期刊文献+
共找到8,953篇文章
< 1 2 250 >
每页显示 20 50 100
Progress and prospect of transition metal compound cathode materials with stable metal ion storage effect in various battery systems
1
作者 Dongfang Guo Bin Zhang 《Green Energy & Environment》 2025年第8期1692-1726,共35页
Thefield of energy storage devices is primarily dominated by lithium-ion batteries(LIBs)due to their mature manufacturing processes and stable performance.However,immature lithium recovery technology cannot stop the co... Thefield of energy storage devices is primarily dominated by lithium-ion batteries(LIBs)due to their mature manufacturing processes and stable performance.However,immature lithium recovery technology cannot stop the continuous increase in the cost of LIBs.Along with the rapid development of electric transportation,it has become inevitable to trigger a new round of competition in alternative energy storage systems.Some monovalent rechargeable metal ion batteries(sodium ion batteries(SIBs)and potassium ion batteries(PIBs),etc.)and multi-valent rechargeable metal-ion batteries(magnesium ion batteries(MIBs),calcium ion batteries(CIBs),zinc ion batteries(ZIBs),and aluminum ion batteries(AIBs),etc.)are potential candidates,which can replace LIBs in some of the scenarios to alleviate the pressure on supply.The cathode material plays a crucial role in determining the battery capacity.Transition metal compounds dominated by layered transition metal oxides as key cathode materials for secondary batteries play an important role in the advancement of various battery energy storage systems.In summary,this manuscript aims to review and summarize the research progress on transition metal compounds used as cathodes in different metal ion batteries,with the aim of providing valuable guidance for the exploration and design of high-performance integrated battery systems. 展开更多
关键词 RECHARGEABLE battery CATHODE PROGRESS PROSPECT
在线阅读 下载PDF
Blocking thermal runaway propagation in large-format sodium-ion battery system through localized energy release
2
作者 Yongchun Dang Yongchao Yu +6 位作者 Zhenpo Wang Peng Liu Xunli Zhou Yongjie Zhao Peipei Qi Fei Xu Lei Li 《Journal of Energy Chemistry》 2025年第5期514-526,共13页
Cascading thermal runaway(TR)propagation poses a critical safety concern for large-format sodium-ion battery(SIB)systems because of the heightened risks of fires or explosions.However,effectively suppressing TR propag... Cascading thermal runaway(TR)propagation poses a critical safety concern for large-format sodium-ion battery(SIB)systems because of the heightened risks of fires or explosions.However,effectively suppressing TR propagation without introducing unintended side effects remains a significant challenge.Herein,we demonstrate a localized energy release method to mitigate TR,by reducing the state of charge(SOC)of cells adjacent to the thermally runaway unit.We discover that as the SOCs decreased from 100%to 25%,the TR trigger temperature decreased significantly,and the maximum temperature decrease from 367 to 229℃.Meanwhile,the volume of gas decreased to one-third of its original value,while the range of explosion limits significantly narrowed.The analysis of the morphology of the debris further confirms that the structural damage is greater at higher SOC levels.Moreover,an Entropy Weight and Technique for Order Preference by Similarity to an Ideal Solution(EW-TOPSIS)method has been established to assess the safety status of SIBs,showing that the TR possibility is nearly linear with the SOCs,and the TR hazard is exponentially related to the SOCs.Finally,when the SOC of cells adjacent to the TR cell is reduced to 25%,TR can be directly blocked without the need for additional cooling or thermal insulation methods.This study not only advances the understanding of TR behavior in SIBs but also offers a straightforward approach to mitigating the TR risk in SIB systems. 展开更多
关键词 Sodium-ion battery Thermal runaway Safety assessment Localized energy release
在线阅读 下载PDF
Niobium oxide/MXene heterostructure for simultaneous production of ammonia and energy via rechargeable Zn-N_(2)battery system
3
作者 Xinyu Dai Wei Zhang +10 位作者 Ying Sun Zhenyi Du Zhanliang Tao Jingang Wang Wenhui Fang Xuehan Xing Yang Chen Hui Li Hao Zheng Jieshan Qiu Tianyi Ma 《Journal of Energy Chemistry》 2025年第4期448-457,共10页
