Dense array seismology, which is characterized by large number, densely deployed autonomous geophone/seismographs, has received great concerns worldwide recently, especially after the great success of dense array in L...Dense array seismology, which is characterized by large number, densely deployed autonomous geophone/seismographs, has received great concerns worldwide recently, especially after the great success of dense array in Long Beach. One of the biggest curiosity is that if the great success in Long Beach is replicable in China. Hence, we analyze the seismic records from a dense array in Binchuan basin, Yunnan province, which consists of three-component short-period seismographs of three most common domestic models. The Binchuan basin is located near the intersection between the Chenghai-Binchuan fault and the Red River fault,with the latter being the major fault accommodating significant tectonic deformation resulting from eastern extrusion of the Tibetan plateau. Both faults pose serious seismic threats to local residents in Binchuan basin. Basinrange differences, faults, local earthquakes, and a Fixed Airgun Seismic Transmitting Station(FASTS), make the Binchuan basin a perfect experiment site for dense array experiment. The array is named Array of Binchuan(ABC)and the main target is imaging the shallow crustal structure,especially the structure of the basin. To examine the monitoring capability of ABC, we analyze the seismograms to check if they can reveal the basin, the most significant geological feature in the area. Power spectral density analysis,travel time and amplitude analysis of FASTS signals, and amplitude analysis of earthquakes and noise cross-correlation functions are used in the analysis. All the results show correlation with the basin and clear difference between basin and non-basin area. Therefore, the preliminary results support that the ABC has the potential to provide constraints on local structures.展开更多
Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and severa...Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and several unique phenomena,such as the basin edge effect,basin focusing effect,and basin-induced secondary waves,have been observed.Understanding and quantitatively predicting these phenomena are crucial for earthquake disaster reduction.Some pioneering studies in this field have proposed a quantitative relationship between the basin effect on ground motion and basin depth.Unfortunately,basin effect phenomena predicted using a model based only on basin depth exhibit large deviations from actual distributions,implying the severe shortcomings of single-parameter basin effect modeling.Quaternary sediments are thick and widely distributed in the Beijing-Tianjin-Hebei region.The seismic media inside and outside of this basin have significantly different physical properties,and the basin bottom forms an interface with strong seismic reflections.In this study,we established a three-dimensional structure model of the Quaternary sedimentary basin based on the velocity structure model of the North China Craton and used it to simulate the ground motion under a strong earthquake following the spectral element method,obtaining the spatial distribution characteristics of the ground motion amplification ratio throughout the basin.The back-propagation(BP)neural network algorithm was then introduced to establish a multi-parameter mathematical model for predicting ground motion amplification ratios,with the seismic source location,physical property ratio of the media inside and outside the basin,seismic wave frequency,and basin shape as the input parameters.We then examined the main factors influencing the amplification of seismic ground motion in basins based on the prediction results,and concluded that the main factors influencing the basin effect are basin shape and differences in the physical properties of media inside and outside the basin.展开更多
Based on multi-type,multi-temporal remote sensing data,we have monitored recent changes in cultivated land use and vegetation,in sandy areas and salinized desertification in the Green Corridor zone of the main channel...Based on multi-type,multi-temporal remote sensing data,we have monitored recent changes in cultivated land use and vegetation,in sandy areas and salinized desertification in the Green Corridor zone of the main channel of the Tarim River Basin.The results of our investigation show that the ecological environment in the Green Corridor of the main channel of the Tarim River Basin has conspicuously improved from 2002 to 2004.These improvements show up largely in such aspects as an increase in the rate of vegetation cover,a reduction in desertification land areas and a weakening in the intensity of sandy and the salinized land.On the other hand,the cultivated area in the Tarim River Basin significantly increased from 2002 to 2004.The rate of growth in cultivated areas during this period was significantly higher than that from 1999 to 2002.The increase in the use of irrigation resulting from the substantial increase in cultivated areas has a long-term potential restraining effect on the restoration of ecological functions of the Tarim River.展开更多
