期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Removal kinetics of phosphorus from synthetic wastewater using basic oxygen furnace slag 被引量:6
1
作者 Chong Han Zhen Wang +1 位作者 He Yang Xiangxin Xue 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第4期21-29,共9页
Removal kinetics of phosphorus through use of basic oxygen furnace slag(BOF-slag)was investigated through batch experiments. Effects of several parameters such as initial phosphorus concentration, temperature, BOF-s... Removal kinetics of phosphorus through use of basic oxygen furnace slag(BOF-slag)was investigated through batch experiments. Effects of several parameters such as initial phosphorus concentration, temperature, BOF-slag size, initial p H, and BOF-slag dosage on phosphorus removal kinetics were measured in detail. It was demonstrated that the removal process of phosphorus through BOF-slag followed pseudo-first-order reaction kinetics. The apparent rate constant(kobs) significantly decreased with increasing initial phosphorus concentration, BOF-slag size, and initial p H, whereas it exhibited an opposite trend with increasing reaction temperature and BOF-slag dosage.A linear dependence of kobson total removed phosphorus(TRP) was established with kobs=(3.51 ± 0.11) × 10^-4× TRP. Finally, it was suggested that the Langmuir–Rideal(L–R)or Langmuir–Hinshelwood(L–H) mechanism may be used to describe the removal process of phosphorus using BOF-slag. 展开更多
关键词 basic oxygen furnace slag Phosphorus Kinetics Apparent rate constant
原文传递
Kinetics and mechanism of hexavalent chromium removal by basic oxygen furnace slag 被引量:5
2
作者 Chong Han Yanan Jiao +3 位作者 Qianqian Wu Wangjin Yang He Yang Xiangxin Xue 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第8期63-71,共9页
Basic oxygen furnace slag(BOFS) has the potential to remove hexavalent chromium(Cr(VI))from wastewater by a redox process due to the presence of minerals containing Fe2+. The effects of the solution p H, initia... Basic oxygen furnace slag(BOFS) has the potential to remove hexavalent chromium(Cr(VI))from wastewater by a redox process due to the presence of minerals containing Fe2+. The effects of the solution p H, initial Cr(VI) concentration, BOFS dosage, BOFS particle size, and temperature on the removal of Cr(VI) was investigated in detail through batch tests. The chemical and mineral compositions of fresh and reacted BOFS were characterized using scanning electron microscope(SEM) equipped with an energy dispersive spectrometer(EDS)system and X-ray diffractometer(XRD). The results show that Cr(VI) in wastewater can be efficiently removed by Fe2+released from BOFS under appropriate acidic conditions. The removal of Cr(VI) by BOFS significantly depended on the parameters mentioned above. The reaction of Cr(VI) with BOFS followed the pseudo-second-order kinetic model. Fe2+responsible for Cr(VI) removal was primarily derived from the dissolution of Fe O and Fe3O4 in BOFS. When H2SO4 was used to adjust the solution acidity, gypsum(Ca SO4·2H2O)could be formed and become an armoring precipitate layer on the BOFS surface, hindering the release of Fe2+and the removal of Cr(VI). Finally, the main mechanism of Cr(VI) removal by BOFS was described using several consecutive reaction steps. 展开更多
关键词 Hexavalent chromium basic oxygen furnace slag Fe2+ Redox process Kinetics
原文传递
Numerical investigation of basic oxygen furnace slag modification with gas bottom-blowing and SiO_(2) modifier
3
作者 Chang Liu Yu-feng Tian +4 位作者 Yong-li Xiao Yong-qian Li Yang Li Guang-qiang Li Qiang Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第7期1451-1460,共10页
