Basin modeling has become an important tool for analyzing sedimentary basins. The North Subbasin of the South Yellow Sea Basin is filled with thick Meso-Cenozoic terrigenous deposits during the rift evolution stage. T...Basin modeling has become an important tool for analyzing sedimentary basins. The North Subbasin of the South Yellow Sea Basin is filled with thick Meso-Cenozoic terrigenous deposits during the rift evolution stage. The accumulation of data and achievements of geological investigations in recent years have provided the preconditions for basin modeling. The necessary parameters and geological elements for simulations are collated and summarized. Modeling of tectono-thermal evolution is performed and the related trend in heat flow is reconstructed and calibrated. The heat flow value commences from an average level of 61 m W/m2during MiddleLate Jurassic, rises to about 80 m W/m2from circa 145 Ma to circa 74 Ma, and then undergoes a gradual decline to65 m W/m2until the end of Oligocene.Three evolutionary phases, namely, the initial rifting phase, syn-rifting phase, and post-rifting phase, have been identified. The modeling results show that the North Subbasin generally enters into a stage of strong rifting during Cretaceous and undergoes rapid subsidence until the Late Cretaceous,then follows by a stage of moderate rifting during the Paleogene. The input and general workflow involved in 3-D modeling are introduced. Reconstruction of the petroleum system in the North Subbasin reveals that the threshold depth of hydrocarbon generation is located near the top of the Paleogene Funing formation, and the underlying Jurassic and Cretaceous source rocks have reached or exceeded peak oil generation and have almost completed the generation and expulsion of hydrocarbons. The main generation and expulsion in the Jurassic source rocks take place during the syn-rifting and post-rifting phases, whereas the peak generation and expulsion in the Cretaceous and Paleogene source rocks take place during the post-rifting phase. Although the study area is still a relatively less explored sedimentary basin, the results of modeling can provide valuable information for exploration. A preliminary discussion of the main uncertainty factors is also presented.展开更多
The Eocene Niubao Formation is the primary research target of oil exploration in the Lunpola Basin.Crude oil was extracted from Well Z1 on the northern margin of the basin in 1993.In this study,an integrated evaluatio...The Eocene Niubao Formation is the primary research target of oil exploration in the Lunpola Basin.Crude oil was extracted from Well Z1 on the northern margin of the basin in 1993.In this study,an integrated evaluation of the source rock geothermal,and maturity histories and the fluid inclusion and fluid potential distributions was performed to aid in predicting areas of hydrocarbon accumulation.Due to the abundance of organic matter,the kerogen types,maturity,and oil-sources correlate with the geochemical data.The middle submember of the second member of the Niubao Formation(E2n^2-2)is the most favorable source rock based on the amount of oil produced from the E2n^2-3and E2n^3-1reservoirs.One-and twodimensional basin modeling,using BasinMod software,shows that the E2n^2-2source rock started to generate hydrocarbon at 35-30 Ma,reached a maturity of Ro=0.7%at 25-20 Ma,and at present,it has reached the peak oil generation stage with a thermal maturity of Ro=0.8%to less than Ro=1.0%.By using fluid inclusion petrography,fluorescence spectroscopy,and microthermometry,two major periods of oil charging have been revealed at 26.1-17.5 and 32.4-24.6 Ma.The oil accumulation modeling results,conducted by using the Trinity software,show a good fit of the oil shows in the wells and predict that the structural highs and lithologic transitions within the Jiangriaco and Paco sags are potential oil traps.展开更多
Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea.However,there remains a lot of key questions yet to be resolved,particularly about the mechanisms...Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea.However,there remains a lot of key questions yet to be resolved,particularly about the mechanisms and the controls of gas hydrates enrichment.Numerical simulaution would play signficant role in addressing these questions.This study focused on the gas hydrate exploration in the Shenhu Area,Northern South China Sea.Based on the newly obtained borehole and multichannel reflection seismic data,the authors conducted an integrated 3D basin modeling study on gas hydrate.The results indicate that the Shenhu Area has favorable conditions for gas hydrate accumulation,such as temperature,pressure,hydrocarbon source,and tectonic setting.Gas hydrates are most concentrated in the Late Miocene strata,particularly in the structual highs between the Baiyun Sag and the Liwan Sag,and area to the south of it.It also proved the existence of overpressure in the main sag of source rocks,which was subject to compaction disequilibrium and hydrocarbon generation.It also shown that the regional fault activity is not conducive to gas hydrate accumulation due to excess gas seepage.The authors conjecture that fault activity may slightly weaken overpressure for the positive effect of hydrocarbon expulsion and areas lacking regional fault activity have better potential.展开更多
The present study focuses on source rock evaluation of the Sargelu Formation by using core chips of rocks collected from well Atrush-2, Duhok, Kurdistan Region-Iraq. The Rock-Eval pyrolysis and vitrinite reflectance w...The present study focuses on source rock evaluation of the Sargelu Formation by using core chips of rocks collected from well Atrush-2, Duhok, Kurdistan Region-Iraq. The Rock-Eval pyrolysis and vitrinite reflectance were executed. Subsequently, the selected parameters were used for source rock evaluation and 1-D Basin Modelling calibration. The upper part of the formation mainly comprises argillaceous limestone with low content of organic matter (0.64% - 1% TOC). By contrast, the lower part is dominated with shale interval and contains high amounts of TOC values (>4% for 1272 - 1278 m) reveling good to very good quality source rock. Accordingly, good to very good hydrocarbon generation potential is suggested for this formation. Organic matter of the Sargelu Formation contains type II and mixed-type II-III kerogen. The values of Tmax and vitrinite reflectance (Ro%) demonstrate that the formation is thermally mature and in the oil zone. In order to construct a thermal history of the formation and determine the timing of hydrocarbon maturation and generation, the 1-D basin modelling PetroMod 2019.1 was used in this study. Based on the 1-D Basin modelling simulation and its outputs, about 3500 m of overburden have been eroded at the study area. The present-day heat flow was found to be 30 mW/m2. The organic matter of Sargelu Formation entered the early oil zone in 64 Ma and reached the main oil zone ca. 5 Ma. The formation is still in the main oil zone at present-day. In well Atrush-2, the highest rate of oil generation for the Sargelu Formation was in the 8.5 Ma, the onset of oil expulsion from Sargelu Formation was in 50 Ma and the expulsion mass has been reached 0.5 Mtons at present-day.展开更多
