期刊文献+
共找到181,697篇文章
< 1 2 250 >
每页显示 20 50 100
Active sites of Pt/CNTs nanocatalysts for aerobic base-free oxidation of glycerol 被引量:3
1
作者 Minjian Pan Jingnan Wang +7 位作者 Wenzhao Fu Bingxu Chen Jiaqi Lei Wenyao Chen Xuezhi Duan De Chen Gang Qian Xinggui Zhou 《Green Energy & Environment》 CSCD 2020年第1期76-82,共7页
Understanding the nature of Pt active sites is of great importance for the structure-sensitive base-free oxidation of glycerol. In the present work, the remarkable Pt particle size effects on glycerol conversion and p... Understanding the nature of Pt active sites is of great importance for the structure-sensitive base-free oxidation of glycerol. In the present work, the remarkable Pt particle size effects on glycerol conversion and products formation from the oxidation of the primary and the secondary hydroxyl groups are understood by combining the model calculations and DFT calculations, aiming to discriminate the corresponding dominant Pt active sites. The Pt(100) facet is demonstrated to be the dominant active sites for the glycerol conversion and the products formation from the two routes. The insights revealed here could shed new light on fundamental understanding of the Pt particle size effects and then guiding the design and optimization of Pt-catalyzed base-free oxidation of glycerol toward targeted products. 展开更多
关键词 base-free oxidation of glycerol Pt/CNTs catalyst Active sites Model calculations DFT calculations
在线阅读 下载PDF
Oxygen-vacancy-rich MnO_(x)supported RuO_(x)for efficient base-free oxidation of 5-hydroxymethylfurfural and 5-methoxymethylfurfural to 2,5-furandicarboxylic acid 被引量:1
2
作者 Jiali Wu Weizhen Xie +7 位作者 Yining Zhang Xixian Ke Tianyuan Li Huayu Fang Yong Sun Xianhai Zeng Lu Lin Xing Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期670-683,I0015,共15页
2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production o... 2,5-Furandicarboxylic acid(FDCA)is a promising biomass-derived polymeric monomer that serves as an attractive alternative to terephthalic acid derived from fossil resources.However,the green and efficient production of FDCA through the oxidation of 5-hydroxymethylfurfural(HMF)and its derivatives is still rudimentary under base-free conditions.In this work,oxygen-vacancy-rich Mn Oxwas prepared and displayed a strong adsorption and anchoring ability to Ru species that mainly exposed the(210)plane of RuO_(2),bringing about highly dispersed and active interfacial Ru-O-Mn structures.Experimental results and density functional theory calculations confirm that these above features greatly facilitate the adsorption/activation of oxygen and the dehydrogenation-oxidation of HMF/5-methoxymethylfurfural(MMF),which enables an efficient FDCA production under base-free and mild conditions.Notably,a desirable FDCA yield of 86.56%was still obtained from concentrated HMF(10 wt%)under base-free conditions over oxygen-vacancy-rich Mn Oxsupported Ru Ox(1.0 MPaO_(2),120℃,6 h).This work delineates a facile catalyst preparation strategy for HMF/MMF oxidation,and might open a new avenue for the green synthesis of FDCA under base-free conditions. 展开更多
关键词 base-free oxidation Oxygen-vacancy-rich 5-HYDROXYMETHYLFURFURAL 5-Methoxymethylfurfural 2 5-Furandicarboxylic acid
在线阅读 下载PDF
Base-free selective oxidation of monosaccharide into sugar acid by surface-functionalized carbon nanotube composites 被引量:2
3
作者 Zengyong Li Di Li +3 位作者 Linxin Zhong Xuehui Li Chuanfu Liu Xinwen Peng 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第11期116-123,共8页
Selective oxidation of biomass-derived monosaccharide into high value-added chemicals is highly desirable from sustainability perspectives.Herein,we demonstrate a surface-functionalized carbon nanotubesupported gold(A... Selective oxidation of biomass-derived monosaccharide into high value-added chemicals is highly desirable from sustainability perspectives.Herein,we demonstrate a surface-functionalized carbon nanotubesupported gold(Au/CNT-O and Au/CNT-N)catalyst for base-free oxidation of monosaccharide into sugar acid.Au/CNT-O and Au/CNT-N surfaces successfully introduced oxygen-and nitrogen-containing functional groups,respectively.The highest yields of gluconic acid and xylonic acid were 93.3%and 94.3%,respectively,using Au/CNT-N at 90℃ for 240 min,which is higher than that of using Au/CNT-O.The rate constants for monosaccharide decomposition and sugar acid formation in Au/CNT-N system were higher,while the corresponding activation energy