Tau plays a crucial role in several neurodegenerative diseases,collectively referred to as tauopathies.Therefore,targeting potential pathological changes in tau could enable useful therapeutic interventions.However,ta...Tau plays a crucial role in several neurodegenerative diseases,collectively referred to as tauopathies.Therefore,targeting potential pathological changes in tau could enable useful therapeutic interventions.However,tau is not an easy target because it dynamically interacts with microtubules and other cellular components,which presents a challenge for tau-targeted drugs.New cellular models could aid the development of mechanism-based tau-targeted therapies.展开更多
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ...Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.展开更多
Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework f...Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework for embodied visual exploration that possesses the efficient exploration capabilities of deep reinforcement learning(DRL)-based exploration policies and leverages feature-based visual odometry(VO) for more accurate mapping and positioning results. An improved local policy is also proposed to reduce tracking failures of feature-based VO in weakly textured scenes through a refined multi-discrete action space, keyframe fusion, and an auxiliary task. The experimental results demonstrate that Ne OR has better mapping and positioning accuracy compared to other entirely learning-based exploration frameworks and improves the robustness of feature-based VO by significantly reducing tracking failures in weakly textured scenes.展开更多
Numerous c-mesenchymal-epithelial transition(c-MET)inhibitors have been reported as potential anticancer agents.However,most fail to enter clinical trials owing to poor efficacy or drug resistance.To date,the scaffold...Numerous c-mesenchymal-epithelial transition(c-MET)inhibitors have been reported as potential anticancer agents.However,most fail to enter clinical trials owing to poor efficacy or drug resistance.To date,the scaffold-based chemical space of small-molecule c-MET inhibitors has not been analyzed.In this study,we constructed the largest c-MET dataset,which included 2,278 molecules with different struc-tures,by inhibiting the half maximal inhibitory concentration(IC_(50))of kinase activity.No significant differences in drug-like properties were observed between active molecules(1,228)and inactive mol-ecules(1,050),including chemical space coverage,physicochemical properties,and absorption,distri-bution,metabolism,excretion,and toxicity(ADMET)profiles.The higher chemical diversity of the active molecules was downscaled using t-distributed stochastic neighbor embedding(t-SNE)high-dimensional data.Further clustering and chemical space networks(CSNs)analyses revealed commonly used scaffolds for c-MET inhibitors,such as M5,M7,and M8.Activity cliffs and structural alerts were used to reveal“dead ends”and“safe bets”for c-MET,as well as dominant structural fragments consisting of pyr-idazinones,triazoles,and pyrazines.Finally,the decision tree model precisely indicated the key structural features required to constitute active c-MET inhibitor molecules,including at least three aromatic het-erocycles,five aromatic nitrogen atoms,and eight nitrogeneoxygen atoms.Overall,our analyses revealed potential structure-activity relationship(SAR)patterns for c-MET inhibitors,which can inform the screening of new compounds and guide future optimization efforts.展开更多
Outcome Based Education(OBE)是一种以学习成果或结果为导向的教育理念。中医药高等教育要以胜任岗位为目标导向,培养高质量的中医人才。中医思维型课堂就是基于OBE理念提出的一种高效课堂,文章对中医思维型课堂的建设目的、建设意义...Outcome Based Education(OBE)是一种以学习成果或结果为导向的教育理念。中医药高等教育要以胜任岗位为目标导向,培养高质量的中医人才。中医思维型课堂就是基于OBE理念提出的一种高效课堂,文章对中医思维型课堂的建设目的、建设意义进行了分析,对中医思维型课堂的建设关键点,如课堂组织实施形式、课堂评价方式等给出了笔者的经验,并创新性地将BOPPPS教学模式与中医思维的教学实际相结合,提出了适用于中医思维课堂的BOPPP教学模式。基于OBE教育理念的中医思维型课堂构建将是对中医教育教学进行的一次有益探索。展开更多
Magnesium-based materials,including magnesium alloys,have emerged as a promising class of biodegradable materials with potential applications in cancer therapy due to their unique properties,including biocompatibility...Magnesium-based materials,including magnesium alloys,have emerged as a promising class of biodegradable materials with potential applications in cancer therapy due to their unique properties,including biocompatibility,biodegradability,and the ability to modulate the tumor microenvironment.The main degradation products of magnesium alloys are magnesium ions(Mg^(2+)),hydrogen(H_(2)),and magnesium hydroxide(Mg(OH)_(2)).Magnesium ions can regulate tumor growth and metastasis by mediating the inflammatory response and oxidative stress,maintaining genomic stability,and affecting the tumor microenvironment.Similarly,hydrogen can inhibit tumorigenesis through antioxidant and anti-inflammatory properties.Moreover,Mg(OH)_(2) can alter the pH of the microenvironment,impacting tumorigenesis.Biodegradable magnesium alloys serve various functions in clinical applications,including,but not limited to,bonefixation,coronary stents,and drug carriers.Nonetheless,the anti-tumor mechanism associated with magnesium-based materials has not been thoroughly investigated.This review provides a comprehensive overview of the current state of magnesium-based therapies for cancer.It highlights the mechanisms of action,identifies the challenges that must be addressed,and discusses prospects for oncological applications.展开更多
In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni...In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.展开更多
