期刊文献+
共找到9,059篇文章
< 1 2 250 >
每页显示 20 50 100
Enhanced Capacity Reversible Data Hiding Based on Pixel Value Ordering in Triple Stego Images
1
作者 Kim Sao Nguyen Ngoc Dung Bui 《Computers, Materials & Continua》 2026年第1期1571-1586,共16页
Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi... Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi-stego images provides good image quality but often results in low embedding capability.To address these challenges,this paper proposes a high-capacity RDH scheme based on PVO that generates three stego images from a single cover image.The cover image is partitioned into non-overlapping blocks with pixels sorted in ascending order.Four secret bits are embedded into each block’s maximum pixel value,while three additional bits are embedded into the second-largest value when the pixel difference exceeds a predefined threshold.A similar embedding strategy is also applied to the minimum side of the block,including the second-smallest pixel value.This design enables each block to embed up to 14 bits of secret data.Experimental results demonstrate that the proposed method achieves significantly higher embedding capacity and improved visual quality compared to existing triple-stego RDH approaches,advancing the field of reversible steganography. 展开更多
关键词 RDH reversible data hiding PVO RDH base three stego images
在线阅读 下载PDF
Blockchain-Based Framework for Secure Sharing of Cross-Border Trade Data
2
作者 Shenjian Xiao Xiaoli Qin +1 位作者 Yanzhao Tian Zhongkai Dang 《Computers, Materials & Continua》 2025年第5期2351-2373,共23页
The advent of the digital age has consistently provided impetus for facilitating global trade,as evidenced by the numerous customs clearance documents and participants involved in the international trade process,inclu... The advent of the digital age has consistently provided impetus for facilitating global trade,as evidenced by the numerous customs clearance documents and participants involved in the international trade process,including enterprises,agents,and government departments.However,the urgent issue that requires immediate attention is how to achieve secure and efficient cross-border data sharing among these government departments and enterprises in complex trade processes.In addressing this need,this paper proposes a data exchange architecture employing Multi-Authority Attribute-Based Encryption(MA-ABE)in combination with blockchain technology.This scheme supports proxy decryption,attribute revocation,and policy update,while allowing each participating entity to manage their keys autonomously,ensuring system security and enhancing trust among participants.In order to enhance system decentralization,a mechanism has been designed in the architecture where multiple institutions interact with smart contracts and jointly participate in the generation of public parameters.Integration with the multi-party process execution engine Caterpillar has been shown to boost the transparency of cross-border information flow and cooperation between different organizations.The scheme ensures the auditability of data access control information and the visualization of on-chain data sharing.The MA-ABE scheme is statically secure under the q-Decisional Parallel Bilinear Diffie-Hellman Exponent(q-DPBDHE2)assumption in the random oracle model,and can resist ciphertext rollback attacks to achieve true backward and forward security.Theoretical analysis and experimental results demonstrate the appropriateness of the scheme for cross-border data collaboration between different institutions. 展开更多
关键词 Multi-authority attribute based encryption blockchain data sharing access control
在线阅读 下载PDF
Visual Basic中Data数据控件的使用
3
作者 王凤玲 《菏泽学院学报》 2005年第5期80-81,共2页
Visual Basic内嵌的Data数据控件是访问数据库的一种方便工具,它提供有限的不需编程而能访问现存数据库的功能.数据控件本身不能显示数据库的数据,需通过设置数据控件的一些属性,链接指定的数据库文件,再借助其他常用控件显示字段的内容... Visual Basic内嵌的Data数据控件是访问数据库的一种方便工具,它提供有限的不需编程而能访问现存数据库的功能.数据控件本身不能显示数据库的数据,需通过设置数据控件的一些属性,链接指定的数据库文件,再借助其他常用控件显示字段的内容.文本框、标签和图片框常用来显示数据库的数据.把数据控件和显示数据的控件结合到一起称为数据绑定. 展开更多