Aqueous Zn-N_(2)batteries with unique configuration are of potential for simultaneous N_(2)electro reduction and electricity generation,in which the electrocatalysts are critical for improving the NH_(3)yield and the ... Aqueous Zn-N_(2)batteries with unique configuration are of potential for simultaneous N_(2)electro reduction and electricity generation,in which the electrocatalysts are critical for improving the NH_(3)yield and the energy efficiency.Herein,a heterostructure Nb_(2)O_(5)/Nb_(2)CT_(x)with abundant exposed Nb active sites and tuned electron density has been synthesized by in situ formation and anchoring of Nb_(2)O_(5) nanoparticles on the surface of Nb_(2)CT_(x)MXene,which shows an enhanced N_(2)adsorption/activation capacity.The heterostructure Nb_(2)O_(5/)Nb_(2)CT_(x)was used as the cathode of Zn-N_(2)battery that can deliver a peak power density of 1.25 mW cm^(-2)in 1.0 M KOH and can continuously produce NH_(3)with a yield of3.62μg h^(-1)mg_(ca)^(t-1).The NH_(3)formed in the battery system can be easily collected as a net product without circulating the electrolyte.Moreover,the Nb_(2)O_(5/)Nb_(2)CT_(x)has a long durability,evidenced by 70 h of operation at-0.4 V vs.reversible hydrogen electrode,which is the highest among the MXene-based electrocatalysts reported thus far.This work may provide a new methodology based on Zn-N_(2)battery for sustainable and large-scale NH_(3)production with minimal energy consumption. 展开更多
关键词 NH_(3)production Zn-N_(2)battery N_(2)Electroreduction Nb_(2)O_5/Nb_(2)CT_(x)heterostructure
在线阅读 下载PDF
Fundamentals,recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems 被引量:4
4
作者 Maitri Patel Kuldeep Mishra +3 位作者 Ranjita Banerjee Jigar Chaudhari D.K.Kanchan Deepak Kumar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期221-259,I0007,共40页
The present and future energy requirements of mankind can be fulfilled with sustained research and development efforts by global scientists.The purpose of this review paper is to provide an overview of the fundamental... The present and future energy requirements of mankind can be fulfilled with sustained research and development efforts by global scientists.The purpose of this review paper is to provide an overview of the fundamentals,recent advancements on Lithium and non-Lithium electrochemical rechargeable battery systems,and their future prospects.The initial part of this review paper is dedicated to the advancement and challenges faced by the conventional rechargeable batteries,such as lead-acid,Ni-Cd and Ni-MH batteries.The subsequent section of this review focuses on an in-depth analysis of two major categories of rechargeable batteries,namely lithium-based rechargeable battery systems and alternative non-Lithium rechargeable battery systems.The working principle,construction,and a few important research progress on Li-ion,Li-O_(2),Li-CO_(2) and Li-S batteries have been highlighted.The recent progress and challenges of the alternate batteries such as Na-ion,Na-S,Mg-ion,K-ion,Al-ion,Al-air,Zn-ion and Zn-air are also discussed in this review.The large gap between theoretical and practical electrochemical values for the alternate battery system must be filled by adopting a series of design architectures followed by modern instrumentation for developing next-generation batteries in a sustainable and efficient way. 展开更多
关键词 Conventional rechargeable batteries Li-ion batteries Li-S batteries Li-air battery Other than Lithium batteries Alternate battery systems
在线阅读 下载PDF
A Fault Detection Method for Electric Vehicle Battery System Based on Bayesian Optimization SVDD Considering a Few Faulty Samples 被引量:1
5
作者 Miao Li Fanyong Cheng +2 位作者 Jiong Yang Maxwell Mensah Duodu Hao Tu 《Energy Engineering》 EI 2024年第9期2543-2568,共26页
Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersp... Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset. 展开更多
关键词 Fault detection vehicle battery system lithium batteries fault samples
在线阅读 下载PDF
Model-Based Fault Detection of a Battery System in a Hybrid Electric Vehicle
6
作者 S. Andrew Gadsden Saeid R. Habibi 《Journal of Energy and Power Engineering》 2013年第7期1344-1351,共8页
Recently, a new type of IMM (interacting multiple model) method was introduced based on the relatively new SVSF (smooth variable structure filter), and is referred to as the IMM-SVSF. The SVSF is a type of sliding... Recently, a new type of IMM (interacting multiple model) method was introduced based on the relatively new SVSF (smooth variable structure filter), and is referred to as the IMM-SVSF. The SVSF is a type of sliding mode estimator that is formulated in a predictor-corrector fashion. This strategy keeps the estimated state bounded within a region of the true state trajectory, thus creating a stable and robust estimation process. The IMM method may be utilized for fault detection and diagnosis, and is classified as a model-based method. In this paper, for the purposes of fault detection, the IMM-SVSF is applied through simulation on a simple battery system which is modeled from a hybrid electric vehicle. 展开更多
关键词 battery system fault detection and diagnosis interacting multiple model smooth variable structure filter Kalman filter.