This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materi...This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materials for optical devices.Band structure calculations reveal that,except for InSb,all other compounds are direct bandgap semiconductors,with AlN exhibiting a bandgap of 3.245 eV.The valence band maximum of these eight compounds primarily stems from the p-orbitals of Al/In and X.In contrast,the conduction band minimum is influenced by all orbitals,with a predominant contribution from the p-orbitals.The static dielectric constant increased with the expansion of the unit cell volume.Compared to AlX and InX with larger X atoms,AlN and InN showed broader absorption spectra in the near-ultraviolet region and higher photoelectric conductance.Regarding mechanical properties,AlN and InN displayed greater shear and bulk modulus than the other compounds.Moreover,among these eight crystal types,a higher modulus was associated with a lower light loss function value,indicating that AlN and InN have superior transmission efficiency and a wider spectral range in optoelectronic material applications.展开更多
Ni_(2)CoS_(4)was prepared by the liquid‑phase method and applied to the benzyl alcohol electro‑oxidation reaction(BAOR),demonstrating excellent catalytic activity[with a current density of 271 mA·cm^(-2)at 1.40 V...Ni_(2)CoS_(4)was prepared by the liquid‑phase method and applied to the benzyl alcohol electro‑oxidation reaction(BAOR),demonstrating excellent catalytic activity[with a current density of 271 mA·cm^(-2)at 1.40 V(vs RHE)]and long‑term stability.The S‑anion effect can regulate the charge distribution on the catalyst surface,thereby enhancing the additional adsorption capacity of OH-at the Co sites.By combining material characterization and theoretical calculations,it can be observed that this process can increase the concentration of the OH^(*)intermediate,accelerate the activation process of the Ni site,and ultimately achieve an improvement in overall activity and stability.展开更多
Target-based and phenotype-based methods are the two main approaches for drug screening.Target-based drug screening focuses on specific targets CPA highly correlated with disease mechanisms,by detecting protein-ligand...Target-based and phenotype-based methods are the two main approaches for drug screening.Target-based drug screening focuses on specific targets CPA highly correlated with disease mechanisms,by detecting protein-ligand binding structure,dynamics and affinity.Currently,the four mainstream drug targets are G protein-coupled receptors(GPCRs),kinases,ion channels,and nuclear receptors,accounting for over 70%of effective drug targets,most of which are membrane proteins and enzymes.In recent years,various new drug targets have been continuously discovered,and the research focus has shifted from simple affinity analysis to high-throughput and high-content screening,as well as exploring drug-target interaction modes.These deepen reliance on the analytical techniques to have higher sensitivity,recognition specificity,and applicability to diversified target structures,which promoting the rapid development of novel screening methods.展开更多
Component-based Chinese Medicine(CCM)stands as a pivotal endeavor in modernizing traditional Chinese medicine(TCM).By integrating classical TCM theories with modern scientific methodologies,CCM aims to achieve herbal ...Component-based Chinese Medicine(CCM)stands as a pivotal endeavor in modernizing traditional Chinese medicine(TCM).By integrating classical TCM theories with modern scientific methodologies,CCM aims to achieve herbal formulas with“defined components,clarified mechanisms,and controllable quality.”This approach not only transitions TCM development from empirical tradition to evidence-based science but also positions it for global recognition.Drawing on recent advancements in CCM,this editorial explores key insights and challenges shaping its trajectory.展开更多
Economic violence is a form of domestic violence that extends beyond physical harm,affecting victims’economic stability and independence.This situation perpetuates gender inequality and also reinforces the cycle of g...Economic violence is a form of domestic violence that extends beyond physical harm,affecting victims’economic stability and independence.This situation perpetuates gender inequality and also reinforces the cycle of gender-based violence.With definitions of economic violence broadening to encompass a range of coercive and manipulative behaviors-from financial abuse in domestic violence scenarios to the economic harassment faced by stay-at-home moms-understanding this form of exploitation is crucial for crafting effective interventions.This article aims to delve into various facets of economic violence,including its definition,prevalence,and the stark realities it creates for its victims.Following the search of international databases:Social Work Abstracts(EBSCO),Psychology Abstracts,Family and Women Studies Worldwide,Psychiatry Online,Psych INFO(including Psych ARTICLES),PubMed,Wiley,and Scopus,60 peer-reviewed articles that met all inclusion criteria were included in the paper.Our review clarifies that looking forward,the call for a comprehensive understanding of economic violence,enhanced legal frameworks,and the strengthening of supportive networks underscore the multidisciplinary approach required to combat this issue effectively.展开更多
