PSC/PHC)is synthesized by vapor deposition strategy as anodes for PIBs.The ordered pitch-based soft carbon compensates for the short-range electron conduction in hard carbon to enhance the charge transfer kinetics,and the externally disordered pollen-derived hard carbon alleviates the volume change of soft carbon during cycling.Benefiting from the synergistic effect of soft and hard carbon,as well as the reinforced structure of order-in-disordered carbon,the PSC/PHC obtained with deposition time of 0.5 h(PSC/PHC-0.5)displays an excellent rate capability(148.7 mAh g^(-1)at 10 A g^(-1))and superb cycling stability(70%retention over 2000 cycles at 1 A g^(-1)).This work offers a unique insight in tuning the microcrystalline structure of soft-hard carbon anode for advanced PIBs. 展开更多
关键词 Biomass-derived hard carbon Pitch-based soft carbon Microcrystalline regulation engineering Order-in-disordered carbon Potassium-ion batteries
在线阅读 下载PDF
Manufacturing of lithium battery toward deep-sea environment 被引量:1
12
作者 Yaohua Zhao Nan Li +4 位作者 Keyu Xie Chuan Wang Sisi Zhou Xianggong Zhang Cong Ye 《International Journal of Extreme Manufacturing》 2025年第2期310-335,共26页
The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose s... The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose significant challenges for battery development.These conditions drive the need for specialized designs in deep-sea batteries,incorporating critical aspects of power generation,protection,distribution,and management.Over time,deep-sea battery technology has evolved through multiple generations,with lithium(Li)batteries emerging in recent decades as the preferred power source due to their high energy and reduced operational risks.Although the rapid progress of Li batteries has notably advanced the capabilities of underwater vehicles,critical technical issues remain unresolved.This review first systematically presents the whole picture of deep-sea battery manufacturing,focusing on Li batteries as the current mainstream solution for underwater power.It examines the key aspects of deep-sea Li battery development,including materials selection informed by electro-chemo-mechanics models,component modification and testing,and battery management systems specialized in software and hardware.Finally,it discusses the main challenges limiting the utilization of deep-sea batteries and outlines promising directions for future development.Based on the systematic reflection on deep-sea batteries and discussion on deep-sea Li batteries,this review aims to provide a research foundation for developing underwater power tailored for extreme environmental exploration. 展开更多
关键词 manufacturing of deep-sea battery Li battery materials selection component modification and test specialized battery management system
在线阅读 下载PDF
CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries 被引量:1
13
作者 Zhong-Hui Sun Yu-Qi Zhang +3 位作者 Zhen-Yi Gu Dong-Yang Qu Hong-Yu Guan Xing-Long Wu 《Chinese Chemical Letters》 2025年第1期568-573,共6页
The metal ion batteries have gained widespread attention for wearable electronics due to their competitive energy density and long cycling life.Exploring the advanced anode materials is significant for next generation... The metal ion batteries have gained widespread attention for wearable electronics due to their competitive energy density and long cycling life.Exploring the advanced anode materials is significant for next generation energy storage systems.However,severe electrode volume changes and sluggish redox kinetics are the critical problems for lithium/potassium ion batteries(LIBs/PIBs)towards large-scale applications.Herein,we prepare a novel anode material,which consists of reduced graphene oxide wrapping one-dimensional(1D)N-doped porous carbon nanotube with cobalt phosphoselenide(CoPSe)nanoparticles embedded inside them(r GO@Co PSe/NC).Benefited from the dual carbon decorations and ultrafine nanoparticles structure,it achieves a reversible capacity of 245 mAh/g at 5 A/g after 2000 cycles for LIBs and 215 mAh/g at 1 A/g after 500 cycles for PIBs.The pseudocapacitance and GITT measurements are used to investigate the electrochemical kinetics of r GO@Co PSe/NC for LIBs.In addition,the lithium ion full cell also shows good electrochemical performance when paired with high capacity LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode.This work provides a feasible electrode design strategy for high-efficiency metal ion batteries based on multidimensional nanoarchitecture engineering and composition tailoring. 展开更多
关键词 Cobalt phosphoselenide Lithium-ion batteries Potassium-ion batteries Reduced graphene oxide Structural stability Full cell
原文传递
Multiple yolks-shell cobalt phosphosulfide nanocrystals encapsulating into rich heteroatoms co-doped carbon frameworks for advanced sodium/potassium ion batteries 被引量:1
14
作者 Yining Li Shimei Wu +3 位作者 Lantao Chen Haosen Fan Yufei Zhang Lingxing Zeng 《Chinese Chemical Letters》 2025年第9期678-683,共6页