关键词 数据控件 数据库 绑定 VISUAL basic
在线阅读 下载PDF
“Deep-time Digital Basin” Based on Big Data and Artificial Intelligence 被引量:2
4
作者 FENG Zhiqing LIAN Peiqing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第S01期14-16,共3页
1 Introduction Information technology has been playing an ever-increasing role in geoscience.Sphisicated database platforms are essential for geological data storage,analysis and exchange of Big Data(Feblowitz,2013;Zh... 1 Introduction Information technology has been playing an ever-increasing role in geoscience.Sphisicated database platforms are essential for geological data storage,analysis and exchange of Big Data(Feblowitz,2013;Zhang et al.,2016;Teng et al.,2016;Tian and Li,2018).The United States has built an information-sharing platform for state-owned scientific data as a national strategy. 展开更多
关键词 deep-time DIGITAL earth(DDE) deep-time DIGITAL basin(DDB) BIG data artificial intelligent knowledge base
在线阅读 下载PDF
Data Mining and Neural Network Techniques in Case Based System 被引量:2
5
作者 Ni Zhi wei 1,2 , Cai Qing sheng 1, Li Long shu 2 1.Department of Computer Science, University of Science and Technology of China,Hefei 230027,China 2.The Key Laboratory of Intelligent Computing and Signal Processing ,Ministry of Education 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期601-605,共5页
This paper first puts forward a case based system framework based on data mining techniques. Then the paper examines the possibility of using neural networks as a method of retrieval in such a case based system. In ... This paper first puts forward a case based system framework based on data mining techniques. Then the paper examines the possibility of using neural networks as a method of retrieval in such a case based system. In this system we propose data mining algorithms to discover case knowledge and other algorithms. 展开更多
关键词 data mining neural network case based reasoning retrieval algorithm
在线阅读 下载PDF
Fast Web - Based Data Transmission 被引量:2
6
作者 Wei Zukuan Department of Computer Science & Engineering, Inha University, Inchon 402 751, Korea Kim Jaehong Department of Computer Science, Youngdong University, Youngdong, Korea Bae Haeyoung Department of Computer Science & Engineering, Inha Uni 《Journal of China University of Geosciences》 SCIE CSCD 2001年第2期165-176,共12页
Since web based GIS processes large size spatial geographic information on internet, we should try to improve the efficiency of spatial data query processing and transmission. This paper presents two efficient metho... Since web based GIS processes large size spatial geographic information on internet, we should try to improve the efficiency of spatial data query processing and transmission. This paper presents two efficient methods for this purpose: division transmission and progressive transmission methods. In division transmission method, a map can be divided into several parts, called “tiles”, and only tiles can be transmitted at the request of a client. In progressive transmission method, a map can be split into several phase views based on the significance of vertices, and a server produces a target object and then transmits it progressively when this spatial object is requested from a client. In order to achieve these methods, the algorithms, “tile division”, “priority order estimation” and the strategies for data transmission are proposed in this paper, respectively. Compared with such traditional methods as “map total transmission” and “layer transmission”, the web based GIS data transmission, proposed in this paper, is advantageous in the increase of the data transmission efficiency by a great margin. 展开更多
关键词 spatial data transmission spatial query processing web based GIS geographic information system spatial database.