Meta-analysis plays a crucial role in synthesizing evidence across studies,yet its application in the context of rare diseases poses unique methodological challenges.A major limitation is the small sample size typical...Meta-analysis plays a crucial role in synthesizing evidence across studies,yet its application in the context of rare diseases poses unique methodological challenges.A major limitation is the small sample size typical of rare disease studies,which undermines statistical power and increases uncertainty in pooled estimates.Publication bias is particularly pronounced,as studies with non-significant or negative results are less likely to be published,distorting the overall evidence base.High heterogeneity in study designs,populations,and outcomes-especially between observational studies and randomized controlled trials-further complicates the integration of findings.Additionally,rare disease datasets are often characterized by sparse data,including zero-event studies,which are difficult to analyse using traditional meta-analytic approaches.The frequent use of inappropriate statistical methods,such as fixed-effects models in the presence of heterogeneity or continuity corrections for zero-event data,can yield misleading results.These issues collectively limit the generalisability of meta-analytic conclusions to broader patient populations.This article critically evaluates these problems and highlights the need for advanced statistical techniques,rigorous study selection,and transparent reporting standards to enhance the validity and utility of metaanalyses in rare disease research.展开更多
Traditional rule-based IntrusionDetection Systems(IDS)are commonly employed owing to their simple design and ability to detect known threats.Nevertheless,as dynamic network traffic and a new degree of threats exist in...Traditional rule-based IntrusionDetection Systems(IDS)are commonly employed owing to their simple design and ability to detect known threats.Nevertheless,as dynamic network traffic and a new degree of threats exist in IoT environments,these systems do not perform well and have elevated false positive rates—consequently decreasing detection accuracy.In this study,we try to overcome these restrictions by employing fuzzy logic and machine learning to develop an Enhanced Rule-Based Model(ERBM)to classify the packets better and identify intrusions.The ERBM developed for this approach improves data preprocessing and feature selections by utilizing fuzzy logic,where three membership functions are created to classify all the network traffic features as low,medium,or high to remain situationally aware of the environment.Such fuzzy logic sets produce adaptive detection rules by reducing data uncertainty.Also,for further classification,machine learning classifiers such as Decision Tree(DT),Random Forest(RF),and Neural Networks(NN)learn complex ways of attacks and make the detection process more precise.A thorough performance evaluation using different metrics,including accuracy,precision,recall,F1 Score,detection rate,and false-positive rate,verifies the supremacy of ERBM over classical IDS.Under extensive experiments,the ERBM enables a remarkable detection rate of 99%with considerably fewer false positives than the conventional models.Integrating the ability for uncertain reasoning with fuzzy logic and an adaptable component via machine learning solutions,the ERBM systemprovides a unique,scalable,data-driven approach to IoT intrusion detection.This research presents a major enhancement initiative in the context of rule-based IDS,introducing improvements in accuracy to evolving IoT threats.展开更多
To solve the serious volume expansion problem of Sb-based anode materials in the alloying/dealloying process,a strategy combining electrospinning and hydrogen reduction is proposed to prepare a series of Sb-based allo...To solve the serious volume expansion problem of Sb-based anode materials in the alloying/dealloying process,a strategy combining electrospinning and hydrogen reduction is proposed to prepare a series of Sb-based alloys/carbon nanofiber composites(SbM/CNFs,M=Co,Zn,Ni).Inactive elements are innovatively introduced to form Sb based alloys with enhanced stability.The results show that the content of SbCo nanoparticles is high to 69.12%(mass),which are uniformly dispersed in carbon fibers.When evaluated as anode material for SIBs,SbCo/CNFs anode exhibits excellent sodium storage capacity,the initial discharge capacity is 580.0 mA h·g^(-1)at 0.1 A g^(-1),which can hold 483.5 mA h·g^(-1)after 100 cycles.Even the current density increases to 1.0 A g^(-1),the specific capacity still maintains at 344.5 mA h·g^(-1)after 150 cycles.The improved sodium storage capacity is attributed to the synergistic effect of conductive carbon fibers and SbCo nanoparticles with uniform dispersion,which not only provide excellent electronic conductivity,but also enhance structural stability to reduce volume change.展开更多
Understanding migratory waterfowl spatiotemporal distributions is important because,in addition to their economic and cultural value,wild waterfowl can be infectious reservoirs of highly pathogenic avian influenza vir...Understanding migratory waterfowl spatiotemporal distributions is important because,in addition to their economic and cultural value,wild waterfowl can be infectious reservoirs of highly pathogenic avian influenza virus(HPAIV).Waterfowl migration has been implicated in regional and intercontinental HPAIV dispersal,and predictive capabilities of where and when HPAIV may be introduced to susceptible spillover hosts would facilitate biosecurity and mitigation efforts.To develop forecasts for HPAIV dispersal,an improved understanding of how individual birds interact with their environment and move on a landscape scale is required.Using an agent-based modeling approach,we integrated individual-scale energetics,species-specific morphology and behavior,and landscape-scale weather and habitat data in a mechanistic stochastic framework to simulate Mallard(Anas platyrhynchos)and Northern Pintail(Anas acuta)annual migration across the Northern Hemisphere.Our model recreated biologically realistic migratory patterns using a first principles approach to waterfowl ecology,behavior,and physiology.Conducting a limited structural sensitivity analysis comparing reduced models to eBird Status and Trends in reference to the full model,we identified density dependence as the main factor influencing spring migration and breeding distributions,and wind as the main factor influencing fall migration and overwintering distributions.We show evidence of weather patterns in Northeast Asia causing significant intercontinental pintail migration to North America.By linking individual energetics to landscapescale processes,we identify key drivers of waterfowl migration while developing a predictive model responsive to daily weather patterns.This model paves the way for future waterfowl migration research predicting HPAIV transmission,climate change impacts,and oil spill effects.展开更多