在线阅读 下载PDF
Thermal runaway propagation behavior of the Cell-to-Pack battery system 被引量:6
7
作者 Huaibin Wang Qinzheng Wang +9 位作者 Zhenyang Zhao Changyong Jin Chengshan Xu Wensheng Huang Zhuchen Yuan Shuyu Wang Yang Li Yanhong Zhao Junli Sun Xuning Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期162-172,共11页
Structurally compact battery packs significantly improve the driving range of electric vehicles.Technologies like Cell-to-Pack increase energy density by 15%-20%.However,the safety implications of multiple tightly-pac... Structurally compact battery packs significantly improve the driving range of electric vehicles.Technologies like Cell-to-Pack increase energy density by 15%-20%.However,the safety implications of multiple tightly-packed battery cells still require in-depth research.This paper studies thermal runaway propagation behavior in a Cell-to-Pack system and assesses propagation speed relative to other systems.The investigation includes temperature response,extent of battery damage,pack structure deformation,chemical analysis of debris,and other considerations.Results suggest three typical patterns for the thermal runaway propagation process:ordered,disordered,and synchronous.The synchronous propagation pattern displayed the most severe damage,indicating energy release is the largest under the synchronous pattern.This study identifies battery deformation patterns,chemical characteristics of debris,and other observed factors that can both be applied to identify the cause of thermal runaway during accident investigations and help promote safer designs of large battery packs used in large-scale electric energy storage systems. 展开更多
关键词 Energy storage Cell-to-Pack Lithium-ion battery Thermal runaway battery safety
在线阅读 下载PDF
Solid Electrolyte Interface in Zn-Based Battery Systems 被引量:7
8
作者 Xinyu Wang Xiaomin Li +1 位作者 Huiqing Fan Longtao Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期286-309,共24页
Due to its high theoretical capacity(820 mAh g^(−1)),low standard electrode potential(−0.76 V vs.SHE),excellent stability in aqueous solutions,low cost,environmental friendliness and intrinsically high safety,zinc(Zn)... Due to its high theoretical capacity(820 mAh g^(−1)),low standard electrode potential(−0.76 V vs.SHE),excellent stability in aqueous solutions,low cost,environmental friendliness and intrinsically high safety,zinc(Zn)-based batteries have attracted much attention in developing new energy storage devices.In Zn battery system,the battery performance is significantly affected by the solid electrolyte interface(SEI),which is controlled by electrode and electrolyte,and attracts dendrite growth,electrochemical stability window range,metallic Zn anode corrosion and passivation,and electrolyte mutations.Therefore,the design of SEI is decisive for the overall performance of Zn battery systems.This paper summarizes the formation mechanism,the types and characteristics,and the characterization techniques associated with SEI.Meanwhile,we analyze the influence of SEI on battery performance,and put forward the design strategies of SEI.Finally,the future research of SEI in Zn battery system is prospected to seize the nature of SEI,improve the battery performance and promote the large-scale application. 展开更多
关键词 Solid electrolyte interface Zn-based battery Solvated structure Artificial SEI In situ SEI
在线阅读 下载PDF
In situ and operando infrared spectroscopy of battery systems:Progress and opportunities 被引量:2
9
作者 Murilo M.Amaral Carla G.Real +4 位作者 Victor Y.Yukuhiro Gustavo Doubek Pablo S.Fernandez Gurpreet Singh Hudson Zanin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期472-491,I0011,共21页
In situ and operando infrared spectroscopies are powerful techniques to support the design of novel materials for batteries and the development of new battery systems.These techniques can support the study of batterie... In situ and operando infrared spectroscopies are powerful techniques to support the design of novel materials for batteries and the development of new battery systems.These techniques can support the study of batteries by identifying the formation of new species and monitoring electrochemical energy stability.However,few works have employed these techniques,which can be used to investigate various materials,including systems beyond lithium-ion technology,in the research