在线阅读 下载PDF
The 8×10 GHz Receiver Optical Subassembly Based on Silica Hybrid Integration Technology for Data Center Interconnection 被引量:3
7
作者 Chao-Yi Li Jun-Ming An +8 位作者 Jiu-Qi Wang Liang-Liang Wang Jia-Shun Zhang Jian-Guang Li Yuan-Da Wu Yue Wang Xiao-Jie Yin Yong Li Fei Zhong 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期39-43,共5页
An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid in... An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid integration technology. Multimode output waveguides in the silica AWG with 2% refractive index difference are used to obtain fiat-top spectra. The output waveguide facet is polished to 45° bevel to change the light propagation direction into the mesa-type PIN PD, which simplifies the packaging process. The experimentM results show that the single channel I dB bandwidth of AWG ranges from 2.12nm to 3.06nm, the ROSA responsivity ranges from 0.097 A/W to 0.158A/W, and the 3dB bandwidth is up to 11 GHz. It is promising to be applied in the eight-lane WDM transmission system in data center interconnection. 展开更多
关键词 AWG GHz Receiver Optical Subassembly based on Silica Hybrid Integration Technology for data Center Interconnection The 8 PD
原文传递
Air-combat behavior data mining based on truncation method 被引量:1
8
作者 Yunfei Yin Guanghong Gong Liang Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期827-834,共8页
This paper considers the problem of applying data mining techniques to aeronautical field.The truncation method,which is one of the techniques in the aeronautical data mining,can be used to efficiently handle the air-... This paper considers the problem of applying data mining techniques to aeronautical field.The truncation method,which is one of the techniques in the aeronautical data mining,can be used to efficiently handle the air-combat behavior data.The technique of air-combat behavior data mining based on the truncation method is proposed to discover the air-combat rules or patterns.The simulation platform of the air-combat behavior data mining that supports two fighters is implemented.The simulation experimental results show that the proposed air-combat behavior data mining technique based on the truncation method is feasible whether in efficiency or in effectiveness. 展开更多
关键词 air-combat truncation method behavior mining basic fighter maneuvers(BFMs) data mining.
在线阅读 下载PDF
A Path-Based Approach for Data Aggregation in Grid-Based Wireless Sensor Networks 被引量:1
9
作者 Neng-Chung Wang Yung-Kuei Chiang Chih-Hung Hsieh 《Journal of Electronic Science and Technology》 CAS 2014年第3期313-317,共5页
Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime,... Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer. 展开更多
关键词 base station cell head data aggregation grid-based wireless sensor networks
在线阅读 下载PDF
Prediction of Lubricant Physicochemical Properties Based on Gaussian Copula Data Expansion 被引量:1
10
作者 Feng Xin Yang Rui +1 位作者 Xie Peiyuan Xia Yanqiu 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期161-174,共14页
The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO... The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO40,and PriEco3000 component in a composite base oil system on the performance of lubricants.The study was conducted under small laboratory sample conditions,and a data expansion method using the Gaussian Copula function was proposed to improve the prediction ability of the hybrid model.The study also compared four optimization algorithms,sticky mushroom algorithm(SMA),genetic algorithm(GA),whale optimization algorithm(WOA),and seagull optimization algorithm(SOA),to predict the kinematic viscosity at 40℃,kinematic viscosity at 100℃,viscosity index,and oxidation induction time performance of the lubricant.The results showed that the Gaussian Copula function data expansion method improved the prediction ability of the hybrid model in the case of small samples.The SOA-GBDT hybrid model had the fastest convergence speed for the samples and the best prediction effect,with determination coefficients(R^(2))for the four indicators of lubricants reaching 0.98,0.99,0.96 and 0.96,respectively.Thus,this model can significantly reduce the model’s prediction error and has good prediction ability. 展开更多
关键词 base oil data augmentation machine learning performance prediction seagull algorithm
在线阅读 下载PDF
Proposed Caching Scheme for Optimizing Trade-off between Freshness and Energy Consumption in Name Data Networking Based IoT 被引量:1
11
作者 Rahul Shrimali Hemal Shah Riya Chauhan 《Advances in Internet of Things》 2017年第2期11-24,共14页
