期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Review:Pre-lithiation Strategies Based on Cathode Sacrificial Lithium Salts for Lithium-Ion Capacitors 被引量:2
1
作者 Kailimai Su Yan Wang +4 位作者 Bao Yang Xu Zhang Wei Wu Junwei Lang Xingbin Yan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期10-32,共23页
Similar to lithium-ion batteries(LIBs),during the first charge/discharge process of lithium-ion capacitors(LICs),lithium-intercalated anodes(e.g.,silicon,graphite,and hard carbon)also exhibit irreversible lithium inte... Similar to lithium-ion batteries(LIBs),during the first charge/discharge process of lithium-ion capacitors(LICs),lithium-intercalated anodes(e.g.,silicon,graphite,and hard carbon)also exhibit irreversible lithium intercalation behaviors,such as the formation of a solid electrolyte interface(SEI),which will consume Li^(+)in the electrolyte and significantly reduce the electrochemical performance of the system.Therefore,pre-lithiation is an indispensable procedure for LICs.At present,commercial LICs mostly use lithium metal as the lithium source to compensate for the irreversible capacity loss,which has the demerits of operational complexity and danger.However,the pre-lithiation strategy based on cathode sacrificial lithium salts(CSLSs)has been proposed,which has the advantages of low cost,simple operation,environmental protection,and safety.Therefore,there is an urgent need for a timely and comprehensive summary of the application of CSLSs to LICs.In this review,the important roles of pre-lithiation in LICs are detailed,and different pre-lithiation methods are reviewed and compared systematically and comprehensively.After that,we systematically discuss the pre-lithiation strategies based on CSLSs and mainly introduce the lithium extraction mechanism of CSLSs and the influence of intrinsic characteristics and doping amount of CSLSs on LICs performance.In addition,a summary and outlook are conducted,aiming to provide the essential basic knowledge and guidance for developing a new pre-lithiation technology. 展开更多
关键词 cathode sacrificial lithium salts lithium-ion battery capacitors lithium-ion capacitors perspectives pre-lithiation strategies
在线阅读 下载PDF
MXene-Derived Defect-Rich TiO2@rGO as High-Rate Anodes for Full Na Ion Batteries and Capacitors 被引量:3
2
作者 Yongzheng Fang Yingying Zhang +9 位作者 Chenxu Miao Kai Zhu Yong Chen Fei Du Jinling Yin Ke Ye Kui Cheng Jun Yan Guiling Wang Dianxue Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第10期53-68,共16页
Sodium ion batteries and capacitors have demonstrated their potential applications for next-generation low-cost energy storage devices.These devices’s rate ability is determined by the fast sodium ion storage behavio... Sodium ion batteries and capacitors have demonstrated their potential applications for next-generation low-cost energy storage devices.These devices’s rate ability is determined by the fast sodium ion storage behavior in electrode materials.Herein,a defective TiO2@reduced graphene oxide(M-TiO2@rGO)self-supporting foam electrode is constructed via a facile MXene decomposition and graphene oxide self-assembling process.The employment of the MXene parent phase exhibits distinctive advantages,enabling defect engineering,nanoengineering,and fluorine-doped metal oxides.As a result,the M-TiO2@rGO electrode shows a pseudocapacitance-dominated hybrid sodium storage mechanism.The pseudocapacitance-dominated process leads to high capacity,remarkable rate ability,and superior cycling performance.Significantly,an M-TiO2@rGO//Na3 V2(PO4)3 sodium full cell and an M-TiO2@rGO//HPAC sodium ion capacitor are fabricated to demonstrate the promising application of M-TiO2@rGO.The sodium ion battery presents a capacity of 177.1 mAh g-1 at 500 mA g-1 and capacity retention of 74%after 200 cycles.The sodium ion capacitor delivers a maximum energy density of 101.2 Wh kg-1 and a maximum power density of 10,103.7 W kg-1.At 1.0 A g-1,it displays an energy retention of 84.7%after 10,000 cycles. 展开更多
关键词 MXene-Ti2CTx Vacancy oxygen SELF-SUPPORTING TiO2 anodes Sodium ion battery and capacitor
在线阅读 下载PDF
Nanomaterials for electrochemical energy storage 被引量:7
3
作者 Nian Liu Weiyang Li +1 位作者 Mauro Pasta Yi Cui 《Frontiers of physics》 SCIE CSCD 2014年第3期323-350,共28页
The development of nanotechnology in the past two decades has generated great capability of controlling materials at the nanometer scale and has enabled exciting opportunities to design materials with desirable electr... The development of nanotechnology in the past two decades has generated great capability of controlling materials at the nanometer scale and has enabled exciting opportunities to design materials with desirable electronic, ionic, photonic, and mechanical properties. This development has also contributed to tile advance in energy storage, which is a critical technology in this century. In this article, we will review how the rational design of nanostructured materials has addressed the challenges of batteries and electrochemical capacitors and led to high-performance electrochemical energy storage devices. Four specific material systems will be discussed: i) nanostructured alloy anodes for Li-batteries, ii) nanostructured sulfur cathodes for Li-batteries, iii) nanoporous open- framework battery electrodes, and iv) nanostructured electrodes for electrochemical capacitors. 展开更多
关键词 NANOMATERIAL energy storage silicon anode sulfur cathode stationary battery electrochemical capacitors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部