Pabdeh Formation is one of the most important source rocks in Zagros basin. In this study, thermal modeling and comparing of hydrocarbon potential evaluation of Pabdeh Formation in Mish Anticline and Gachsaran oil fie...Pabdeh Formation is one of the most important source rocks in Zagros basin. In this study, thermal modeling and comparing of hydrocarbon potential evaluation of Pabdeh Formation in Mish Anticline and Gachsaran oil field have been investigated. For this reason, Rock-Eval pyrolysis was carried out on 21 cuttings samples collected from 2 boreholes (Well No. 55 and 83) of Gachsaran oil field and outcrop of Mish anticline. Accordingly, the Kerogen types of Pabdeh Formation in Gachsaran oil field are II, but in Mish anticline are type II and III. The amount of inert organic carbon determined for the Pabdeh Formation in Mish anticline is about 4.879 wt%, while for Gachsaran oil field, it is estimated at 0.153 (Well. No. 55) and 1.156 (Well. No. 83) wt%. Absorption of hydrocarbon by rock matrix was also determined. The amount of absorption in Mish anticline is more than that of Gachsaran oil field. This is mostly due to the presence of argillaceous matrix in this area, but the clays have not been successful in absorbing organic matter;this is due to the result obtained from small amount of organic matter in the basin. The Rock-Eval data revealed that the sedimentary paleo-environment strongly affected the source potential of this formation as it changed from the continental and Deltaic in the Mish anticline to deeper marine in Gachsaran oil field. In addition, curves of Burial history were drawn for Gachsaran well No. 55, in order to assess the thermal maturity of the Pabdeh formation. The results of the methods indicated that Pabdeh formation in Gachsaran oil field had a good to very good hydrocarbon potential and had entered to oil window.展开更多
This study aims to define the hydrocarbon generation potential of source rocks by assessing various factors including quantity of organic matter, types of kerogen, thermal maturity, and source of organic matter input....This study aims to define the hydrocarbon generation potential of source rocks by assessing various factors including quantity of organic matter, types of kerogen, thermal maturity, and source of organic matter input. Depositional conditions of source rocks from Thebes, Brown Limestone, and Matulla formations in Well G-9, Well GA-2 and Well GW-6, are assessed through pyrolysis, vitrinite reflectance and1D basin modeling. Results show the source rocks of Thebes and Brown Limestone formations exhibit favorable to excellent source rock characteristics with Type I-II kerogen and have the capacity to generate oil. Conversely, the source rocks of the Matulla Formation show fair to good source rock characteristics with Type II-III kerogen and have the capacity to produce both oil and gas. Thermal maturity shows the source rocks are at an immature stage. A 1D basin model is constructed for Well G-9to simulate multi-tectonic episodes, burial events, and the history of thermal maturity. Sedimentation rates of Cretaceous to Eocene deposits are characterized by a low burial rate, which contrasts with the high burial and sedimentation rates for Miocene and post Miocene(Pliocene-Recent) strata. Overall, the South Geisum oilfield petroleum system is found to be immature based on integration of source rock evaluation and petroleum basin modelling.展开更多
The conversion of forest land to other types of land cover is one of the major issues in the global fight against climate change. Understanding the direct and indirect factors of these conversions from local studies i...The conversion of forest land to other types of land cover is one of the major issues in the global fight against climate change. Understanding the direct and indirect factors of these conversions from local studies in the tropics is essential to project the future impact of human activities on the preservation of tropical forests in general and the forests of the Republic of Congo in particular. This study, conducted in five localities with different socioeconomic contexts in the Republic of Congo, aims to analyze the variability of drivers of deforestation and forest degradation linked to urbanization in the Congo Basin. Using a series of land cover maps from the years 1986, 2003 and 2019 for the cities of Ouesso, Pokola, Ngombe, Impfondo and Dongou, as well as field data and socio-economic information collected from local and central administrations, a unique model has been developed to understand the explanatory patterns of forest loss. Deforestation around urban centers is mainly due to urban agriculture due to population growth, as well as the spatial expansion of cities, which have a major impact on the stability and integrity of forests. Shifting agriculture is the main direct cause of deforestation and forest degradation, representing 48% of the total sample, followed by the collection of wood fuel (22%), the collection of construction wood (19%), illegal logging (6%) and urban expansion (5%). Forecasts indicate that forest loss around major cities will increase by 487, 20 ha to 5266, 73 ha by 2050 compared to the base year of 2019. This study highlights the need for a new system of land management and poverty alleviation of local populations to ensure the stability of the Congo Basin tropical forests around large and small African cities.展开更多
Jiaojiang sag in the East China Sea Basin is at the earlier exploration stage,where characterizing hydrocarbon generation of source rocks is important to understand oil-gas exploration potential.Utilizing geochemical ...Jiaojiang sag in the East China Sea Basin is at the earlier exploration stage,where characterizing hydrocarbon generation of source rocks is important to understand oil-gas exploration potential.Utilizing geochemical and basin modeling analysis,hydrocarbon generation capacity and process of the Paleocene E_(1)y,E_(1)l and E_(1)m formations were investigated.Results show that E_(1)y and E_(1)l mudstones are high-quality source rocks with Type Ⅱ kerogen,which is dominated by both aquatic organisms and terrestrial higher plants deposited in sub-reduced environment.E_(1)m mudstone interbedded with thin carbonaceous mudstone and coal is poor-quality source rock with Type Ⅲ kerogen,whose organic matter was originated from terrestrial higher plants under oxidized environment.Controlled by burial and maturity histories,E_(1)y and E_(1)l source rocks experienced two hydrocarbon generation stages,which took place in the Late Paleocene and in the Middle to Late Eocene,respectively,and had high hydrocarbon generation capacity with cumulative hydrocarbon volume of 363 and 328 mg/g,respectively.E_(1)m source rock only had one hydrocarbon generation process in the Late Eocene,which had low hydrocarbon generation capacity with cumulative hydrocarbon volume of only 24 mg/g.The future oil-gas exploration in the Jiaojiang sag should focus on hydrocarbon generation center and select targets in the central uplift formed before the Miocene with high-quality traps.展开更多
Lacustrine-fan deltas feature high reservoir-quality lithounits that are critical targets to hydrocarbon exploration and development.However,depicting their intricate sedimentary architectural elements is still challe...Lacustrine-fan deltas feature high reservoir-quality lithounits that are critical targets to hydrocarbon exploration and development.However,depicting their intricate sedimentary architectural elements is still challenging due to complex stacking-patterns and limited examples.In this study,both 3D-static geocellular reservoir modeling and 1D-basin modeling approaches were combined as an established effective workflow that is capable of efficiently delineating reservoir-heterogeneities and confirming hydrocarbon-charging.This integration was for the purpose of unlocking the ultimate petroleum potential of fluvio-lacustrine units,Nubia Formation,in the southwest of the Gulf of Suez rift(West Esh-ElMallaha Concession,Egypt).Pixel-based stochastic-simulation was applied,constrained by an established depositional-model developed after adequate integrated-facies analysis,upon geocellularly modeling rock and fluid properties of Nubia reservoir intervals;utilizing several key-information scales(seismic-profiles,well-logs).The results reveal a lowstand-transgressive systems tract encompassing fluvio-lacustrine depositional-systems subdivided into eight facies-associations,of which fluvialchannels and deltaic mouth bars represent significant reservoir-quality facies.Given efficient reservoir-quality,mouth sand-bars deserve special consideration,and testing,while running further oilfield development-endeavours and investigating similar-settings.展开更多