Over the last few years, the Internet of Things (IoT) has become an omnipresent term. The IoT expands the existing common concepts, anytime and anyplace to the connectivity for anything. The proliferation in IoT offer... Over the last few years, the Internet of Things (IoT) has become an omnipresent term. The IoT expands the existing common concepts, anytime and anyplace to the connectivity for anything. The proliferation in IoT offers opportunities but may also bear risks. A hitherto neglected aspect is the possible increase in power consumption as smart devices in IoT applications are expected to be reachable by other devices at all times. This implies that the device is consuming electrical energy even when it is not in use for its primary function. Many researchers’ communities have started addressing storage ability like cache memory of smart devices using the concept called—Named Data Networking (NDN) to achieve better energy efficient communication model. In NDN, memory or buffer overflow is the common challenge especially when internal memory of node exceeds its limit and data with highest degree of freshness may not be accommodated and entire scenarios behaves like a traditional network. In such case, Data Caching is not performed by intermediate nodes to guarantee highest degree of freshness. On the periodical updates sent from data producers, it is exceedingly demanded that data consumers must get up to date information at cost of lease energy. Consequently, there is challenge in maintaining tradeoff between freshness energy consumption during Publisher-Subscriber interaction. In our work, we proposed the architecture to overcome cache strategy issue by Smart Caching Algorithm for improvement in memory management and data freshness. The smart caching strategy updates the data at precise interval by keeping garbage data into consideration. It is also observed from experiment that data redundancy can be easily obtained by ignoring/dropping data packets for the information which is not of interest by other participating nodes in network, ultimately leading to optimizing tradeoff between freshness and energy required. 展开更多
关键词 Internet of Things (IoT) Named data NETWORKING Smart CACHING Table Pending INTEREST Forwarding INFORMATION base CONTENT Store CONTENT Centric NETWORKING INFORMATION Centric NETWORKING data & INTEREST Packets SCTSmart CACHING
暂未订购
Blockchain-Based Cognitive Computing Model for Data Security on a Cloud Platform 被引量:1
12
作者 Xiangmin Guo Guangjun Liang +1 位作者 Jiayin Liu Xianyi Chen 《Computers, Materials & Continua》 SCIE EI 2023年第12期3305-3323,共19页
Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading... Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading to poor performance and privacy breaches.Blockchain-based cognitive computing can help protect and maintain information security and privacy in cloud platforms,ensuring businesses can focus on business development.To ensure data security in cloud platforms,this research proposed a blockchain-based Hybridized Data Driven Cognitive Computing(HD2C)model.However,the proposed HD2C framework addresses breaches of the privacy information of mixed participants of the Internet of Things(IoT)in the cloud.HD2C is developed by combining Federated Learning(FL)with a Blockchain consensus algorithm to connect smart contracts with Proof of Authority.The“Data Island”problem can be solved by FL’s emphasis on privacy and lightning-fast processing,while Blockchain provides a decentralized incentive structure that is impervious to poisoning.FL with Blockchain allows quick consensus through smart member selection and verification.The HD2C paradigm significantly improves the computational processing efficiency of intelligent manufacturing.Extensive analysis results derived from IIoT datasets confirm HD2C superiority.When compared to other consensus algorithms,the Blockchain PoA’s foundational cost is significant.The accuracy and memory utilization evaluation results predict the total benefits of the system.In comparison to the values 0.004 and 0.04,the value of 0.4 achieves good accuracy.According to the experiment results,the number of transactions per second has minimal impact on memory requirements.The findings of this study resulted in the development of a brand-new IIoT framework based on blockchain technology. 展开更多
关键词 Blockchain Internet of Things(IoT) blockchain based cognitive computing Hybridized data Driven Cognitive Computing(HD2C) Federated Learning(FL) Proof of Authority(PoA)
在线阅读 下载PDF
Optimal Tracking Control for a Class of Unknown Discrete-time Systems with Actuator Saturation via Data-based ADP Algorithm 被引量:4