In recent years,metal phosphosulfides have attracted great attention as the promising anode materials in sodium/potassium batteries because of their incorporation of the advantages of metal phosphides and sulfides.How... In recent years,metal phosphosulfides have attracted great attention as the promising anode materials in sodium/potassium batteries because of their incorporation of the advantages of metal phosphides and sulfides.However,they are also confronted with the problem of unstable battery performance due to the heavy volume expansion and sluggish ion reaction kinetics.Herein,yolk-shell cobalt phosphosulfide nanocrystals encapsulating into multi-heterogeneous atom(N,P,S)-doped carbon framework(Co_(9)S_(8)/CoP@NPSC)were constructed by employing dodecahedral ZIF-67 as precursor and a polymer as carbon sources through simultaneous sulfidation and phosphorization processes.The synergistic effect of Co_(9)S_(8)and CoP component and the yolk-shell structure greatly improve the bettery performance and structural stability.In addition,the multiple hetero-atoms doped carbon frameworks enhance the conductivity of the electrode materials and increase the spacing of carbon layers to supply sufficient active sites and facilitate the Na^(+)/K^(+)transport.The electrochemical results demonstrated that Co_(9)S_(8)/CoP@NPSC exhibited the pleasant reversible capacity(360.47 mAh/g at 1 A/g)after 300 cycles and an unpredictable cycling stability(103.22 mAh/g after 1000 cycles)in the SIBs application.The ex-situ XRD and XPS analyses were further applied to study the sodium ion storage mechanism and the multi-step phase transition reaction of the yolk-shell heterogeneous structure.This work provides new perspectives for the preparation of novel structure metal phosphosulfide and their applications in anode materials for sodium/potassium batteries and other secondary batteries. 展开更多
关键词 Yolks-shell cobalt phosphosulfate Hetero-atoms doping Synergistic effect Sodium-ion batteries Potassium ion batteries
原文传递
Research progress of lignin-derived materials in lithium/sodium ion batteries 被引量:1
15
作者 Jingke Zhang Hengxue Xiang +2 位作者 Zhiwei Cao Shichao Wang Meifang Zhu 《Green Energy & Environment》 2025年第2期322-344,共23页
With the increase of energy consumption,the shortage of fossil resource,and the aggravation of environmental pollution,the development of cost-effective and environmental friendly bio-based energy storage devices has ... With the increase of energy consumption,the shortage of fossil resource,and the aggravation of environmental pollution,the development of cost-effective and environmental friendly bio-based energy storage devices has become an urgent need.As the second most abundant natural polymer found in nature,lignin is mainly produced as the by-product of paper pulping and bio-refining industries.It possesses several inherent advantages,such as low-cost,high carbon content,abundant functional groups,and bio-renewable,making it an attractive candidate for the rechargeable battery material.Consequently,there has been a surge of research interest in utilizing lignin or lignin-based carbon materials as the components of lithium-ion(LIBs)or sodium-ion batteries(SIBs),including the electrode,binder,separator,and electrolyte.This review provides a comprehensive overview on the research progress of lignin-derived materials used in LIBs/SIBs,especially the application of lignin-based carbons as the anodes of LIBs/SIBs.The preparation methods and properties of lignin-derived materials with different dimensions are systemically discussed,which emphasizes on the relationship between the chemical/physical structures of lignin-derived materials and the performances of LIBs/SIBs.The current challenges and future prospects of lignin-derived materials in energy storage devices are also proposed. 展开更多
关键词 Lignin-based carbons Lithium battery Sodium battery Chemical structure evolution
在线阅读 下载PDF
Enhanced battery life prediction with reduced data demand via semi-supervised representation learning 被引量:1
16
作者 Liang Ma Jinpeng Tian +2 位作者 Tieling Zhang Qinghua Guo Chi Yung Chung 《Journal of Energy Chemistry》 2025年第2期524-534,I0011,共12页
Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlo... Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlooked challenge is their demand for considerable run-to-failure data for training.Collection of such training data leads to prohibitive testing efforts as the run-to-failure tests can last for years.Here,we propose a semi-supervised representation learning method to enhance prediction accuracy by learning from data without RUL labels.Our approach builds on a sophisticated deep neural network that comprises an encoder and three decoder heads to extract time-dependent representation features from short-term battery operating data regardless of the existence of RUL labels.The approach is validated using three datasets collected from 34 batteries operating under various conditions,encompassing over 19,900 charge and discharge cycles.Our method achieves a root mean squared error(RMSE)within 25 cycles,even when only 1/50 of the training dataset is labelled,representing a reduction of 48%compared to the conventional approach.We also demonstrate the method's robustness with varying numbers of labelled data and different weights assigned to the three decoder heads.The projection of extracted features in low space reveals that our method effectively learns degradation features from unlabelled data.Our approach highlights the promise of utilising semi-supervised learning to reduce the data demand for reliability monitoring of energy devices. 展开更多
关键词 Lithium-ion batteries Battery degradation Remaining useful life Semi-supervised learning
在线阅读 下载PDF
Prussian Blue Analogue‑Templated Nanocomposites for Alkali‑Ion Batteries:Progress and Perspective
17
作者 Jian‑En Zhou Yilin Li +1 位作者 Xiaoming Lin Jiaye Ye 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期216-261,共46页
Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion... Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality. 展开更多
关键词 Prussian blue analogues Self-sacrificial template Lithium-ion batteries Sodium-ion batteries Potassium-ion batteries
在线阅读 下载PDF
Research advances of metal fluoride for energy conversion and storage 被引量:1
18
作者 Runlin Zhang Zijin Xu +3 位作者 Zeyu Hao Zeshuo Meng Xiufeng Hao Hongwei Tian 《Carbon Energy》 2025年第1期76-120,共45页