of batteries.Therefore,this review presents a comprehensive overview focusing on the main contributions of in situ and operando infrared spectroscopy for lithium-ion batteries(LIBs)and other battery systems.These techniques can successfully identify the formation of species during the electrolyte reduction,electrode degradation,and the formation of the solid-electrolyte interphase(SEI)layer.From these outcomes,it is possible to conclude that this characterization approach should be employed as a protocol to overcome remaining issues in batteries,consequently supporting battery research.This review aims to be a guide on how infrared spectroscopy can contribute to monitoring battery systems and to lead researchers interested in applying this technique. 展开更多
关键词 In situ spectroscopy Operando spectroscopy FTIR Spectro-electrochemical cells BATTERIES
在线阅读 下载PDF
Novel Lightweight and Protective Battery System Based on Mechanical Metamaterials 被引量:1
10
作者 Yao Huang Weihua Guo +2 位作者 Jiao Jia Lubing Wang Sha Yin 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第6期862-871,共10页
The challenges facing electric vehicles with respect to driving range and safety make the design of a lightweight and safe battery pack a critical issue.This study proposes a multifunctional structural battery system ... The challenges facing electric vehicles with respect to driving range and safety make the design of a lightweight and safe battery pack a critical issue.This study proposes a multifunctional structural battery system comprising cylindrical battery cells and a surrounding lightweight lattice metamaterial.The lattice density distribution was optimized via topological optimization to minimize stress on the battery during compression.Surrounding a single 18650 cylindrical battery cell,non-uniform lattices were designed featuring areas of increased density in an X-shaped pattern and then fabricated by additive manufacturing using stainless steel powders.Compression testing of the assembled structural battery system revealed that the stronger lattice units in the X-shaped lattice pattern resisted deformation and helped delay the emergence of a battery short circuit.Specifically,the short circuit of the structural battery based on a variable-density patterned lattice was∼166%later than that with a uniform-density lattice.Finite element simulation results for structural battery systems comprising nine battery cells indicate that superior battery protection is achieved in specially packed batteries via non-uniform lattices with an interconnected network of stronger lattices.The proposed structural battery systems featuring non-uniform lattices will shed light on the next generation of lightweight and impact-resistant electric vehicle designs. 展开更多
关键词 LIGHTWEIGHT LATTICES METAMATERIALS Structural battery battery safety Internal short circuit
原文传递
A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation 被引量:1
11
作者 Wei Chen Na Sun +2 位作者 Zhicheng Ma Wenfei Liu Haiying Dong 《Energy Engineering》 EI 2023年第6期1445-1464,共20页
To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control stra... To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit. 展开更多
关键词 battery energy storage secondary FM signal distribution mode charge state two-layer fuzzy control
在线阅读 下载PDF
Optimal Design of Photovoltaic–Battery Systems Using Interval Type-2 Fuzzy Adaptive Genetic Algorithm 被引量:1
12
作者 Penangsang Ontoseno Muhammad Abdillah +1 位作者 Rony Seto Wibowo Adi Soeprijanto 《Engineering(科研)》 2013年第1期50-55,共6页
Many countries have been triggered to provide a new energy policy which promotes renewable energy applications because of public awareness to reduce the global warming and rising in fuel prices. Renewable energy sourc... Many countries have been triggered to provide a new energy policy which promotes renewable energy applications because of public awareness to reduce the global warming and rising in fuel prices. Renewable energy sources such as solar energy are green and promising energy in the future for widespread use. Combining renewable energy sources with battery makes electricity supply more economical and reliable to meet all possible load level. This paper proposed a new hybrid method to optimize Photovoltaic (PV)-Battery systems. The proposed method was named Interval type-2 fuzzy adaptive genetic algorithm (IT2FAGA). Genetic