13
作者 SONG Rui-Zhuo XIAO Wen-Dong SUN Chang-Yin 《自动化学报》 EI CSCD 北大核心 2013年第9期1413-1420,共8页
为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理)算法。以便实现控制计划,一个data-based标识符首先为未知系统动力学被构造。由介绍M网... 为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理)算法。以便实现控制计划,一个data-based标识符首先为未知系统动力学被构造。由介绍M网络,稳定的控制的明确的公式被完成。以便消除致动器浸透的效果,nonquadratic表演功能被介绍,然后一个反复的自动数据处理算法被建立与集中分析完成最佳的追踪控制解决方案。为实现最佳的控制方法,神经网络被用来建立data-based标识符,计算性能索引功能,近似最佳的控制政策并且分别地解决稳定的控制。模拟例子被提供验证介绍最佳的追踪的控制计划的有效性。 展开更多
关键词 最优跟踪控制 离散时间系统 饱和执行器 DP算法 控制方案 神经网络 性能指标 系统动力学
在线阅读 下载PDF
Percentile-based Neighborhood Precipitation Verification and Its Application to a Landfalling Tropical Storm Case with Radar Data Assimilation 被引量:3
14
作者 ZHU Kefeng YANG Yi Ming XUE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第11期1449-1459,共11页
The traditional threat score based on fixed thresholds for precipitation verification is sensitive to intensity forecast bias. In this study, the neighborhood precipitation threat score is modified by defining the thr... The traditional threat score based on fixed thresholds for precipitation verification is sensitive to intensity forecast bias. In this study, the neighborhood precipitation threat score is modified by defining the thresholds in terms of the percentiles of overall precipitation instead of fixed threshold values. The impact of intensity forecast bias on the calculated threat score is reduced. The method is tested with the forecasts of a tropical storm that re-intensified after making landfall and caused heavy flooding. The forecasts are produced with and without radar data assimilation. The forecast with assimilation of both radial velocity and reflectivity produce precipitation patterns that better match observations but have large positive intensity bias. When using fixed thresholds, the neighborhood threat scores fail to yield high scores for forecasts that have good pattern match with observations, due to large intensity bias. In contrast, the percentile-based neighborhood method yields the highest score for the forecast with the best pattern match and the smallest position error. The percentile-based method also yields scores that are more consistent with object-based verifications, which are less sensitive to intensity bias, demonstrating the potential value of percentile-based verification. 展开更多
关键词 neighborhood precipitation threat score percentile-based verification radar data assimilation
在线阅读 下载PDF
Adaptive feature selection method for high-dimensional imbalanced data classification
15
作者 WU Jianzhen XUE Zhen +1 位作者 ZHANG Liangliang YANG Xu 《Journal of Measurement Science and Instrumentation》 2025年第4期612-624,共13页
Data collected in fields such as cybersecurity and biomedicine often encounter high dimensionality and class imbalance.To address the problem of low classification accuracy for minority class samples arising from nume... Data collected in fields such as cybersecurity and biomedicine often encounter high dimensionality and class imbalance.To address the problem of low classification accuracy for minority class samples arising from numerous irrelevant and redundant features in high-dimensional imbalanced data,we proposed a novel feature selection method named AMF-SGSK based on adaptive multi-filter and subspace-based gaining sharing knowledge.Firstly,the balanced dataset was obtained by random under-sampling.Secondly,combining the feature importance score with the AUC score for each filter method,we proposed a concept called feature hardness to judge the importance of feature,which could adaptively select the essential features.Finally,the optimal feature subset was obtained by gaining sharing knowledge in multiple subspaces.This approach effectively achieved dimensionality reduction for high-dimensional imbalanced data.The experiment results on 30 benchmark imbalanced datasets showed that AMF-SGSK performed better than other eight commonly used algorithms including BGWO and IG-SSO in terms of F1-score,AUC,and G-mean.The mean values of F1-score,AUC,and Gmean for AMF-SGSK are 0.950,0.967,and 0.965,respectively,achieving the highest among all algorithms.And the mean value of Gmean is higher than those of IG-PSO,ReliefF-GWO,and BGOA by 3.72%,11.12%,and 20.06%,respectively.Furthermore,the selected feature ratio is below 0.01 across the selected ten datasets,further demonstrating the proposed method’s overall superiority over competing approaches.AMF-SGSK could adaptively remove irrelevant and redundant features and effectively improve the classification accuracy of high-dimensional imbalanced data,providing scientific and technological references for practical applications. 展开更多