Unconventional natural gas in deep coal measures has become an exploration and research hotspot in recent years.The exploration breakthrough of deep coalbed methane and tight sandstone gas in Daning-Jixian Block in th...Unconventional natural gas in deep coal measures has become an exploration and research hotspot in recent years.The exploration breakthrough of deep coalbed methane and tight sandstone gas in Daning-Jixian Block in the eastern Ordos Basin has revealed huge resource potential and commercial prospects in the deep Upper Paleozoic Carboniferous-Permian coal measures.However,the ambiguity of gas accumulation in deep coal measures has restricted exploration and development.Based on a series of tests for fluid inclusions,including petrographic observation,Raman spectroscopy analysis,and microthermometry,combined with the burial-thermal evolution history recovered from basin modeling,this study aims to clarify the timing of gas accumulation in deep coal measures.The results show four types of secondary fluid inclusions in the deep coal measure sandstone layers of Daning-Jixian Block,including CH4-rich inclusions,C2+hydrocarbons-bearing inclusions,CO_(2)-bearing inclusions,and aqueous inclusions.The main formation stage of fluid inclusions corresponded to the mesodiagenesis stage of the deep coal measure sandstone,and the coeval assemblages of fluid inclusions vary due to the recording of gas charging in different maturity stages of coal measure source rocks.This study suggests that tight sandstone gas accumulation in deep coal measures was a continuous charging process with one period-multiple episodes in Daning-Jixian Block,and occurred mainly during the Early Cretaceous(137−127 Ma BP).The results of this study contribute to further understanding of gas accumulation mechanisms in deep coal measures.展开更多
Taking the Ordos Basin as an example,this paper proposed that the construction of an energy super basin should follow the principle of“more energy,less carbon,and better energy structure”.The modeling workflow of en...Taking the Ordos Basin as an example,this paper proposed that the construction of an energy super basin should follow the principle of“more energy,less carbon,and better energy structure”.The modeling workflow of energy super basin was built.Based on the resources/reserves,development status and infrastructures of the Ordos Basin,the development potential of the basin was evaluated,the uncertainties in the construction of energy super basin were analyzed,and the future vision and realization path of the Ordos Energy Super Basin were recommended.This study demonstrates that the Ordos Basin has the advantages of abundant energy sources,perfect infrastructures,well-matched carbon source and sink,small population density,and proximity to the energy consumption areas.These characteristics ensure that the Ordos Basin is a good candidate of the energy super basin.It is expected that the energy supply of the Ordos Basin in 2050 will reach 23×10^(8) t of standard coal,and the proportion of fossil fuels in energy supply will decrease to 41%.The carbon emissions will decrease by 20×10^(8) t compared to the emissions in 2023.The future construction of the basin should focus on the generation and storage of renewable energy,and technological breakthroughs for the carbon capture,utilization and storage.展开更多
In recent years,fueled by significant advancements in oil exploration technologies within the Ordos Basin,an increasing number of low-permeability or ultra-low-permeability reservoirs have been identified.Elucidating ...In recent years,fueled by significant advancements in oil exploration technologies within the Ordos Basin,an increasing number of low-permeability or ultra-low-permeability reservoirs have been identified.Elucidating their reservoir characteristics and formation mechanisms has become a critical priority for sustainable hydrocarbon development.The study focused on the Chang 6 Member of the Upper Triassic Yanchang Formation in the Heshui area of the Ordos Basin,systematically investigating its petrological features,porosity and permeability characteristics,diagenesis,and diagenetic evolution sequence.By integrating core observation,thin-section identification,and physical property measurements,a comprehensive quantitative evaluation of reservoir pore evolution was performed.These analytical outcomes were subsequently applied to simulate hydrocarbon migration and accumulation.These research results will provide a scientific basis for in-depth quantitative study of the pore evolution in ultra-low-permeability oil reservoirs and accurately constructing basin models.As indicated,the reservoir lithology in the study area predominantly comprises siltstone interbedded with mudstone or argillaceous siltstone,characterized by low porosity and permeability.Through diagenetic characteristics-based reconstruction constrained by the existing porosity data,pore evolution during diagenesis was quantitatively modeled.The simulated pore evolution aligns with actual geological observations,validating the reliability of the methodology.Furthermore,the quantified pore evolution results were applied to simulate hydrocarbon migration using PetroMod software,showing that hydrocarbon charging in the basin began at the end of the Late Jurassic(J3),peaking in hydrocarbon generation,expulsion,and accumulation by the end of the Early Cretaceous(K1)and maintaining high accumulation rates until the late Cretaceous,though significantly decreasing at the present stage.The simulation results were verified by comparison with actual drilling data,which confirms their reliability and applicability to other analogous oilfields.展开更多
The Pearl River Mouth basin (PRMB) is a marginal sedimentary basin of the South China Sea. It trends NE and is divided into three segments from west to east by two NW-trending faults. Changing dramatically in struct...The Pearl River Mouth basin (PRMB) is a marginal sedimentary basin of the South China Sea. It trends NE and is divided into three segments from west to east by two NW-trending faults. Changing dramatically in structures along and across strike, the PRMB is a good example to analyze main factors that might control the process of a continental rift basin's extension. Through five series of analogue experiments, we investigate the role of different factors, such as pre-existing discontinuities of crust, rheological profiles of lithosphere, kinematics of extension and presence of magmatic bodies and strong crustal portions (rigid massifs) on the development of basin's structures. After being compared with the architecture of the natural prototype, the results of the analogue models were compared with the architecture of the natural prototype and used to infer the role of the different factors controlling the formation and evolution of the PRMB. The main conclusions are as follows. (1) Affected by pre-Cenozoic structures, the PRMB was controlled by crosscut NE- and NW-trending initial faults, and the NW-trending Yitong'ansha (--~l~) fault may be a through-going fault along dip and offset the NE-trending rift and faults, while the Enpingdong (和统暗沙) fault might exist only in the middle and south. (2) The NW-trending faults may orient WNW to be sinistrally transtensional under SE to nearly NS extension. (3) The thickness ratio of brittle over ductile crust in Baiyun (白云) sag is lessthan normal, suggesting an initially hot and weak lithosphere. (4) The magma must have taken part in the rifting process from early stage, it may occur initially upon or slightly south of the divergent boundary in the middle segment. The flow of magma toward rift boundary faults caused extra vertical subsidence above the initial magma reservoir without creating a large extensional fault. (5) The rigid massif contributed to the strain partition along and across basin strike.展开更多