Mg_(x)(Ni_(0.8)La_(0.2))_(100-x),where x=60,70,80,exhibiting a nanocrystalline microstructure,were prepared through the crystallization of amorphous alloys.The investigation encompassed the phase constitution,grain si...Mg_(x)(Ni_(0.8)La_(0.2))_(100-x),where x=60,70,80,exhibiting a nanocrystalline microstructure,were prepared through the crystallization of amorphous alloys.The investigation encompassed the phase constitution,grain size,microstructural stability,and hydrogen storage properties.Crystallization kinetics,along with in-situ high-energy XRD characterization,revealed a concentrated and synchronous crystallization of Mg_(2)Ni and RE-Mg-Ni ternary phases with the increase in La and Ni content.The attributed synchronous crystallization process was found to be a result of the close local affinity of Mg_(2)Ni and RE-Mg-Ni ternary phases,as assessed by the thermodynamic Miedema model.Significant secondary phase pinning effect,arising from the high likelihood of well-matching phase structures between Mg_(2)Ni,LaMg_(2)Ni,and LaMgNi_(4),was validated through both the edge-to-edge matching model prediction and experimental observation.Thefine and homogeneous microstructure was shown to be a consequence of fast crystallization kinetics and the secondary phase pinning effect.Improved activation performance and cycling stability were observed,stemming from grain refinement and excellent microstructural stability.Our study provides insights into mechanism of grain refinement of nanocrystalline microstructure tailored by phase constitution and crystallization kinetics in the amorphous-crystallization route.We also demonstrate the potential of material design guided by phase equilibria and crystallographic predictions to improve nanocrystalline with excellent microstructural stability.展开更多
Lignin has been proved to be a promising precursor for producing carbon foam.The thermal and chemistry properties of lignin during its thermal conversion make it quite unique comparing with other precursors,and the co...Lignin has been proved to be a promising precursor for producing carbon foam.The thermal and chemistry properties of lignin during its thermal conversion make it quite unique comparing with other precursors,and the conversion parameters can clearly affect the properties of the derived products.Therefore,this study systematically investigated the effects of key carbonization parameters on the properties of the resulting carbon foam materials.The findings demonstrate that the performance of the self-shaping lignin-derived carbon foam is simultaneously influenced by the factors that carbonization temperature,heating rate,and carbonization duration.Specifically,the carbonization temperature and carbonization duration have a significant impact on the mechanical performance,where higher temperatures and long carbonization time improve compressive strength and specific strength.Moreover,the data revealed that elevated temperatures,rapid heating rates,and shortened carbonization periods collectively promoted the development of higher porosities and larger pore diameters within the carbon foam structure.Conversely,lower carbonization temperatures,slower heating rates,and extended carbonization durations facilitated the formation of microporous in the carbon foam.This study provides a scientific foundation for optimizing the production of lignin-derived carbon foam with tailored properties and performance characteristics.展开更多
This study begins with the fabrication and simulation of high-performance back-illuminated AlGaN-based solar-blind ultraviolet(UV)photodetectors.Based on the photodetectors,a low-noise,high-gain UV detection system ci...This study begins with the fabrication and simulation of high-performance back-illuminated AlGaN-based solar-blind ultraviolet(UV)photodetectors.Based on the photodetectors,a low-noise,high-gain UV detection system circuit is designed and fabricated,enabling the detection,acquisition,and calibration of weak solar-blind UV signals.Experimental results demonstrate that under zero bias conditions,with a UV light power density of 3.45μW/cm^(2) at 260 nm,the sample achieves a peak responsivity(R)of 0.085 A·W^(−1),an external quantum efficiency(EQE)of 40.7%,and a detectivity(D^(*))of 7.46×10^(12) cm·Hz^(1/2)·W^(−1).The system exhibits a bandpass characteristic within the 240–280 nm wavelength range,coupled with a high signal-to-noise ratio(SNR)of 39.74 dB.展开更多
文摘Tau plays a crucial role in several neurodegenerative diseases,collectively referred to as tauopathies.Therefore,targeting potential pathological changes in tau could enable useful therapeutic interventions.However,tau is not an easy target because it dynamically interacts with microtubules and other cellular components,which presents a challenge for tau-targeted drugs.New cellular models could aid the development of mechanism-based tau-targeted therapies.