关键词 high-dimensional imbalanced data adaptive feature selection adaptive multi-filter feature hardness gaining sharing knowledge based algorithm metaheuristic algorithm
在线阅读 下载PDF
LncPipe" A Nextflow-based pipeline for identification and analysis of long non-coding RNAs from RNA-Seq data 被引量:2
16
作者 Qi Zhao Yu Sun +4 位作者 Dawei Wang Hongwan Zhang Kai Yu Jian Zheng Zhixiang Zuo 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2018年第7期399-401,共3页
Long noncoding RNAs (IncRNAs) have been increasingly implicated in a variety of human diseases, including autoimmune disease (Wu et al., 2015), neurodegenerative diseases (Wapinski and Chang, 2011) and cancer (... Long noncoding RNAs (IncRNAs) have been increasingly implicated in a variety of human diseases, including autoimmune disease (Wu et al., 2015), neurodegenerative diseases (Wapinski and Chang, 2011) and cancer (Huarte, 2015). Due to recent advances in next-generation sequencing technologies, tens of thousands of lncRNAs have been identified and annotated, a number of them have been proven to be functional in diverse biological processes through various mechanisms. 展开更多
关键词 LncPipe" A Nextflow-based pipeline IDENTIFICATION analysis of long non-coding RNAs RNA-Seq data
原文传递
MAID:making accurate transmission line icing detector by enhancing inaccurate dataset
17
作者 SUN Wei WANG Yu +3 位作者 GAO Bo ZHANG Shujuan WANG Xiaojin XING Lu 《Optoelectronics Letters》 2025年第10期606-611,共6页
Power transmission lines are a critical component of the entire power system,and ice accretion incidents caused by various types of power systems can result in immeasurable harm.Currently,network models used for ice d... Power transmission lines are a critical component of the entire power system,and ice accretion incidents caused by various types of power systems can result in immeasurable harm.Currently,network models used for ice detection on power transmission lines require a substantial amount of sample data to support their training,and their drawback is that detection accuracy is significantly affected by the inaccurate annotation among training dataset.Therefore,we propose a transformer-based detection model,structured into two stages to collectively address the impact of inaccurate datasets on model training.In the first stage,a spatial similarity enhancement(SSE)module is designed to leverage spatial information to enhance the construction of the detection framework,thereby improving the accuracy of the detector.In the second stage,a target similarity enhancement(TSE)module is introduced to enhance object-related features,reducing the impact of inaccurate data on model training,thereby expanding global correlation.Additionally,by incorporating a multi-head adaptive attention window(MAAW),spatial information is combined with category information to achieve information interaction.Simultaneously,a quasi-wavelet structure,compatible with deep learning,is employed to highlight subtle features at different scales.Experimental results indicate that the proposed model in this paper outperforms existing mainstream detection models,demonstrating superior performance and stability. 展开更多
关键词 power transmission lines ice detection ice accretion sample data spatial similarity enhancement power systemand transformer based model power systems
原文传递
A Data-Enhanced Deep Learning Approach for Emergency Domain Question Intention Recognition in Urban Rail Transit
18
作者 Yinuo Chen Xu Wu +1 位作者 Jiaxin Fan Guangyu Zhu 《Computers, Materials & Continua》 2025年第7期1597-1613,共17页
The consultation intention of emergency decision-makers in urban rail transit(URT)is input into the emergency knowledge base in the form of domain questions to obtain emergency decision support services.This approach ... The consultation intention of emergency decision-makers in urban rail transit(URT)is input into the emergency knowledge base in the form of domain questions to obtain emergency decision support services.This approach facilitates the rapid collection of complete knowledge and rules to form effective decisions.However,the current structured degree of the URT emergency knowledge base remains low,and the domain questions lack labeled datasets,resulting in a large deviation between the consultation outcomes and the intended objectives.To address this issue,this paper proposes a question intention recognition model for the URT emergency domain,leveraging knowledge graph(KG)and data enhancement technology.First,a