Co-seismic gas leakage usually occurs on the edge of seismic faults in petroliferous basins,and it may have an impact on the local environment,such as the greenhouse effect,which can cause thermal infrared brightness ...Co-seismic gas leakage usually occurs on the edge of seismic faults in petroliferous basins,and it may have an impact on the local environment,such as the greenhouse effect,which can cause thermal infrared brightness anomalies.Using wavelet transform and power spectrum estimation methods,we processed brightness temperature data from the Chinese geostationary meteorological satellite FY-C/E.We report similarities between the co-seismic thermal infrared brightness(CTIB)anomalies before,during and after earthquakes that occurred at the edges of the Sichuan,Tarim,Qaidam,and Junggar basins surrounding the North and East of the Qinghai–Tibet Plateau in western China.Additionally,in each petroliferous basin,the area of a single CTIB anomaly accounted for 50%to 100%of the basin area,and the spatial distribution similarities in the CTIB anomalies existed before,during and after these earthquakes.To better interpret the similarities,we developed a basin warming effect model based on geological structures and topography.The model suggests that in a petroliferous basin with a subsurface gas reservoir,gas leakage could strengthen with the increasing stress before,during,and even after an earthquake.The accumulation of these gases,such as the greenhouse gases CH4 and CO2,results in the CTIB anomalies.In addition,we conclude that the CTIB anomalies are strengthened by the high mountains(altitude^5000 m)around the basins and the basins’independent climatic conditions.This work provides a new perspective from which to understand the CTIB anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau.展开更多
Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear an...Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.展开更多
Site effects study has always been a key research topic in earthquake engineering.This study proposes a hybrid method to analyze large-scale three-dimensional sedimentary basin under Rayleigh(R)wave incidence.The prop...Site effects study has always been a key research topic in earthquake engineering.This study proposes a hybrid method to analyze large-scale three-dimensional sedimentary basin under Rayleigh(R)wave incidence.The proposed hybrid method includes two steps:1)calculate the free field responses of layered sites subjected to R-wave using the frequency-wavenumber method;2)Simulate the local site region using spectral element method with the equivalent forces input computed from the free field responses.A comprehensive verification study is conducted demonstrating the accuracy of this method.To investigate the effect of sedimentary basin on R-wave propagation,a parametric study is performed on the medium impedance contrast ratio of sedimentary basins and the incident seismic wave predominant frequency,revealing the scattering patterns of sedimentary basins under R-wave incidence.Finally,a practical case of the Wudu Basin in the Tibetan Plateau region of China is simulated.Results indicate significant amplification of R-wave by sedimentary basin,and the proposed hybrid method could serve as a reliable and efficient approach for large-scale R-wave propagation simulation.展开更多
This paper describes static and dynamic procedures to calculate seismic demand specified by the current seismic design code for buildings in Taiwan, which was issued in 2005. For design levels with a return period of ...This paper describes static and dynamic procedures to calculate seismic demand specified by the current seismic design code for buildings in Taiwan, which was issued in 2005. For design levels with a return period of 475 years, the design spectral response acceleration can be developed for general sites, near-fault sites and Taipei Basin. In addition, in order to prevent building collapse during extremely large earthquakes and yielding of structural components and elements during frequent small earthquakes, the required seismic demands at the maximum considered earthquake level (MCE, 2%/50 years) and operational level are also included in the new seismic design code.For dynamic analysis procedures, both the response spectrum method and time history method are specified in the new seismic design code. Finally, procedures to generate spectrum compatible ground motions for time history analysis are illustrated in this paper.展开更多
On the basis of previous study of the 1679 Sanhe-Pinggu(M8.0) earthquake,the biggest event in history ever recorded in Beijing and its adjacent area,we made a 3-D strong ground motion simulation utilizing the staggere...On the basis of previous study of the 1679 Sanhe-Pinggu(M8.0) earthquake,the biggest event in history ever recorded in Beijing and its adjacent area,we made a 3-D strong ground motion simulation utilizing the staggered-grid finite differences method to study the distributions of peak ground velocity with different earthquake source models in the Beijing region.In the paper,earthquake source models and a transmission medium velocity model are established and the corresponding parameters are given in accordance to the results from a related previous study.Then,using a three-dimensional finite difference computing program of near-fault strong ground motion developed by Graves,the peak ground velocity caused by a destructive earthquake in the Beijing area is simulated.In our computation model,the earthquake source is 3km in depth,and a total number of 21,679 observation points on the ground surface are figured out.The transmission medium velocity model is composed of four stratums which are the Quaternary deposit,the upper crust,the upper part of the middle crust and the lower part of the middle crust.With the minimum grid spacing of 0.15km,a total of 2.28×106 grids are generated.Using a time step of 0.02 seconds we calculated the peak ground velocity for a duration of 8 seconds.After the analysis of the simulation results,we observed some basic characteristics of near-fault strong ground motion such as the concentration effect of near-fault peak ground velocity,rupture directivity effect,hanging wall effect,and basin effect.The results from our simulation and analysis suggest that the source and transmitting medium parameters in our model are suitable and the finite difference method is applicable to estimate the distribution of strong ground motion in the study region.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41674058,41790463)Chen Yong Academician Workstation in Yunnan province(Grant No.2014IC007)