Three series of sandbox modeling experiments were performed to study the fault-increment pattern in extensional basins. Experimental results showed that the tectonic action mode of boundaries and the shape of major bo...Three series of sandbox modeling experiments were performed to study the fault-increment pattern in extensional basins. Experimental results showed that the tectonic action mode of boundaries and the shape of major boundary faults control the formation and evolution of faults in extensional basins. In the process of extensional deformation, the increase in the number and length of faults was episodic, and every 'episode' experienced three periods, strain-accumulation period, quick fault-increment period and strain-adjustment period. The more complex the shape of the boundary fault, the higher the strain increment each 'episode' experienced. Different extensional modes resulted in different fault-increment patterns. The horizontal detachment extensional mode has the 'linear' style of fault-increment pattern, while the extensional mode controlled by a listric fault has the 'stepwise' style of fault-increment pattern, and the extensional mode controlled by a ramp-flat boundary fault has the 'stepwise-linear' style of fault-increment pattern. These fault-increment patterns given above could provide a theoretical method of fault interpretation and fracture prediction in extensional basins.展开更多
The Carboniferous prototype sedimentary basin in the Tazhong (Central Tarimbasin) area is recognized as a compressive intracratonic depressional one. Three type Ⅰ sequenceboundaries and three type Ⅱ sequence boundar...The Carboniferous prototype sedimentary basin in the Tazhong (Central Tarimbasin) area is recognized as a compressive intracratonic depressional one. Three type Ⅰ sequenceboundaries and three type Ⅱ sequence boundaries can be identified in the CarboniferousSystem, which can accordingly be divided into five sedimentary sequences. These sequencespossess stratigraphic characters of the standard sequence and correspond to the depositionalstratigraphic unit of a third-order eustatic cycle. They can be regionally or globally correlatedwith each other. The framework of sequence stratigraphy of the intracratonict basin in thestudy area distinctly differs from that of the passive continental-margin basin in the lack ofdepositional systems of early-middle lowstand, poor development of the deeply incised valleyand condensed section of the maximum sea-flood, good development of type Ⅱ sequenceboundaries and coastal plain depositional systems coexisting with shelf-type fan deltas underwet climatic conditions, Which consequently led to the formation of a paralic lithofacies frame-work.展开更多
Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-R...Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-Red River shear zone, and connected with NW subsea basin through the Xisha Trough. Along with the rapid progress of the deepwater exploration, large amounts of high resolution geophysical and geological data were accumulated. Scientific researches about deepwater basins kept revealing brand new tectonic and sedimentary discoveries. In order to summarize the structural features and main controlling factors of the deepwater Qiongdongnan Basin, a series of researches on basin architecture, fault activities, tectonic deformation and evolution were carried out. In reference to analogue modeling experiments, a tectonic situation and a basin formation mechanism were discussed. The researches indicate that:the northern boundary of the Qiongdongnan Basin is strongly controlled by No. 2 fault. The overlapping control of two stress fields from the east and the west made the central depression zone extremely thinned. Combined with the changed stress field, the segmentation of a preexisting weakness zone made the sags in the east experiencing different rifting histories from the west ones. The NE-trending west segment of the Qiongdongnan Basin experienced strong rifting during Eocene, while the roughly EW-trending sags in the east segment show strong rifting during late Eocene and early Oligocene. Local structures such as NW-trending basal fault and inherited uplifts controlled the lateral segmentation. So first order factors such as regional stress field and preexisting weakness zone controlled the basin zonation, while the second order factors determined the segmentation from east to west.展开更多
The stretching process of some Tertiary rift basins in eastern China is characterized by multiphase rifting. A multiple instantaneous uniform stretching model is proposed in this paper to simulate the formation of the...The stretching process of some Tertiary rift basins in eastern China is characterized by multiphase rifting. A multiple instantaneous uniform stretching model is proposed in this paper to simulate the formation of the basins as the rifting process cannot be accurately described by a simple (one episode) stretching model. The study shows that the multiphase stretching model, combined with the back-stripping technique, can be used to reconstruct the subsidence history and the stretching process of the lithosphere, and to evaluate the depth to the top of the asthenosphere and the deep thermal evolution of the basins. The calculated results obtained by applying the quantitative model to the episodic rifting process of the Tertiary Qiongdongnan and Yinggehai basins in the South China Sea are in agreement with geophysical data and geological observations. This provides a new method for quantitative evaluation of the geodynamic process of multiphase rifting occurring during the Tertiary in eastern China.展开更多
Variation trends of water resources in the Xiangjiang River Basin over the coming decades have been investigated using the variable infiltration capacity(VIC) model and 14 general circulation models'(GCMs') pr...Variation trends of water resources in the Xiangjiang River Basin over the coming decades have been investigated using the variable infiltration capacity(VIC) model and 14 general circulation models'(GCMs') projections under the representative concentration pathway(RCP4.5) scenario. Results show that the Xiangjiang River Basin will probably experience temperature rises during the period from 2021 to2050, with precipitation decrease in the 2020 s and increase in the 2030 s. The VIC model performs well for monthly discharge simulations with better performance for hydrometric stations on the main stream of the Xiangjiang River than for tributary catchments. The simulated annual discharges are significantly correlated to the recorded annual discharges for all the eight selected target stations. The Xiangjiang River Basin may experience water shortages induced by climate change. Annual water resources of the Xiangjiang River Basin over the period from 2021 to 2050 are projected to decrease by 2.76% on average within the range from-7.81% to 7.40%. It is essential to consider the potential impact of climate change on water resources in future planning for sustainable utilization of water resources.展开更多
In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Nort...In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover, etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km 2 . The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years' data are used to simulate, while the last 5 years' data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681, 5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapotranspiration decrease of the watershed, adjust the runoff process, and increase the soil water content.展开更多
The application of the Soil and Water Assessment Tool (SWAT) to the Olifants Basin in South Africa was the focus of our study with emphasis on calibration, validation and uncertainty analysis. The Basin was discretize...The application of the Soil and Water Assessment Tool (SWAT) to the Olifants Basin in South Africa was the focus of our study with emphasis on calibration, validation and uncertainty analysis. The Basin was discretized into 23 sub-basins and 226 Hydrologic Response Units (HRUs) using 3 arc second (90 m × 90 m) pixel resolution SRTM DEM with stream gauge B7H015 as the Basin outlet. Observed stream flow data at B7H015 were used for model calibration (1988-2001) and validation (2002-2013) using the split sample approach. Relative global sensitivity analysis using SUFI-2 algorithm was used to determine sensitive parameters to stream flow for calibration of the model. Performance efficiency of the Olifants SWAT model was assessed using Nash-Sutcliffe (NSE), coefficient of determination (R<sup>2</sup>), Percent Bias (PBIAS) and Root Mean Square Error-Observation Standard deviation Ratio (RSR). Sensitivity analysis revealed in decreasing order of significance, runoff curve number (CN2), alpha bank factor (ALPHA_BNK), soil evaporation compensation factor (ESCO), soil available water capacity (SOIL_AWC, mm H<sub>2</sub>O/mm soil), groundwater delay (GW_ DELAY, days) and groundwater “revap” coefficient (GW_REVAP) to be the most sensitive parameters to stream flow. Analysis of the model during the calibration period gave the following statistics;NSE = 0.88;R<sup>2</sup> = 0.89;PBIAS = -11.49%;RSR = 0.34. On the other hand, statistics during the validation period were NSE = 0.67;R<sup>2 </sup>= 0.79;PBIAS = -20.69%;RSR = 0.57. The observed statistics indicate the applicability of the SWAT model in simulating the hydrology of the Olifants Basin and therefore can be used as a Decision Support Tool (DST) by water managers and other relevant decisions making bodies to influence policy directions on the management of watershed processes especially water resources.展开更多