algorithm (GA) is one of modern optimization techniques that has been successfully applied in various areas of power systems. To enhance the ability of GA to prevent trapping in? local optima and increase convergence in a global optima, the crossover probability (pcross) and the mutation probability (pmut), parameters in GA, are tuned using interval type-2 fuzzy logic (IT2FL). Objective function used in this paper was the annual cost of sytem (ACS) consisting of the annual capital cost (ACC), annual replacement cost (ARC), annual operation cost maintenance (AOM). The proposed method was also compared to fuzzy adaptive genetic algorithm (FGA) and standard genetic algorithm (SGA). Simulation results indicated that the 展开更多
关键词 PHOTOVOLTAIC (PV) battery GA IT2FL IT2FAGA
暂未订购
Performance of redox flow battery systems in Japan
13
作者 Shibata Toshikazu Kumamoto Takahiro +2 位作者 Nagaoko Yoshiyuki Kawase Kazunori Yano Keiji 《储能科学与技术》 CAS 2013年第3期233-236,共4页
Renewable energies, such as solar and wind power, are increasingly being introduced as alternative energy sources on a glosbal scale toward a low-carbon society. For the next generation power network, which uses a lar... Renewable energies, such as solar and wind power, are increasingly being introduced as alternative energy sources on a glosbal scale toward a low-carbon society. For the next generation power network, which uses a large number of these distributed power generation sources, energy storage technologies will be indispensable. Among these technologies, battery energy storage technology is considered to be most viable. Sumitomo Electric Industries, Ltd. has developed a redox flow battery system suitable for large scale energy storage, and carried out several demonstration projects on the stabilization of renewable energy output using the redox flow battery system. This paper describes the advantages of the redox flow battery and reviews the demonstration projects. 展开更多
关键词 redox flow battery energy storage renewable energy smart grid wind turbine photovoltaics
在线阅读 下载PDF
A Robust Single-Sensor MPPT Strategy for Shaded Photovoltaic-Battery System
14
作者 A.N.M.Alahmadi Hegazy Rezk 《Computer Systems Science & Engineering》 SCIE EI 2021年第4期63-71,共9页
A robust single-sensor global maximum power point tracking(MPPT)strategy based on modern optimization for photovoltaic systems considering shading conditions is proposed in this work.The proposed strategy is designed ... A robust single-sensor global maximum power point tracking(MPPT)strategy based on modern optimization for photovoltaic systems considering shading conditions is proposed in this work.The proposed strategy is designed for battery charging applications and direct current(DC)microgrids.Under normal operation,the curve of photovoltaic(PV)output power versus PV voltage contains only a single peak point.This point can be simply captured using any traditional tracking method like perturb and observe.However,this situation is completely different during the shadowing effect where several peaks appear on the power voltage curve.Most of these peaks are local with only a single global.This condition leads to the incapability of traditional tracking approaches to extract the global peak power due to their inability to distinguish between the local and global peak points.They are trapped in the first peak point even when the point is local.Therefore,global tracking approaches based on modern optimization are highly required.A recent marine predators algorithm(MPA)has been used to solve the problem of tracking the global MPP under shadowing influence.Different shadowing scenarios are used to test and evaluate the performance of MPA based tracker.The obtained results are compared with particle swarm optimization(PSO)and ant lion optimizer(ALO).The results of the comparison con-firmed the effectiveness and robustness of the proposed global MPPT-MPA based tracker over PSO and ALO. 展开更多
关键词 Optimization marine predators algorithm photovoltaic system battery charging applications partial shading condition MPPT
在线阅读 下载PDF
An Overview to the Concept of Smart Coupling and Battery Management for Grid Connected Photovoltaic Battery System
15
作者 Deepranjan Dongol Elmar Bollin Thomas Feldmann 《Journal of Electronic Science and Technology》 CAS CSCD 2015年第4期367-372,共6页