文摘Dense array seismology, which is characterized by large number, densely deployed autonomous geophone/seismographs, has received great concerns worldwide recently, especially after the great success of dense array in Long Beach. One of the biggest curiosity is that if the great success in Long Beach is replicable in China. Hence, we analyze the seismic records from a dense array in Binchuan basin, Yunnan province, which consists of three-component short-period seismographs of three most common domestic models. The Binchuan basin is located near the intersection between the Chenghai-Binchuan fault and the Red River fault,with the latter being the major fault accommodating significant tectonic deformation resulting from eastern extrusion of the Tibetan plateau. Both faults pose serious seismic threats to local residents in Binchuan basin. Basinrange differences, faults, local earthquakes, and a Fixed Airgun Seismic Transmitting Station(FASTS), make the Binchuan basin a perfect experiment site for dense array experiment. The array is named Array of Binchuan(ABC)and the main target is imaging the shallow crustal structure,especially the structure of the basin. To examine the monitoring capability of ABC, we analyze the seismograms to check if they can reveal the basin, the most significant geological feature in the area. Power spectral density analysis,travel time and amplitude analysis of FASTS signals, and amplitude analysis of earthquakes and noise cross-correlation functions are used in the analysis. All the results show correlation with the basin and clear difference between basin and non-basin area. Therefore, the preliminary results support that the ABC has the potential to provide constraints on local structures.
基金funded by the General Program of the National Natural Science Foundation of China(No.42174070)the General Program of the Beijing Natural Science Foundation(No.8222035).
文摘Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and several unique phenomena,such as the basin edge effect,basin focusing effect,and basin-induced secondary waves,have been observed.Understanding and quantitatively predicting these phenomena are crucial for earthquake disaster reduction.Some pioneering studies in this field have proposed a quantitative relationship between the basin effect on ground motion and basin depth.Unfortunately,basin effect phenomena predicted using a model based only on basin depth exhibit large deviations from actual distributions,implying the severe shortcomings of single-parameter basin effect modeling.Quaternary sediments are thick and widely distributed in the Beijing-Tianjin-Hebei region.The seismic media inside and outside of this basin have significantly different physical properties,and the basin bottom forms an interface with strong seismic reflections.In this study,we established a three-dimensional structure model of the Quaternary sedimentary basin based on the velocity structure model of the North China Craton and used it to simulate the ground motion under a strong earthquake following the spectral element method,obtaining the spatial distribution characteristics of the ground motion amplification ratio throughout the basin.The back-propagation(BP)neural network algorithm was then introduced to establish a multi-parameter mathematical model for predicting ground motion amplification ratios,with the seismic source location,physical property ratio of the media inside and outside the basin,seismic wave frequency,and basin shape as the input parameters.We then examined the main factors influencing the amplification of seismic ground motion in basins based on the prediction results,and concluded that the main factors influencing the basin effect are basin shape and differences in the physical properties of media inside and outside the basin.
基金Financial support for this work was provided by the National Natural Science Foundation of China (No. 41040011)the Fun-damental Research Funds for the Central Universities (No.CHD2010JC103)
文摘Based on multi-type,multi-temporal remote sensing data,we have monitored recent changes in cultivated land use and vegetation,in sandy areas and salinized desertification in the Green Corridor zone of the main channel of the Tarim River Basin.The results of our investigation show that the ecological environment in the Green Corridor of the main channel of the Tarim River Basin has conspicuously improved from 2002 to 2004.These improvements show up largely in such aspects as an increase in the rate of vegetation cover,a reduction in desertification land areas and a weakening in the intensity of sandy and the salinized land.On the other hand,the cultivated area in the Tarim River Basin significantly increased from 2002 to 2004.The rate of growth in cultivated areas during this period was significantly higher than that from 1999 to 2002.The increase in the use of irrigation resulting from the substantial increase in cultivated areas has a long-term potential restraining effect on the restoration of ecological functions of the Tarim River.
基金the research project of China Earthquake Administration—Earthquake Science and Technology Star Fire Plan(XH2018035Y)Seismic Regime Tracking Project of CEA(2020010410).