基金The National Special Project for Marine Geology of China under contract No.DD20160147the National Basic Research Program(973 Program) of China under contract No.2013CB429701the National Natural Science Foundation of China under contract No.41210005
文摘Basin modeling has become an important tool for analyzing sedimentary basins. The North Subbasin of the South Yellow Sea Basin is filled with thick Meso-Cenozoic terrigenous deposits during the rift evolution stage. The accumulation of data and achievements of geological investigations in recent years have provided the preconditions for basin modeling. The necessary parameters and geological elements for simulations are collated and summarized. Modeling of tectono-thermal evolution is performed and the related trend in heat flow is reconstructed and calibrated. The heat flow value commences from an average level of 61 m W/m2during MiddleLate Jurassic, rises to about 80 m W/m2from circa 145 Ma to circa 74 Ma, and then undergoes a gradual decline to65 m W/m2until the end of Oligocene.Three evolutionary phases, namely, the initial rifting phase, syn-rifting phase, and post-rifting phase, have been identified. The modeling results show that the North Subbasin generally enters into a stage of strong rifting during Cretaceous and undergoes rapid subsidence until the Late Cretaceous,then follows by a stage of moderate rifting during the Paleogene. The input and general workflow involved in 3-D modeling are introduced. Reconstruction of the petroleum system in the North Subbasin reveals that the threshold depth of hydrocarbon generation is located near the top of the Paleogene Funing formation, and the underlying Jurassic and Cretaceous source rocks have reached or exceeded peak oil generation and have almost completed the generation and expulsion of hydrocarbons. The main generation and expulsion in the Jurassic source rocks take place during the syn-rifting and post-rifting phases, whereas the peak generation and expulsion in the Cretaceous and Paleogene source rocks take place during the post-rifting phase. Although the study area is still a relatively less explored sedimentary basin, the results of modeling can provide valuable information for exploration. A preliminary discussion of the main uncertainty factors is also presented.
基金financially supported by the National Science and the Technology Major Project(Nos.2016ZX05024002-003,2017ZX05032-001-004,2016ZX05027-001-005)the National Science Foundation of China(No.41672136)the Branch of Exploration Project,SINOPEC(No.G0800-14-KK-169)
文摘The Eocene Niubao Formation is the primary research target of oil exploration in the Lunpola Basin.Crude oil was extracted from Well Z1 on the northern margin of the basin in 1993.In this study,an integrated evaluation of the source rock geothermal,and maturity histories and the fluid inclusion and fluid potential distributions was performed to aid in predicting areas of hydrocarbon accumulation.Due to the abundance of organic matter,the kerogen types,maturity,and oil-sources correlate with the geochemical data.The middle submember of the second member of the Niubao Formation(E2n^2-2)is the most favorable source rock based on the amount of oil produced from the E2n^2-3and E2n^3-1reservoirs.One-and twodimensional basin modeling,using BasinMod software,shows that the E2n^2-2source rock started to generate hydrocarbon at 35-30 Ma,reached a maturity of Ro=0.7%at 25-20 Ma,and at present,it has reached the peak oil generation stage with a thermal maturity of Ro=0.8%to less than Ro=1.0%.By using fluid inclusion petrography,fluorescence spectroscopy,and microthermometry,two major periods of oil charging have been revealed at 26.1-17.5 and 32.4-24.6 Ma.The oil accumulation modeling results,conducted by using the Trinity software,show a good fit of the oil shows in the wells and predict that the structural highs and lithologic transitions within the Jiangriaco and Paco sags are potential oil traps.
基金funded by Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0201,GML2019ZD0104)Finance Science and Technology Project of Hainan Province(ZDKJ202019).
文摘Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea.However,there remains a lot of key questions yet to be resolved,particularly about the mechanisms and the controls of gas hydrates enrichment.Numerical simulaution would play signficant role in addressing these questions.This study focused on the gas hydrate exploration in the Shenhu Area,Northern South China Sea.Based on the newly obtained borehole and multichannel reflection seismic data,the authors conducted an integrated 3D basin modeling study on gas hydrate.The results indicate that the Shenhu Area has favorable conditions for gas hydrate accumulation,such as temperature,pressure,hydrocarbon source,and tectonic setting.Gas hydrates are most concentrated in the Late Miocene strata,particularly in the structual highs between the Baiyun Sag and the Liwan Sag,and area to the south of it.It also proved the existence of overpressure in the main sag of source rocks,which was subject to compaction disequilibrium and hydrocarbon generation.It also shown that the regional fault activity is not conducive to gas hydrate accumulation due to excess gas seepage.The authors conjecture that fault activity may slightly weaken overpressure for the positive effect of hydrocarbon expulsion and areas lacking regional fault activity have better potential.
文摘The present study focuses on source rock evaluation of the Sargelu Formation by using core chips of rocks collected from well Atrush-2, Duhok, Kurdistan Region-Iraq. The Rock-Eval pyrolysis and vitrinite reflectance were executed. Subsequently, the selected parameters were used for source rock evaluation and 1-D Basin Modelling calibration. The upper part of the formation mainly comprises argillaceous limestone with low content of organic matter (0.64% - 1% TOC). By contrast, the lower part is dominated with shale interval and contains high amounts of TOC values (>4% for 1272 - 1278 m) reveling good to very good quality source rock. Accordingly, good to very good hydrocarbon generation potential is suggested for this formation. Organic matter of the Sargelu Formation contains type II and mixed-type II-III kerogen. The values of Tmax and vitrinite reflectance (Ro%) demonstrate that the formation is thermally mature and in the oil zone. In order to construct a thermal history of the formation and determine the timing of hydrocarbon maturation and generation, the 1-D basin modelling PetroMod 2019.1 was used in this study. Based on the 1-D Basin modelling simulation and its outputs, about 3500 m of overburden have been eroded at the study area. The present-day heat flow was found to be 30 mW/m2. The organic matter of Sargelu Formation entered the early oil zone in 64 Ma and reached the main oil zone ca. 5 Ma. The formation is still in the main oil zone at present-day. In well Atrush-2, the highest rate of oil generation for the Sargelu Formation was in the 8.5 Ma, the onset of oil expulsion from Sargelu Formation was in 50 Ma and the expulsion mass has been reached 0.5 Mtons at present-day.