In recent years,renewable energy sources,which aim to replace rapidly depleting fossil fuels,face challenges due to limited energy storage and conversion technologies.To enhance energy storage and conversion efficienc... In recent years,renewable energy sources,which aim to replace rapidly depleting fossil fuels,face challenges due to limited energy storage and conversion technologies.To enhance energy storage and conversion efficiency,extensive research has been conducted in the academic community on numerous potential materials.Among these materials,metal fluorides have attracted significant attention due to their ionic metal-fluorine bonds and tunable electronic structures,attributed to the highest electronegativity of fluorine in their chemical composition.This makes them promising candidates for future electrochemical applications in various fields.However,metal fluorides encounter various challenges in different application directions.Therefore,we comprehensively review the applications of metal fluorides in the field of energy storage and conversion,aiming to deepen our understanding of their exhibited characteristics in different electrochemical processes.In this paper,we summarize the difficulties and improvement methods encountered in different types of battery applications and several typical electrode optimization strategies in the field of supercapacitors.In the field of water electrolysis,we focus on surface reconstruction and the critical role of fluorine,demonstrating the catalytic performance of metal fluorides from the perspectives of reconstruction mechanism and process analysis.Finally,we provide a summary and outlook for this field,aiming to offer guidance for future breakthroughs in the energy storage and conversion applications of metal fluorides. 展开更多
关键词 BATTERIES ELECTROCATALYSIS metal fluoride SUPERCAPACITORS
在线阅读 下载PDF
A review on applications and challenges of carbon nanotubes in lithium-ion battery 被引量:1
19
作者 Zhen Tong Chao Lv +3 位作者 Guo-Dong Bai Zu-Wei Yin Yao Zhou Jun-Tao Li 《Carbon Energy》 2025年第2期66-97,共32页
Carbon nanotubes(CNTs)have many excellent properties that make them ideally suited for use in lithium-ion batteries(LIBs).In this review,the recent research on applications of CNTs in LIBs,including their usage as fre... Carbon nanotubes(CNTs)have many excellent properties that make them ideally suited for use in lithium-ion batteries(LIBs).In this review,the recent research on applications of CNTs in LIBs,including their usage as freestanding anodes,conductive additives,and current collectors,are discussed.Challenges,strategies,and progress are analyzed by selecting typical examples.Particularly,when CNTs are used with relatively large mass fractions,the relevant interfacial electrochemistry in such a CNT-based electrode,which dictates the quality of the resulting solid-electrolyte interface,becomes a concern.Hence,in this review the different lithium-ion adsorption and insertion mechanisms inside and outside of CNTs are compared;the influence of not only CNT structural features(including their length,defect density,diameter,and wall thickness)but also the electrolyte composition on the solid-electrolyte interfacial reactions is analyzed in detail.Strategies to optimize the solid-solid interface between CNTs and the other solid components in various composite electrodes are also covered.By emphasizing the importance of such a structure-performance relationship,the merits and weaknesses of various applications of CNTs in various advanced LIBs are clarified. 展开更多
关键词 APPLICATIONS carbon nanotubes CHALLENGES energy storage lithium-ion batteries
在线阅读 下载PDF
Resource sustainability application of lithium iron phosphate batteries via citric acid coupled recycling and regeneration 被引量:1
20
作者 Xiang Li Gui-Dong Li +1 位作者 Ye Chen Meng-Kui Tian 《Rare Metals》 2025年第6期4226-4240,共15页
Lithium iron phosphate(LiFePO_(4),LFP)batteries have shown extensive adoption in power applications in recent years for their reliable safety,high theoretical capability and low cost.Nevertheless,the finite lifespan o... Lithium iron phosphate(LiFePO_(4),LFP)batteries have shown extensive adoption in power applications in recent years for their reliable safety,high theoretical capability and low cost.Nevertheless,the finite lifespan of these batteries necessitates the future processing of a significant number of spent LFP batteries,underscoring the urgent need for the development of both efficient and eco-friendly recycling methods.This study combines the advantages of wet leaching and direct regeneration methods,leveraging citric acid's multifaceted role to streamline the combined leaching and hydrothermal processes.Results indicate that citric acid efficiently leaches all elements from spent LFP batteries.Furthermore,through its unique structure,it enhances hydrothermal regeneration by stabilizing metal ions and controlling crystal growth,and also acts as a carbon source for the surface carbon coating of regenerated LFP(RLFP).The R-LFP shows outstanding electrochemical stability,achieving a discharge capacity of 155.1 mAh.g^(-1)at 0.1C,with a capacity retention rate of 93.2%after 300 cycles at 1C.Furthermore,economic and environmental analyses demonstrate this method's superior cost-effectiveness and sustainability.Therefore,the method proposed in this study is efficient,simple and avoids the complex process of element separation,innovatively using a single reagent to achieve closed-loop recycling of LFP batteries,providing a novel and effective solution for the resource sustainability application. 展开更多
关键词 Spent LiFePO_(4) batteries Battery regeneration Resource sustainability
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部