基金National Natural Science Foundation of China(U22A20191)。
文摘Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.
基金supported by the National Natural Science Foundation of China (No.62202137)the China Postdoctoral Science Foundation (No.2023M730599)the Zhejiang Provincial Natural Science Foundation of China (No.LMS25F020009)。
文摘Embodied visual exploration is critical for building intelligent visual agents. This paper presents the neural exploration with feature-based visual odometry and tracking-failure-reduction policy(Ne OR), a framework for embodied visual exploration that possesses the efficient exploration capabilities of deep reinforcement learning(DRL)-based exploration policies and leverages feature-based visual odometry(VO) for more accurate mapping and positioning results. An improved local policy is also proposed to reduce tracking failures of feature-based VO in weakly textured scenes through a refined multi-discrete action space, keyframe fusion, and an auxiliary task. The experimental results demonstrate that Ne OR has better mapping and positioning accuracy compared to other entirely learning-based exploration frameworks and improves the robustness of feature-based VO by significantly reducing tracking failures in weakly textured scenes.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82173699 and 32200531)Shanghai Jiao Tong University Trans-Med Awards Research,China(STAR Project No.:20230101)Shanghai Science and Technol-ogy Commission,China(Grant No.:23DZ2290600).
文摘Numerous c-mesenchymal-epithelial transition(c-MET)inhibitors have been reported as potential anticancer agents.However,most fail to enter clinical trials owing to poor efficacy or drug resistance.To date,the scaffold-based chemical space of small-molecule c-MET inhibitors has not been analyzed.In this study,we constructed the largest c-MET dataset,which included 2,278 molecules with different struc-tures,by inhibiting the half maximal inhibitory concentration(IC_(50))of kinase activity.No significant differences in drug-like properties were observed between active molecules(1,228)and inactive mol-ecules(1,050),including chemical space coverage,physicochemical properties,and absorption,distri-bution,metabolism,excretion,and toxicity(ADMET)profiles.The higher chemical diversity of the active molecules was downscaled using t-distributed stochastic neighbor embedding(t-SNE)high-dimensional data.Further clustering and chemical space networks(CSNs)analyses revealed commonly used scaffolds for c-MET inhibitors,such as M5,M7,and M8.Activity cliffs and structural alerts were used to reveal“dead ends”and“safe bets”for c-MET,as well as dominant structural fragments consisting of pyr-idazinones,triazoles,and pyrazines.Finally,the decision tree model precisely indicated the key structural features required to constitute active c-MET inhibitor molecules,including at least three aromatic het-erocycles,five aromatic nitrogen atoms,and eight nitrogeneoxygen atoms.Overall,our analyses revealed potential structure-activity relationship(SAR)patterns for c-MET inhibitors,which can inform the screening of new compounds and guide future optimization efforts.
文摘Outcome Based Education(OBE)是一种以学习成果或结果为导向的教育理念。中医药高等教育要以胜任岗位为目标导向,培养高质量的中医人才。中医思维型课堂就是基于OBE理念提出的一种高效课堂,文章对中医思维型课堂的建设目的、建设意义进行了分析,对中医思维型课堂的建设关键点,如课堂组织实施形式、课堂评价方式等给出了笔者的经验,并创新性地将BOPPPS教学模式与中医思维的教学实际相结合,提出了适用于中医思维课堂的BOPPP教学模式。基于OBE教育理念的中医思维型课堂构建将是对中医教育教学进行的一次有益探索。
文摘Magnesium-based materials,including magnesium alloys,have emerged as a promising class of biodegradable materials with potential applications in cancer therapy due to their unique properties,including biocompatibility,biodegradability,and the ability to modulate the tumor microenvironment.The main degradation products of magnesium alloys are magnesium ions(Mg^(2+)),hydrogen(H_(2)),and magnesium hydroxide(Mg(OH)_(2)).Magnesium ions can regulate tumor growth and metastasis by mediating the inflammatory response and oxidative stress,maintaining genomic stability,and affecting the tumor microenvironment.Similarly,hydrogen can inhibit tumorigenesis through antioxidant and anti-inflammatory properties.Moreover,Mg(OH)_(2) can alter the pH of the microenvironment,impacting tumorigenesis.Biodegradable magnesium alloys serve various functions in clinical applications,including,but not limited to,bonefixation,coronary stents,and drug carriers.Nonetheless,the anti-tumor mechanism associated with magnesium-based materials has not been thoroughly investigated.This review provides a comprehensive overview of the current state of magnesium-based therapies for cancer.It highlights the mechanisms of action,identifies the challenges that must be addressed,and discusses prospects for oncological applications.