To avoid the volume expansion of basic oxygen furnace (BOF) slag for use in building materials, a hot slag modification process was proposed to reduce free CaO (f-CaO) in the molten slag. A transient 3D numerical mode... To avoid the volume expansion of basic oxygen furnace (BOF) slag for use in building materials, a hot slag modification process was proposed to reduce free CaO (f-CaO) in the molten slag. A transient 3D numerical model of BOF molten slag modification by SiO_(2) particles was established. The flow and heat transfer of molten slag, movement and dissolution of the modifier, and concentration distribution of f-CaO in slag during the modification of BOF were studied. The distribution of f-CaO concentration is inhomogeneous all over the molten slag. The mixing effect at the slag surface is weaker than that at the half-height plane of the slag. To consume the f-CaO below 2.0 wt.% in the slag, the optimum quantity of the SiO_(2) modifier is 10.0% of the mass of the slag. The fine SiO_(2) particles help attain a lower final mass fraction of f-CaO and a higher SiO_(2) utilization ratio. 展开更多
关键词 basic oxygen furnace slag modification SiO_(2)modifier Free CaO Discrete phase model Computational fluid dynamics
原文传递
Strength Activity Index of Air Quenched Basic Oxygen Furnace Steel Slag 被引量:1
4
作者 Lei GAN Hai-feng WANG +2 位作者 Xiu-ping LI Yuan-hong QI Chun-xia ZHANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第3期219-225,共7页
Air quenched basic oxygen furnace steel slag (BOF-SS) is processed at very high cooling rate, which is expected to have different cementitious properties from conventional slowly cooled BOF-SS. For this purpose, the... Air quenched basic oxygen furnace steel slag (BOF-SS) is processed at very high cooling rate, which is expected to have different cementitious properties from conventional slowly cooled BOF-SS. For this purpose, the strength activity indexes of air quenched and slowly cooled BOF-SS are investigated. The results reveal that, under the specific surface area (S) of 490 m^2/kg, the compressive strength activity index reaches 1.24 after 28 days with replacement of 15% air quenched BOF-SS and reaches 1.05 after 28 days with replacement of 20% air quenched BOF-SS and 30%granulated blast furnace slag (GBFS). The cementitious activity of air quenched BOF-SS is obviously higher than that of slowly cooled BOF-SS, mainly because it contains more C3 S and glassy phases. 展开更多
关键词 basic oxygen furnace steel slag strength activity index mineral characteristics cementitious property tricalcium silicate (C3 S)
原文传递
Dephosphorization stability of hot metal by double slag operation in basic oxygen furnace 被引量:7
5
作者 Wei Wu Shi-fan Dai Yue Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第9期908-915,共8页
Double slag process was adopted to produce low-phosphorus steel from middle-phosphorus hot metal.To achieve a stable dephosphorization operation,conventional process was modified as follows:the blowing time was exten... Double slag process was adopted to produce low-phosphorus steel from middle-phosphorus hot metal.To achieve a stable dephosphorization operation,conventional process was modified as follows:the blowing time was extended by approximately 1min by reducing the oxygen supply flow rate;calcium ferrite pellets were added to adjust the slag composition and viscosity;the dumping temperature was lowered by 30-50°C by the addition of calcium ferrite pellets during the double slag process to prevent phosphorus in the slag from returning to the molten steel;and the bottom-blown gas flow was increased during the blowing process.For 40 heats of comparative experiments,the rate of dephosphorization reached 91% and ranged between 87% and 95%;the phosphorus,sulfur,manganese,and oxygen contents calculated according to the compositions of molten steel and slag as well as the temperature of molten steel at the end-point of the basic oxygen furnace process were similar to the equilibrium values for the reaction between the slag and the steel.Less free calcium oxide and metallic iron were present in the final slag,and the surface of the slag mineral phase was smooth,clear,and well developed,which showed that the slag exhibited better melting effects than that produced using the conventional slag process.A steady phosphorus capacity in the slag and stable dephosphorization effects were achieved. 展开更多
关键词 Medium-phosphorus hot metal Double slag operation Dephosphorization rate Phosphorus capacity basic oxygen furnace
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部