The paper gives an overview on the need for smart coupling for battery management in grid integrated renewable energy system (RES). Grid integrated photovoltaic (PV) battery system, as being popular and extensivel... The paper gives an overview on the need for smart coupling for battery management in grid integrated renewable energy system (RES). Grid integrated photovoltaic (PV) battery system, as being popular and extensively used has been discussed in the paper. Smart coupling refers to intelligent grid integration such that it can foresee local network conditions and issue battery power flow management strategy accordingly to shave the peak PV and peak load. Therefore, a need for predictive energy management arises for smart integration to the grid and supervision of the power flow in accordance to the grid conditions. This is also a running project at the Institute of Energy Systems (INES), Offenburg University of Applied Science, Germany since January, 2015. The paper should provide insights to the motivation, need and gives an outlook to the features of desired predictive energy management system (PEMS). 展开更多
关键词 battery management optimization predictive energy management smart coupling
在线阅读 下载PDF
An Advanced Prediction Mechanism to Analyse Pore Geometry Shapes and Identification of Blocking Effect in VRLA Battery System
16
作者 Alessandro Mariani Kary Thanapalan +1 位作者 Peter Stevenson Jonathan Williams 《International Journal of Automation and computing》 EI CSCD 2017年第1期21-32,共12页
The aim of this investigation is to define a model of an alternating current impedance response that can identify the state of health of a porous electrode due to the blocked diffusion effect. To identify and simulate... The aim of this investigation is to define a model of an alternating current impedance response that can identify the state of health of a porous electrode due to the blocked diffusion effect. To identify and simulate different pore geometries, an analytical differential equations system was studied. Standard and low performance battery products were simulated by the model and validated with electrochemical impedance spectroscopy (EIS) experimental data. The correlation between pore structure geometries and the related battery efficiency is also addressed. This investigation may clarify the possible reasons for low performance batteries. Identifying the benchmark pore geometry, parameters may be useful for the battery producers to improve the efficiency of their products. Various recovery methods are also included in this investigation to disperse the build-up of lead sulphate crystal that limits the electrolysis process in the low performance batteries. 展开更多
关键词 Positive active material crystal structure valve regulated lead acid (VRLA) batteries MODELLING estimation and recoverytechniques.
原文传递
Research on the testing and evaluation system of power battery system for n ew energy vehicles
17
作者 Lin Liu Lan Zhang +4 位作者 Yibo Song Longjie Wang Chao Cheng Lin Xi Xiaolan Yi 《Advances in Engineering Innovation》 2025年第6期20-27,共8页
With the continuous improvement of global environmental protection requirements,people's attention to new energy vehicles is also increasing.As an important alternative to traditional fuel vehicles,one of the core... With the continuous improvement of global environmental protection requirements,people's attention to new energy vehicles is also increasing.As an important alternative to traditional fuel vehicles,one of the core technologies of new en ergy vehicles is the power battery system.It is crucial to test and evaluate the power battery system to ensure the safety,reliability,and performance of new energy vehicles.The objective of this study is to construct a testing system for evaluating the power bat tery system of new energy vehicles.Firstly,key indicators for testing power battery systems were determined through literature r eview and research,including battery capacity,charge and discharge performance,cycle life,and temperature characteristics.Esta blish corresponding testing methods and standards for these testing indicators.At the same time,cycle life testing is also conduc ted to simulate the long-term stability of the battery system in actual use.Through experiments,it has been proven that the proposed testing and evaluation system is feasible and effective.The experimental results show that the testing based on this evaluat ion system can accurately evaluate the performance of the power battery system and provide reference for the research and production of new energy vehicles. 展开更多