基金supported by the Major Science and Technology Project of Zhongshan City(No.2022AJ004)the Key Basic and Applied Research Program of Guangdong Province(Nos.2019B030302010 and 2022B1515120082)Guangdong Science and Technology Innovation Project(No.2021TX06C111).
文摘In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.
文摘This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materials for optical devices.Band structure calculations reveal that,except for InSb,all other compounds are direct bandgap semiconductors,with AlN exhibiting a bandgap of 3.245 eV.The valence band maximum of these eight compounds primarily stems from the p-orbitals of Al/In and X.In contrast,the conduction band minimum is influenced by all orbitals,with a predominant contribution from the p-orbitals.The static dielectric constant increased with the expansion of the unit cell volume.Compared to AlX and InX with larger X atoms,AlN and InN showed broader absorption spectra in the near-ultraviolet region and higher photoelectric conductance.Regarding mechanical properties,AlN and InN displayed greater shear and bulk modulus than the other compounds.Moreover,among these eight crystal types,a higher modulus was associated with a lower light loss function value,indicating that AlN and InN have superior transmission efficiency and a wider spectral range in optoelectronic material applications.
文摘Ni_(2)CoS_(4)was prepared by the liquid‑phase method and applied to the benzyl alcohol electro‑oxidation reaction(BAOR),demonstrating excellent catalytic activity[with a current density of 271 mA·cm^(-2)at 1.40 V(vs RHE)]and long‑term stability.The S‑anion effect can regulate the charge distribution on the catalyst surface,thereby enhancing the additional adsorption capacity of OH-at the Co sites.By combining material characterization and theoretical calculations,it can be observed that this process can increase the concentration of the OH^(*)intermediate,accelerate the activation process of the Ni site,and ultimately achieve an improvement in overall activity and stability.
文摘Target-based and phenotype-based methods are the two main approaches for drug screening.Target-based drug screening focuses on specific targets CPA highly correlated with disease mechanisms,by detecting protein-ligand binding structure,dynamics and affinity.Currently,the four mainstream drug targets are G protein-coupled receptors(GPCRs),kinases,ion channels,and nuclear receptors,accounting for over 70%of effective drug targets,most of which are membrane proteins and enzymes.In recent years,various new drug targets have been continuously discovered,and the research focus has shifted from simple affinity analysis to high-throughput and high-content screening,as well as exploring drug-target interaction modes.These deepen reliance on the analytical techniques to have higher sensitivity,recognition specificity,and applicability to diversified target structures,which promoting the rapid development of novel screening methods.
文摘Component-based Chinese Medicine(CCM)stands as a pivotal endeavor in modernizing traditional Chinese medicine(TCM).By integrating classical TCM theories with modern scientific methodologies,CCM aims to achieve herbal formulas with“defined components,clarified mechanisms,and controllable quality.”This approach not only transitions TCM development from empirical tradition to evidence-based science but also positions it for global recognition.Drawing on recent advancements in CCM,this editorial explores key insights and challenges shaping its trajectory.
文摘Economic violence is a form of domestic violence that extends beyond physical harm,affecting victims’economic stability and independence.This situation perpetuates gender inequality and also reinforces the cycle of gender-based violence.With definitions of economic violence broadening to encompass a range of coercive and manipulative behaviors-from financial abuse in domestic violence scenarios to the economic harassment faced by stay-at-home moms-understanding this form of exploitation is crucial for crafting effective interventions.This article aims to delve into various facets of economic violence,including its definition,prevalence,and the stark realities it creates for its victims.Following the search of international databases:Social Work Abstracts(EBSCO),Psychology Abstracts,Family and Women Studies Worldwide,Psychiatry Online,Psych INFO(including Psych ARTICLES),PubMed,Wiley,and Scopus,60 peer-reviewed articles that met all inclusion criteria were included in the paper.Our review clarifies that looking forward,the call for a comprehensive understanding of economic violence,enhanced legal frameworks,and the strengthening of supportive networks underscore the multidisciplinary approach required to combat this issue effectively.