was lower than in Au/CNT-O system.DFT calculation revealed that the mechanism of glucose oxidation to gluconic acid involves the adsorption and activation of O_(2),adsorption of glucose,dissociation of the formyl C-H bond and formation of O-H bond,and formation and desorption of gluconic acid.The activation energy barrier for the glucose oxidation over Au/CNT-N is lower than that of Au/CNT-O.The nitrogen-containing functional groups are more beneficial for accelerating monosaccharide oxidation and enhancing sugar acid selectivity than oxygen-containing functional groups.This work presents a useful guidance for designing and developing highly active catalysts for producing high-value-added chemicals from biomass. 展开更多
关键词 Surface functionalization base-free oxidation Sugar acid Kinetic study DFT calculation
原文传递
High-temperature oxidation resistance of TiB_(2)coatings on molybdenum produced by molten salt electrophoretic deposition
4
作者 Qian Kou Chuntao Ge +6 位作者 Yanlu Zhou Wenjuan Qi Junjie Xu Weiliang Jin Jun Zhang Hongmin Zhu Saijun Xiao 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期282-291,共10页
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti... TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance. 展开更多
关键词 molten salt electrophoretic deposition MOLYBDENUM TiB_(2)coating high-temperature oxidation resistance
在线阅读 下载PDF
Selective oxidation of glycerol in a base-free aqueous solution: A short review 被引量:8
5
作者 Lihua Yang Xuewen Li +1 位作者 Ping Chen Zhaoyin Hou 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第7期1020-1034,共15页
Catalytic transformation of glycerol to value-added products has attracted the attention of scientists all over the world. Among various transformations, selective oxidation of glycerol with molecular oxygen to dihydr... Catalytic transformation of glycerol to value-added products has attracted the attention of scientists all over the world. Among various transformations, selective oxidation of glycerol with molecular oxygen to dihydroxyacetone, glyceric acid, glyceraldehydes, and tartronic acid is challenging both from the viewpoint of academic research and industrial application. Herein, we review the recent progresses in the selective oxidation of glycerol under base-free conditions. Those catalysts widely reported for the selective oxidation of the terminal hydroxyl and secondary hydroxyl groups in glycerol, such as monometallic Au, Pt, and Pd NPs, and bimetallic Au-Pt, Au-Pd, Pt-Bi, Pt-Sb, and Pt-Cu, were compared and discussed in detail. The reaction mechanism over Pt-based catalysts, possible catalyst deactivation, and the corresponding improvements are presented. Further, the recent progresses in the continuous oxidation of glycerol in fixed bed reactors and its excellent selectivity in the formation of dihydroxyacetone are highlighted. 展开更多
关键词 GLYCEROL oxidation base-free condition Catalyst Reaction mechanism
在线阅读 下载PDF
Saturated Alcohols Electrocatalytic Oxidations on Ni-Co Bimetal Oxide Featuring Balanced B-and L-Acidic Active Sites
6
作者 Junqing Ma Wenshu Luo +9 位作者 Xunlu Wang Xu Yu Jiacheng Jayden Wang Huashuai Hu Hanxiao Du Jianrong Zeng Wei Chen Minghui Yang Jiacheng Wang Xiangzhi Cui 《Nano-Micro Letters》 2026年第2期105-123,共19页
Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electro... Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electrocatalytic oxidations of saturated alcohols(C_(1)-C_(6))to selectively form formate using Ni Co hydroxide(Ni Co-OH)derived Ni Co_(2)O_(4)solid-acid electrocatalysts with balanced Lewis acid(LASs)and Brønsted acid sites(BASs).Thermal treatment transforms BASs-rich(89.6%)Ni Co-OH into Ni Co_(2)O_(4)with nearly equal distribution of LASs(53.1%)and BASs(46.9%)which synergistically promote adsorption and activation of OH-and alcohol molecules for enhanced oxidation activity.In contrast,BASs-enriched Ni Co-OH facilitates formation of higher valence metal sites,beneficial for water oxidation.The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6alcohols increases as increased number of hydroxyl groups and decreased HOMO-LUMO gaps:methanol(C_(1))<ethylene glycol(C_(2))<glycerol(C3)<meso-erythritol(C4)<xylitol(C5)<sorbitol(C6),while the formate selectivity shows the opposite trend from 100 to 80%.This study unveils synergistic roles of LASs and BASs,as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts. 展开更多
关键词 Solid-acid electrocatalyst Alcohol oxidation reaction Bronsted acid sites Lewis acid sites C_(1)-C_(6)saturated alcohols