关键词 testing and verification power battery system new energy vehicles system research automotive battery technology
在线阅读 下载PDF
A 2.69 ppm/℃ bandgap reference with 42 ppm/V line sensitivity for battery management system 被引量:1
18
作者 Jing Wang Feixiang Zhang +2 位作者 Zhiyuan He Hui Zhang Lin Cheng 《Journal of Semiconductors》 2025年第6期31-42,共12页
This paper introduces a high-precision bandgap reference(BGR)designed for battery management systems(BMS),fea-turing an ultra-low temperature coefficient(TC)and line sensitivity(LS).The BGR employs a current-mode sche... This paper introduces a high-precision bandgap reference(BGR)designed for battery management systems(BMS),fea-turing an ultra-low temperature coefficient(TC)and line sensitivity(LS).The BGR employs a current-mode scheme with chopped op-amps and internal clock generators to eliminate op-amp offset.A low dropout regulator(LDO)and a pre-regula-tor enhance output driving and LS,respectively.Curvature compensation enhances the TC by addressing higher-order nonlinear-ity.These approaches,effective near room temperature,employs trimming at both 20 and 60°C.When combined with fixed cur-vature correction currents,it achieves an ultra-low TC for each chip.Implemented in a CMOS 180 nm process,the BGR occu-pies 0.548 mm²and operates at 2.5 V with 84μA current draw from a 5 V supply.An average TC of 2.69 ppm/℃ with two-point trimming and 0.81 ppm/℃ with multi-point trimming are achieved over the temperature range of-40 to 125℃.It accommo-dates a load current of 1 mA and an LS of 42 ppm/V,making it suitable for precise BMS applications. 展开更多
关键词 bandgap reference high precision low temperature coefficient small line sensitivity battery management system BMS
在线阅读 下载PDF
Second-Life Battery Energy Storage System Capacity Planning and Power Dispatch via Model-Free Adaptive Control-Embedded Heuristic Optimization
19
作者 Chuan Yuan Chang Liu +5 位作者 Shijun Chen Weiting Xu Jing Gou Ke Xu Zhengbo Li Youbo Liu 《Energy Engineering》 2025年第9期3573-3593,共21页
The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain deg... The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches. 展开更多
关键词 Second-life battery energy storage systems model-free adaptive voltage control bilevel optimization framework heterogeneous battery degradation model heuristic capacity configuration optimization
在线阅读 下载PDF
Co-production of hydrogen, oxygen, and electricity via an integrated solar-driven system with decoupled water electrolyzer and Na-Zn ion battery
20
作者 Fei Lv Longjie Liu +4 位作者 Jiazhe Wu Pengfei Wang Lixia Pan Dengwei Jing Yubin Chen 《Journal of Energy Chemistry》 2025年第1期621-627,共7页
Combining water electrolysis and rechargeable battery technologies into a single system holds great promise for the co-production of hydrogen (H_(2)) and electricity.However,the design and development of such systems ... Combining water electrolysis and rechargeable battery technologies into a single system holds great promise for the co-production of hydrogen (H_(2)) and electricity.However,the design and development of such systems is still in its infancy.Herein,an integrated hydrogen-oxygen (O_(2))-electricity co-production system featuring a bipolar membrane-assisted decoupled electrolyzer and a Na-Zn ion battery was established with sodium nickelhexacyanoferrate (NaNiHCF) and Zn^(2+)/Zn as dual redox electrodes.The decoupled electrolyzer enables to produce H_(2)and O_(2)in different time and space with almost 100%Faradaic efficiency at 100 mA cm^(-2).Then,the charged NaNiHCF and Zn electrodes after the electrolysis processes formed a Na-Zn ion battery,which can generate electricity with an average cell voltage of 1.75 V at 10 m A cm^(-2).By connecting Si photovoltaics with the modular electrochemical device,a well-matched solar driven system was built to convert the intermittent solar energy into hydrogen and electric energy with a solar to hydrogen-electricity efficiency of 16.7%,demonstrating the flexible storage and conversion of renewables. 展开更多
关键词 HYDROGEN ELECTRICITY Decoupled water electrolyzer Na-Zn ion battery Solar energy
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部