文摘Meta-analysis plays a crucial role in synthesizing evidence across studies,yet its application in the context of rare diseases poses unique methodological challenges.A major limitation is the small sample size typical of rare disease studies,which undermines statistical power and increases uncertainty in pooled estimates.Publication bias is particularly pronounced,as studies with non-significant or negative results are less likely to be published,distorting the overall evidence base.High heterogeneity in study designs,populations,and outcomes-especially between observational studies and randomized controlled trials-further complicates the integration of findings.Additionally,rare disease datasets are often characterized by sparse data,including zero-event studies,which are difficult to analyse using traditional meta-analytic approaches.The frequent use of inappropriate statistical methods,such as fixed-effects models in the presence of heterogeneity or continuity corrections for zero-event data,can yield misleading results.These issues collectively limit the generalisability of meta-analytic conclusions to broader patient populations.This article critically evaluates these problems and highlights the need for advanced statistical techniques,rigorous study selection,and transparent reporting standards to enhance the validity and utility of metaanalyses in rare disease research.
基金A research grant from the Multimedia University,Malaysia supports this work。
文摘Traditional rule-based IntrusionDetection Systems(IDS)are commonly employed owing to their simple design and ability to detect known threats.Nevertheless,as dynamic network traffic and a new degree of threats exist in IoT environments,these systems do not perform well and have elevated false positive rates—consequently decreasing detection accuracy.In this study,we try to overcome these restrictions by employing fuzzy logic and machine learning to develop an Enhanced Rule-Based Model(ERBM)to classify the packets better and identify intrusions.The ERBM developed for this approach improves data preprocessing and feature selections by utilizing fuzzy logic,where three membership functions are created to classify all the network traffic features as low,medium,or high to remain situationally aware of the environment.Such fuzzy logic sets produce adaptive detection rules by reducing data uncertainty.Also,for further classification,machine learning classifiers such as Decision Tree(DT),Random Forest(RF),and Neural Networks(NN)learn complex ways of attacks and make the detection process more precise.A thorough performance evaluation using different metrics,including accuracy,precision,recall,F1 Score,detection rate,and false-positive rate,verifies the supremacy of ERBM over classical IDS.Under extensive experiments,the ERBM enables a remarkable detection rate of 99%with considerably fewer false positives than the conventional models.Integrating the ability for uncertain reasoning with fuzzy logic and an adaptable component via machine learning solutions,the ERBM systemprovides a unique,scalable,data-driven approach to IoT intrusion detection.This research presents a major enhancement initiative in the context of rule-based IDS,introducing improvements in accuracy to evolving IoT threats.
基金supported by National Natural Science Foundation of China(22379056,22479065)Industry foresight and common key technology research in Carbon Peak and Carbon Neutrality Special Project from Zhenjiang city(CG2023003)+1 种基金Industry-University-Research Cooperation Project of Jiangsu Province(BY20230347)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(24KJB150008).
文摘To solve the serious volume expansion problem of Sb-based anode materials in the alloying/dealloying process,a strategy combining electrospinning and hydrogen reduction is proposed to prepare a series of Sb-based alloys/carbon nanofiber composites(SbM/CNFs,M=Co,Zn,Ni).Inactive elements are innovatively introduced to form Sb based alloys with enhanced stability.The results show that the content of SbCo nanoparticles is high to 69.12%(mass),which are uniformly dispersed in carbon fibers.When evaluated as anode material for SIBs,SbCo/CNFs anode exhibits excellent sodium storage capacity,the initial discharge capacity is 580.0 mA h·g^(-1)at 0.1 A g^(-1),which can hold 483.5 mA h·g^(-1)after 100 cycles.Even the current density increases to 1.0 A g^(-1),the specific capacity still maintains at 344.5 mA h·g^(-1)after 150 cycles.The improved sodium storage capacity is attributed to the synergistic effect of conductive carbon fibers and SbCo nanoparticles with uniform dispersion,which not only provide excellent electronic conductivity,but also enhance structural stability to reduce volume change.
文摘Understanding migratory waterfowl spatiotemporal distributions is important because,in addition to their economic and cultural value,wild waterfowl can be infectious reservoirs of highly pathogenic avian influenza virus(HPAIV).Waterfowl migration has been implicated in regional and intercontinental HPAIV dispersal,and predictive capabilities of where and when HPAIV may be introduced to susceptible spillover hosts would facilitate biosecurity and mitigation efforts.To develop forecasts for HPAIV dispersal,an improved understanding of how individual birds interact with their environment and move on a landscape scale is required.Using an agent-based modeling approach,we integrated individual-scale energetics,species-specific morphology and behavior,and landscape-scale weather and habitat data in a mechanistic stochastic framework to simulate Mallard(Anas platyrhynchos)and Northern Pintail(Anas acuta)annual migration across the Northern Hemisphere.Our model recreated biologically realistic migratory patterns using a first principles approach to waterfowl ecology,behavior,and physiology.Conducting a limited structural sensitivity analysis comparing reduced models to eBird Status and Trends in reference to the full model,we identified density dependence as the main factor influencing spring migration and breeding distributions,and wind as the main factor influencing fall migration and overwintering distributions.We show evidence of weather patterns in Northeast Asia causing significant intercontinental pintail migration to North America.By linking individual energetics to landscapescale processes,we identify key drivers of waterfowl migration while developing a predictive model responsive to daily weather patterns.This model paves the way for future waterfowl migration research predicting HPAIV transmission,climate change impacts,and oil spill effects.