文摘Pabdeh Formation is one of the most important source rocks in Zagros basin. In this study, thermal modeling and comparing of hydrocarbon potential evaluation of Pabdeh Formation in Mish Anticline and Gachsaran oil field have been investigated. For this reason, Rock-Eval pyrolysis was carried out on 21 cuttings samples collected from 2 boreholes (Well No. 55 and 83) of Gachsaran oil field and outcrop of Mish anticline. Accordingly, the Kerogen types of Pabdeh Formation in Gachsaran oil field are II, but in Mish anticline are type II and III. The amount of inert organic carbon determined for the Pabdeh Formation in Mish anticline is about 4.879 wt%, while for Gachsaran oil field, it is estimated at 0.153 (Well. No. 55) and 1.156 (Well. No. 83) wt%. Absorption of hydrocarbon by rock matrix was also determined. The amount of absorption in Mish anticline is more than that of Gachsaran oil field. This is mostly due to the presence of argillaceous matrix in this area, but the clays have not been successful in absorbing organic matter;this is due to the result obtained from small amount of organic matter in the basin. The Rock-Eval data revealed that the sedimentary paleo-environment strongly affected the source potential of this formation as it changed from the continental and Deltaic in the Mish anticline to deeper marine in Gachsaran oil field. In addition, curves of Burial history were drawn for Gachsaran well No. 55, in order to assess the thermal maturity of the Pabdeh formation. The results of the methods indicated that Pabdeh formation in Gachsaran oil field had a good to very good hydrocarbon potential and had entered to oil window.
基金express their gratitude to Petrogulf Misr Petroleum Company and Egyptian General Petroleum Corporation(EGPC)for their invaluable support and cooperation in providing essential data,which greatly facilitated the completion of this work.
文摘This study aims to define the hydrocarbon generation potential of source rocks by assessing various factors including quantity of organic matter, types of kerogen, thermal maturity, and source of organic matter input. Depositional conditions of source rocks from Thebes, Brown Limestone, and Matulla formations in Well G-9, Well GA-2 and Well GW-6, are assessed through pyrolysis, vitrinite reflectance and1D basin modeling. Results show the source rocks of Thebes and Brown Limestone formations exhibit favorable to excellent source rock characteristics with Type I-II kerogen and have the capacity to generate oil. Conversely, the source rocks of the Matulla Formation show fair to good source rock characteristics with Type II-III kerogen and have the capacity to produce both oil and gas. Thermal maturity shows the source rocks are at an immature stage. A 1D basin model is constructed for Well G-9to simulate multi-tectonic episodes, burial events, and the history of thermal maturity. Sedimentation rates of Cretaceous to Eocene deposits are characterized by a low burial rate, which contrasts with the high burial and sedimentation rates for Miocene and post Miocene(Pliocene-Recent) strata. Overall, the South Geisum oilfield petroleum system is found to be immature based on integration of source rock evaluation and petroleum basin modelling.
文摘The conversion of forest land to other types of land cover is one of the major issues in the global fight against climate change. Understanding the direct and indirect factors of these conversions from local studies in the tropics is essential to project the future impact of human activities on the preservation of tropical forests in general and the forests of the Republic of Congo in particular. This study, conducted in five localities with different socioeconomic contexts in the Republic of Congo, aims to analyze the variability of drivers of deforestation and forest degradation linked to urbanization in the Congo Basin. Using a series of land cover maps from the years 1986, 2003 and 2019 for the cities of Ouesso, Pokola, Ngombe, Impfondo and Dongou, as well as field data and socio-economic information collected from local and central administrations, a unique model has been developed to understand the explanatory patterns of forest loss. Deforestation around urban centers is mainly due to urban agriculture due to population growth, as well as the spatial expansion of cities, which have a major impact on the stability and integrity of forests. Shifting agriculture is the main direct cause of deforestation and forest degradation, representing 48% of the total sample, followed by the collection of wood fuel (22%), the collection of construction wood (19%), illegal logging (6%) and urban expansion (5%). Forecasts indicate that forest loss around major cities will increase by 487, 20 ha to 5266, 73 ha by 2050 compared to the base year of 2019. This study highlights the need for a new system of land management and poverty alleviation of local populations to ensure the stability of the Congo Basin tropical forests around large and small African cities.
基金supported by the China National Science and Technology Major Project(Nos.2016ZX05024-002-003,2017ZX05032-001-004)the Foundation of Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education(China University of Geosciences),China(Nos.TPR-2022-11,TPR-2022-24)the Science and Technology Planning Project of Tangshan City,China(Nos.22130213H).
文摘Jiaojiang sag in the East China Sea Basin is at the earlier exploration stage,where characterizing hydrocarbon generation of source rocks is important to understand oil-gas exploration potential.Utilizing geochemical and basin modeling analysis,hydrocarbon generation capacity and process of the Paleocene E_(1)y,E_(1)l and E_(1)m formations were investigated.Results show that E_(1)y and E_(1)l mudstones are high-quality source rocks with Type Ⅱ kerogen,which is dominated by both aquatic organisms and terrestrial higher plants deposited in sub-reduced environment.E_(1)m mudstone interbedded with thin carbonaceous mudstone and coal is poor-quality source rock with Type Ⅲ kerogen,whose organic matter was originated from terrestrial higher plants under oxidized environment.Controlled by burial and maturity histories,E_(1)y and E_(1)l source rocks experienced two hydrocarbon generation stages,which took place in the Late Paleocene and in the Middle to Late Eocene,respectively,and had high hydrocarbon generation capacity with cumulative hydrocarbon volume of 363 and 328 mg/g,respectively.E_(1)m source rock only had one hydrocarbon generation process in the Late Eocene,which had low hydrocarbon generation capacity with cumulative hydrocarbon volume of only 24 mg/g.The future oil-gas exploration in the Jiaojiang sag should focus on hydrocarbon generation center and select targets in the central uplift formed before the Miocene with high-quality traps.
文摘Lacustrine-fan deltas feature high reservoir-quality lithounits that are critical targets to hydrocarbon exploration and development.However,depicting their intricate sedimentary architectural elements is still challenging due to complex stacking-patterns and limited examples.In this study,both 3D-static geocellular reservoir modeling and 1D-basin modeling approaches were combined as an established effective workflow that is capable of efficiently delineating reservoir-heterogeneities and confirming hydrocarbon-charging.This integration was for the purpose of unlocking the ultimate petroleum potential of fluvio-lacustrine units,Nubia Formation,in the southwest of the Gulf of Suez rift(West Esh-ElMallaha Concession,Egypt).Pixel-based stochastic-simulation was applied,constrained by an established depositional-model developed after adequate integrated-facies analysis,upon geocellularly modeling rock and fluid properties of Nubia reservoir intervals;utilizing several key-information scales(seismic-profiles,well-logs).The results reveal a lowstand-transgressive systems tract encompassing fluvio-lacustrine depositional-systems subdivided into eight facies-associations,of which fluvialchannels and deltaic mouth bars represent significant reservoir-quality facies.Given efficient reservoir-quality,mouth sand-bars deserve special consideration,and testing,while running further oilfield development-endeavours and investigating similar-settings.
基金supported by the National Natural Science Foundation of China(Grant Nos.42130802 and 42072198)the Fundamental Research Funds for the Central Universities(No.265QZ2021011)+1 种基金PetroChina Company Limited“14th Five Year Plan”Science and Technology Major Project(No.2021DJ2301)PetroChina Company Limited Science and Technology Project(No.2023-KJ-18).