文摘Co-seismic gas leakage usually occurs on the edge of seismic faults in petroliferous basins,and it may have an impact on the local environment,such as the greenhouse effect,which can cause thermal infrared brightness anomalies.Using wavelet transform and power spectrum estimation methods,we processed brightness temperature data from the Chinese geostationary meteorological satellite FY-C/E.We report similarities between the co-seismic thermal infrared brightness(CTIB)anomalies before,during and after earthquakes that occurred at the edges of the Sichuan,Tarim,Qaidam,and Junggar basins surrounding the North and East of the Qinghai–Tibet Plateau in western China.Additionally,in each petroliferous basin,the area of a single CTIB anomaly accounted for 50%to 100%of the basin area,and the spatial distribution similarities in the CTIB anomalies existed before,during and after these earthquakes.To better interpret the similarities,we developed a basin warming effect model based on geological structures and topography.The model suggests that in a petroliferous basin with a subsurface gas reservoir,gas leakage could strengthen with the increasing stress before,during,and even after an earthquake.The accumulation of these gases,such as the greenhouse gases CH4 and CO2,results in the CTIB anomalies.In addition,we conclude that the CTIB anomalies are strengthened by the high mountains(altitude^5000 m)around the basins and the basins’independent climatic conditions.This work provides a new perspective from which to understand the CTIB anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau.
基金Project(2011CB013601) supported by the National Basic Research Program of ChinaProject(51378258) supported by the National Natural Science Foundation of China
文摘Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2139208 and 52178495).
文摘Site effects study has always been a key research topic in earthquake engineering.This study proposes a hybrid method to analyze large-scale three-dimensional sedimentary basin under Rayleigh(R)wave incidence.The proposed hybrid method includes two steps:1)calculate the free field responses of layered sites subjected to R-wave using the frequency-wavenumber method;2)Simulate the local site region using spectral element method with the equivalent forces input computed from the free field responses.A comprehensive verification study is conducted demonstrating the accuracy of this method.To investigate the effect of sedimentary basin on R-wave propagation,a parametric study is performed on the medium impedance contrast ratio of sedimentary basins and the incident seismic wave predominant frequency,revealing the scattering patterns of sedimentary basins under R-wave incidence.Finally,a practical case of the Wudu Basin in the Tibetan Plateau region of China is simulated.Results indicate significant amplification of R-wave by sedimentary basin,and the proposed hybrid method could serve as a reliable and efficient approach for large-scale R-wave propagation simulation.
文摘This paper describes static and dynamic procedures to calculate seismic demand specified by the current seismic design code for buildings in Taiwan, which was issued in 2005. For design levels with a return period of 475 years, the design spectral response acceleration can be developed for general sites, near-fault sites and Taipei Basin. In addition, in order to prevent building collapse during extremely large earthquakes and yielding of structural components and elements during frequent small earthquakes, the required seismic demands at the maximum considered earthquake level (MCE, 2%/50 years) and operational level are also included in the new seismic design code.For dynamic analysis procedures, both the response spectrum method and time history method are specified in the new seismic design code. Finally, procedures to generate spectrum compatible ground motions for time history analysis are illustrated in this paper.
基金This project was sponsored by the National Development and Reform Commission,PRC(20041138)
文摘On the basis of previous study of the 1679 Sanhe-Pinggu(M8.0) earthquake,the biggest event in history ever recorded in Beijing and its adjacent area,we made a 3-D strong ground motion simulation utilizing the staggered-grid finite differences method to study the distributions of peak ground velocity with different earthquake source models in the Beijing region.In the paper,earthquake source models and a transmission medium velocity model are established and the corresponding parameters are given in accordance to the results from a related previous study.Then,using a three-dimensional finite difference computing program of near-fault strong ground motion developed by Graves,the peak ground velocity caused by a destructive earthquake in the Beijing area is simulated.In our computation model,the earthquake source is 3km in depth,and a total number of 21,679 observation points on the ground surface are figured out.The transmission medium velocity model is composed of four stratums which are the Quaternary deposit,the upper crust,the upper part of the middle crust and the lower part of the middle crust.With the minimum grid spacing of 0.15km,a total of 2.28×106 grids are generated.Using a time step of 0.02 seconds we calculated the peak ground velocity for a duration of 8 seconds.After the analysis of the simulation results,we observed some basic characteristics of near-fault strong ground motion such as the concentration effect of near-fault peak ground velocity,rupture directivity effect,hanging wall effect,and basin effect.The results from our simulation and analysis suggest that the source and transmitting medium parameters in our model are suitable and the finite difference method is applicable to estimate the distribution of strong ground motion in the study region.