基金supported by National Natural Science Foundation of China(51761034,51961032,51962028 and 52261041)Innovation Foundation of Inner Mongolia University of Science and Technology(2019YQL03)+2 种基金Major Science and Technology Project of Inner Mongolia(2021ZD0029)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT23005,NJYT23007)Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(NMGIRT2401).
文摘Mg_(x)(Ni_(0.8)La_(0.2))_(100-x),where x=60,70,80,exhibiting a nanocrystalline microstructure,were prepared through the crystallization of amorphous alloys.The investigation encompassed the phase constitution,grain size,microstructural stability,and hydrogen storage properties.Crystallization kinetics,along with in-situ high-energy XRD characterization,revealed a concentrated and synchronous crystallization of Mg_(2)Ni and RE-Mg-Ni ternary phases with the increase in La and Ni content.The attributed synchronous crystallization process was found to be a result of the close local affinity of Mg_(2)Ni and RE-Mg-Ni ternary phases,as assessed by the thermodynamic Miedema model.Significant secondary phase pinning effect,arising from the high likelihood of well-matching phase structures between Mg_(2)Ni,LaMg_(2)Ni,and LaMgNi_(4),was validated through both the edge-to-edge matching model prediction and experimental observation.Thefine and homogeneous microstructure was shown to be a consequence of fast crystallization kinetics and the secondary phase pinning effect.Improved activation performance and cycling stability were observed,stemming from grain refinement and excellent microstructural stability.Our study provides insights into mechanism of grain refinement of nanocrystalline microstructure tailored by phase constitution and crystallization kinetics in the amorphous-crystallization route.We also demonstrate the potential of material design guided by phase equilibria and crystallographic predictions to improve nanocrystalline with excellent microstructural stability.
基金funding support from Taishan Scholars Program of Shandong Province(tsqn201909132)National Natural Science Foundation of China(22208183)+1 种基金Startup Foundation from Qingdao Agricultural University(663-1120040,665-1119020)Technology development project from Jinan Shengquan Company(20233702031771)。
文摘Lignin has been proved to be a promising precursor for producing carbon foam.The thermal and chemistry properties of lignin during its thermal conversion make it quite unique comparing with other precursors,and the conversion parameters can clearly affect the properties of the derived products.Therefore,this study systematically investigated the effects of key carbonization parameters on the properties of the resulting carbon foam materials.The findings demonstrate that the performance of the self-shaping lignin-derived carbon foam is simultaneously influenced by the factors that carbonization temperature,heating rate,and carbonization duration.Specifically,the carbonization temperature and carbonization duration have a significant impact on the mechanical performance,where higher temperatures and long carbonization time improve compressive strength and specific strength.Moreover,the data revealed that elevated temperatures,rapid heating rates,and shortened carbonization periods collectively promoted the development of higher porosities and larger pore diameters within the carbon foam structure.Conversely,lower carbonization temperatures,slower heating rates,and extended carbonization durations facilitated the formation of microporous in the carbon foam.This study provides a scientific foundation for optimizing the production of lignin-derived carbon foam with tailored properties and performance characteristics.
基金supported by the Director’s Fund for the‘Climbing Plan’of the National Space Science Centre of the Chinese Academy of Sciences(No.E2PD10011S)the National Engineering Research Centre for Mobile Private Networks Project(No.BJTU20221102).
文摘This study begins with the fabrication and simulation of high-performance back-illuminated AlGaN-based solar-blind ultraviolet(UV)photodetectors.Based on the photodetectors,a low-noise,high-gain UV detection system circuit is designed and fabricated,enabling the detection,acquisition,and calibration of weak solar-blind UV signals.Experimental results demonstrate that under zero bias conditions,with a UV light power density of 3.45μW/cm^(2) at 260 nm,the sample achieves a peak responsivity(R)of 0.085 A·W^(−1),an external quantum efficiency(EQE)of 40.7%,and a detectivity(D^(*))of 7.46×10^(12) cm·Hz^(1/2)·W^(−1).The system exhibits a bandpass characteristic within the 240–280 nm wavelength range,coupled with a high signal-to-noise ratio(SNR)of 39.74 dB.