文摘Unconventional natural gas in deep coal measures has become an exploration and research hotspot in recent years.The exploration breakthrough of deep coalbed methane and tight sandstone gas in Daning-Jixian Block in the eastern Ordos Basin has revealed huge resource potential and commercial prospects in the deep Upper Paleozoic Carboniferous-Permian coal measures.However,the ambiguity of gas accumulation in deep coal measures has restricted exploration and development.Based on a series of tests for fluid inclusions,including petrographic observation,Raman spectroscopy analysis,and microthermometry,combined with the burial-thermal evolution history recovered from basin modeling,this study aims to clarify the timing of gas accumulation in deep coal measures.The results show four types of secondary fluid inclusions in the deep coal measure sandstone layers of Daning-Jixian Block,including CH4-rich inclusions,C2+hydrocarbons-bearing inclusions,CO_(2)-bearing inclusions,and aqueous inclusions.The main formation stage of fluid inclusions corresponded to the mesodiagenesis stage of the deep coal measure sandstone,and the coeval assemblages of fluid inclusions vary due to the recording of gas charging in different maturity stages of coal measure source rocks.This study suggests that tight sandstone gas accumulation in deep coal measures was a continuous charging process with one period-multiple episodes in Daning-Jixian Block,and occurred mainly during the Early Cretaceous(137−127 Ma BP).The results of this study contribute to further understanding of gas accumulation mechanisms in deep coal measures.
基金Supported by Project of Science and technology of Petro China(2023YQX1032023ZZ25)Project of Science and technology of CNPC(2016DJ86)。
文摘Taking the Ordos Basin as an example,this paper proposed that the construction of an energy super basin should follow the principle of“more energy,less carbon,and better energy structure”.The modeling workflow of energy super basin was built.Based on the resources/reserves,development status and infrastructures of the Ordos Basin,the development potential of the basin was evaluated,the uncertainties in the construction of energy super basin were analyzed,and the future vision and realization path of the Ordos Energy Super Basin were recommended.This study demonstrates that the Ordos Basin has the advantages of abundant energy sources,perfect infrastructures,well-matched carbon source and sink,small population density,and proximity to the energy consumption areas.These characteristics ensure that the Ordos Basin is a good candidate of the energy super basin.It is expected that the energy supply of the Ordos Basin in 2050 will reach 23×10^(8) t of standard coal,and the proportion of fossil fuels in energy supply will decrease to 41%.The carbon emissions will decrease by 20×10^(8) t compared to the emissions in 2023.The future construction of the basin should focus on the generation and storage of renewable energy,and technological breakthroughs for the carbon capture,utilization and storage.
基金funded by National Science and Technology Major Projects(Grant No.2016ZX05050,2017ZX05001002-008)China National Petroleum Corporation Major Projects(No.2021DJ2203)Key Laboratory of Petroleum Resources Exploration and Evaluation,Gansu Province(No.KLPREEGS-2024-22)。
文摘In recent years,fueled by significant advancements in oil exploration technologies within the Ordos Basin,an increasing number of low-permeability or ultra-low-permeability reservoirs have been identified.Elucidating their reservoir characteristics and formation mechanisms has become a critical priority for sustainable hydrocarbon development.The study focused on the Chang 6 Member of the Upper Triassic Yanchang Formation in the Heshui area of the Ordos Basin,systematically investigating its petrological features,porosity and permeability characteristics,diagenesis,and diagenetic evolution sequence.By integrating core observation,thin-section identification,and physical property measurements,a comprehensive quantitative evaluation of reservoir pore evolution was performed.These analytical outcomes were subsequently applied to simulate hydrocarbon migration and accumulation.These research results will provide a scientific basis for in-depth quantitative study of the pore evolution in ultra-low-permeability oil reservoirs and accurately constructing basin models.As indicated,the reservoir lithology in the study area predominantly comprises siltstone interbedded with mudstone or argillaceous siltstone,characterized by low porosity and permeability.Through diagenetic characteristics-based reconstruction constrained by the existing porosity data,pore evolution during diagenesis was quantitatively modeled.The simulated pore evolution aligns with actual geological observations,validating the reliability of the methodology.Furthermore,the quantified pore evolution results were applied to simulate hydrocarbon migration using PetroMod software,showing that hydrocarbon charging in the basin began at the end of the Late Jurassic(J3),peaking in hydrocarbon generation,expulsion,and accumulation by the end of the Early Cretaceous(K1)and maintaining high accumulation rates until the late Cretaceous,though significantly decreasing at the present stage.The simulation results were verified by comparison with actual drilling data,which confirms their reliability and applicability to other analogous oilfields.
基金supported by the Innovative Group Program of Chinese Academy of Sciences (No. KZCX2-YW-Q05-04)the National Basic Research Program of China (973 Program) (Nos. 2009CB219401, 2007CB411704)+1 种基金the National Natural Science Foundation of China (Nos. 40876026,40576027)the Knowledge Innovation Program of the South China Sea In-stitute of Oceanology,CAS (No. LYQY200704)
文摘The Pearl River Mouth basin (PRMB) is a marginal sedimentary basin of the South China Sea. It trends NE and is divided into three segments from west to east by two NW-trending faults. Changing dramatically in structures along and across strike, the PRMB is a good example to analyze main factors that might control the process of a continental rift basin's extension. Through five series of analogue experiments, we investigate the role of different factors, such as pre-existing discontinuities of crust, rheological profiles of lithosphere, kinematics of extension and presence of magmatic bodies and strong crustal portions (rigid massifs) on the development of basin's structures. After being compared with the architecture of the natural prototype, the results of the analogue models were compared with the architecture of the natural prototype and used to infer the role of the different factors controlling the formation and evolution of the PRMB. The main conclusions are as follows. (1) Affected by pre-Cenozoic structures, the PRMB was controlled by crosscut NE- and NW-trending initial faults, and the NW-trending Yitong'ansha (--~l~) fault may be a through-going fault along dip and offset the NE-trending rift and faults, while the Enpingdong (和统暗沙) fault might exist only in the middle and south. (2) The NW-trending faults may orient WNW to be sinistrally transtensional under SE to nearly NS extension. (3) The thickness ratio of brittle over ductile crust in Baiyun (白云) sag is lessthan normal, suggesting an initially hot and weak lithosphere. (4) The magma must have taken part in the rifting process from early stage, it may occur initially upon or slightly south of the divergent boundary in the middle segment. The flow of magma toward rift boundary faults caused extra vertical subsidence above the initial magma reservoir without creating a large extensional fault. (5) The rigid massif contributed to the strain partition along and across basin strike.