structured storage of emergency cases and emergency plans is realized based on KG.Subsequently,a comprehensive question template is developed,and the labeled dataset of emergency domain questions in URT is generated through the KG.Lastly,data enhancement is applied by prompt learning and the NLP Chinese Data Augmentation(NLPCDA)tool,and the intention recognition model combining Generalized Auto-regression Pre-training for Language Understanding(XLNet)and Recurrent Convolutional Neural Network for Text Classification(TextRCNN)is constructed.Word embeddings are generated by XLNet,context information is further captured using Bidirectional Long Short-Term Memory Neural Network(BiLSTM),and salient features are extracted with Convolutional Neural Network(CNN).Experimental results demonstrate that the proposed model can enhance the clarity of classification and the identification of domain questions,thereby providing supportive knowledge for emergency decision-making in URT. 展开更多
关键词 Emergency knowledge base for urban rail transit emergency domain questions intention recognition knowledge graph data enhancement
在线阅读 下载PDF
ID-Based Public Auditing Protocol for Cloud Storage Data Integrity Checking with Strengthened Authentication and Security 被引量:1
19
作者 JIANG Hong XIE Mingming +2 位作者 KANG Baoyuan LI Chunqing SI Lin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第4期362-368,共7页
Cloud storage service reduces the burden of data users by storing users' data files in the cloud. But, the files might be modified in the cloud. So, data users hope to check data files integrity periodically. In a pu... Cloud storage service reduces the burden of data users by storing users' data files in the cloud. But, the files might be modified in the cloud. So, data users hope to check data files integrity periodically. In a public auditing protocol, there is a trusted auditor who has certain ability to help users to check the integrity of data files. With the advantages of no public key management and verification, researchers focus on public auditing protocol in ID-based cryptography recently. However, some existing protocols are vulnerable to forgery attack. In this paper, based on ID-based signature technology, by strengthening information authentication and the computing power of the auditor, we propose an ID-based public auditing protocol for cloud data integrity checking. We also prove that the proposed protocol is secure in the random oracle model under the assumption that the Diffie-Hellman problem is hard. Furthermore, we compare the proposed protocol with other two ID-based auditing protocols in security features, communication efficiency and computation cost. The comparisons show that the proposed protocol satisfies more security features with lower computation cost. 展开更多
关键词 ID-based auditing data integrity checking digital signature SECURITY bilinear map
原文传递
Data preprocessing and preliminary results of the Moon-based Ultraviolet Telescope on the CE-3 lander 被引量:4
20
作者 Wei-Bin Wen Fang Wang +8 位作者 Chun-Lai Li Jing Wang Li Cao Jian-Jun Liu Xu Tan Yuan Xiao Qiang Fu Yan Su Wei Zuo 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2014年第12期1674-1681,共8页
The Moon-based Ultraviolet Telescope (MUVT) is one of the payloads on the Chang'e-3 (CE-3) lunar lander. Because of the advantages of having no at- mospheric disturbances and the slow rotation of the Moon, we can... The Moon-based Ultraviolet Telescope (MUVT) is one of the payloads on the Chang'e-3 (CE-3) lunar lander. Because of the advantages of having no at- mospheric disturbances and the slow rotation of the Moon, we can make long-term continuous observations of a series of important celestial objects in the near ultra- violet band (245-340 nm), and perform a sky survey of selected areas, which can- not be completed on Earth. We can find characteristic changes in celestial brightness with time by analyzing image data from the MUVT, and deduce the radiation mech- anism and physical properties of these celestial objects after comparing with a phys- ical model. In order to explain the scientific purposes of MUVT, this article analyzes the preprocessing of MUVT image data and makes a preliminary evaluation of data quality. The results demonstrate that the methods used for data collection and prepro- cessing are effective, and the Level 2A and 2B image data satisfy the requirements of follow-up scientific researches. 展开更多
关键词 Chang'e-3 mission -- the Moon-based Ultraviolet Telescope -- data preprocessing -- near ultraviolet band
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部