文摘Three series of sandbox modeling experiments were performed to study the fault-increment pattern in extensional basins. Experimental results showed that the tectonic action mode of boundaries and the shape of major boundary faults control the formation and evolution of faults in extensional basins. In the process of extensional deformation, the increase in the number and length of faults was episodic, and every 'episode' experienced three periods, strain-accumulation period, quick fault-increment period and strain-adjustment period. The more complex the shape of the boundary fault, the higher the strain increment each 'episode' experienced. Different extensional modes resulted in different fault-increment patterns. The horizontal detachment extensional mode has the 'linear' style of fault-increment pattern, while the extensional mode controlled by a listric fault has the 'stepwise' style of fault-increment pattern, and the extensional mode controlled by a ramp-flat boundary fault has the 'stepwise-linear' style of fault-increment pattern. These fault-increment patterns given above could provide a theoretical method of fault interpretation and fracture prediction in extensional basins.
文摘The Carboniferous prototype sedimentary basin in the Tazhong (Central Tarimbasin) area is recognized as a compressive intracratonic depressional one. Three type Ⅰ sequenceboundaries and three type Ⅱ sequence boundaries can be identified in the CarboniferousSystem, which can accordingly be divided into five sedimentary sequences. These sequencespossess stratigraphic characters of the standard sequence and correspond to the depositionalstratigraphic unit of a third-order eustatic cycle. They can be regionally or globally correlatedwith each other. The framework of sequence stratigraphy of the intracratonict basin in thestudy area distinctly differs from that of the passive continental-margin basin in the lack ofdepositional systems of early-middle lowstand, poor development of the deeply incised valleyand condensed section of the maximum sea-flood, good development of type Ⅱ sequenceboundaries and coastal plain depositional systems coexisting with shelf-type fan deltas underwet climatic conditions, Which consequently led to the formation of a paralic lithofacies frame-work.
基金The Major National Science and Technology Programs of China under contract No.2011ZX05025-003-005the Joint Program of the National Science Foundation and Guangdong Province under contract No.U1301233
文摘Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-Red River shear zone, and connected with NW subsea basin through the Xisha Trough. Along with the rapid progress of the deepwater exploration, large amounts of high resolution geophysical and geological data were accumulated. Scientific researches about deepwater basins kept revealing brand new tectonic and sedimentary discoveries. In order to summarize the structural features and main controlling factors of the deepwater Qiongdongnan Basin, a series of researches on basin architecture, fault activities, tectonic deformation and evolution were carried out. In reference to analogue modeling experiments, a tectonic situation and a basin formation mechanism were discussed. The researches indicate that:the northern boundary of the Qiongdongnan Basin is strongly controlled by No. 2 fault. The overlapping control of two stress fields from the east and the west made the central depression zone extremely thinned. Combined with the changed stress field, the segmentation of a preexisting weakness zone made the sags in the east experiencing different rifting histories from the west ones. The NE-trending west segment of the Qiongdongnan Basin experienced strong rifting during Eocene, while the roughly EW-trending sags in the east segment show strong rifting during late Eocene and early Oligocene. Local structures such as NW-trending basal fault and inherited uplifts controlled the lateral segmentation. So first order factors such as regional stress field and preexisting weakness zone controlled the basin zonation, while the second order factors determined the segmentation from east to west.
文摘The stretching process of some Tertiary rift basins in eastern China is characterized by multiphase rifting. A multiple instantaneous uniform stretching model is proposed in this paper to simulate the formation of the basins as the rifting process cannot be accurately described by a simple (one episode) stretching model. The study shows that the multiphase stretching model, combined with the back-stripping technique, can be used to reconstruct the subsidence history and the stretching process of the lithosphere, and to evaluate the depth to the top of the asthenosphere and the deep thermal evolution of the basins. The calculated results obtained by applying the quantitative model to the episodic rifting process of the Tertiary Qiongdongnan and Yinggehai basins in the South China Sea are in agreement with geophysical data and geological observations. This provides a new method for quantitative evaluation of the geodynamic process of multiphase rifting occurring during the Tertiary in eastern China.
基金supported by the National Natural Science Foundation of China(Grants No.41330854 and 41371063)the National Key Research and Development Programs of China(Grants No.2016YFA0601601 and2016YFA0601501)
文摘Variation trends of water resources in the Xiangjiang River Basin over the coming decades have been investigated using the variable infiltration capacity(VIC) model and 14 general circulation models'(GCMs') projections under the representative concentration pathway(RCP4.5) scenario. Results show that the Xiangjiang River Basin will probably experience temperature rises during the period from 2021 to2050, with precipitation decrease in the 2020 s and increase in the 2030 s. The VIC model performs well for monthly discharge simulations with better performance for hydrometric stations on the main stream of the Xiangjiang River than for tributary catchments. The simulated annual discharges are significantly correlated to the recorded annual discharges for all the eight selected target stations. The Xiangjiang River Basin may experience water shortages induced by climate change. Annual water resources of the Xiangjiang River Basin over the period from 2021 to 2050 are projected to decrease by 2.76% on average within the range from-7.81% to 7.40%. It is essential to consider the potential impact of climate change on water resources in future planning for sustainable utilization of water resources.
基金Chinese Academy of Sciences No.KZCX3-SW-329 No.KZCX1-10-03-01+1 种基金 No.CACX210036 No.CACX210016
文摘In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover, etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km 2 . The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years' data are used to simulate, while the last 5 years' data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681, 5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapotranspiration decrease of the watershed, adjust the runoff process, and increase the soil water content.
文摘The application of the Soil and Water Assessment Tool (SWAT) to the Olifants Basin in South Africa was the focus of our study with emphasis on calibration, validation and uncertainty analysis. The Basin was discretized into 23 sub-basins and 226 Hydrologic Response Units (HRUs) using 3 arc second (90 m × 90 m) pixel resolution SRTM DEM with stream gauge B7H015 as the Basin outlet. Observed stream flow data at B7H015 were used for model calibration (1988-2001) and validation (2002-2013) using the split sample approach. Relative global sensitivity analysis using SUFI-2 algorithm was used to determine sensitive parameters to stream flow for calibration of the model. Performance efficiency of the Olifants SWAT model was assessed using Nash-Sutcliffe (NSE), coefficient of determination (R<sup>2</sup>), Percent Bias (PBIAS) and Root Mean Square Error-Observation Standard deviation Ratio (RSR). Sensitivity analysis revealed in decreasing order of significance, runoff curve number (CN2), alpha bank factor (ALPHA_BNK), soil evaporation compensation factor (ESCO), soil available water capacity (SOIL_AWC, mm H<sub>2</sub>O/mm soil), groundwater delay (GW_ DELAY, days) and groundwater “revap” coefficient (GW_REVAP) to be the most sensitive parameters to stream flow. Analysis of the model during the calibration period gave the following statistics;NSE = 0.88;R<sup>2</sup> = 0.89;PBIAS = -11.49%;RSR = 0.34. On the other hand, statistics during the validation period were NSE = 0.67;R<sup>2 </sup>= 0.79;PBIAS = -20.69%;RSR = 0.57. The observed statistics indicate the applicability of the SWAT model in simulating the hydrology of the Olifants Basin and therefore can be used as a Decision Support Tool (DST) by water managers and other relevant decisions making bodies to influence policy directions on the management of watershed processes especially water resources.