在线阅读 下载PDF
Selective oxidation of glycerol with oxygen in base-free solution over N-doped-carbon-supported Sb@PtSb2 hybrid 被引量:3
7
作者 Lihua Yang Tianqu He +2 位作者 Chujun Lai Ping Chen Zhaoyin Hou 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期494-502,共9页
Selective oxidation of glycerol with molecular oxygen in base-free aqueous solutions has become a hot topic,as the rapidly increasing production of biodiesel is creating a surplus of glycerol.In this work,an N-doped-c... Selective oxidation of glycerol with molecular oxygen in base-free aqueous solutions has become a hot topic,as the rapidly increasing production of biodiesel is creating a surplus of glycerol.In this work,an N-doped-carbon-supported core-shell structured Sb@PtSb2 hybrid catalyst was prepared via a facile synthesis route,in which a mixture of glucose,melamine,and SbCl3(Sb-NC)was pyrolyzed,then impregnated with Pt by immersion in an aqueous solution of H2PtCl6,and further treated in hydrogen flow.Characterization of the catalyst products indicated that introducing SbCl3 can increase the surface area of the binary glucose+melamine pyrolyzed support(NC),and Sb@PtSb2 hybrids could be formed on the surface of an Sb-NC support during hydrogen treatment at 700℃.It was found that the Sb@PtSb2/NC catalyst was more active for the selective oxidation of glycerol in a base-free aqueous solution than Sb-free NC-supported Pt(Pt/NC).Further characterization also indicated that the promising performance of Sb@PtSb2/NC might be attributed to its enhanced oxygen activation. 展开更多
关键词 GLYCEROL oxidation base-free solution Sb@PtSb2 Alloy
在线阅读 下载PDF
Base-free aerobic oxidation of glycerol on TiO_2-supported bimetallic Au–Pt catalysts 被引量:6
8
作者 Yihong Shen Yuming Li Haichao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第5期669-673,共5页
The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au-... The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au- Pd and Pt-Pd catalysts on TiO2 were examined under base-free conditions. Pt exhibited a superior activity relative to Pd, and Au-Pd and Pt-Pd while Au was essentially inactive. The presence of Au on the Au-Pt/TiO2 catalysts led to their higher activities (normalized per Pt atom) in a wide range of Au/Pt atomic ratios (i.e. 1/3-7/1 ), and the one with the Au/Pt ratio of 3/1 exhibited the highest activity. Such promoting effect is ascribed to the increased electron density on Pt via the electron transfer from Au to Pt, as characterized by the temperature-programmed desorption of CO and infra-red spectroscopy for CO adsorption. Meanwhile, the presence of Au on Au-Pt/TiO2, most like due to the observed electron transfer, changed the product selectivity, and facilitated the oxidation of the secondary hydroxyl groups in glycerol, leading to the favorable formation of dihydroxyacetone over glyceraldehyde and glyceric acid that were derived from the oxidation of the primary hydroxyl groups. The synergetic effect between Au and Pt demonstrates the feasibility in the efficient oxidation of glycerol to the targeted products, for example, by rational tuning of the electronic properties of metal catalysts. 展开更多
关键词 Glycerol aerobic oxidation Glyceraldehyde Dihydroxyacetone Bimetallic Au-Pt catalyst Synergetic effect
在线阅读 下载PDF
Highly efficient base-free aerobic oxidation of alcohols over gold nanoparticles supported on ZnO-CuO mixed oxides
9
作者 Wei Wang Yan Xie +5 位作者 Shaohua Zhang Xing Liu Liyun Zhang Bingsen Zhang Masatake Haruta Jiahui Huang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第12期1924-1933,共10页
The design and preparation of suitable supports are of great importance for gold catalysts to attain excellent catalytic performance for alcohol oxidation.In this work,we found that ZnO-CuO mixed oxides supported gold... The design and preparation of suitable supports are of great importance for gold catalysts to attain excellent catalytic performance for alcohol oxidation.In this work,we found that ZnO-CuO mixed oxides supported gold catalysts showed much better catalytic activity for base-free aerobic oxidation of benzyl alcohol than Au/ZnO and Au/CuO catalysts,and among them Au/Zn0.7Cu0.3O displayed the best catalytic performance.In addition,the Au/Zn0.7Cu0.3O catalyst could selectively catalyze the aerobic oxidation of a wide range of alcohols to produce the corresponding carbonyl compounds with high yields under mild conditions without base.Further characterizations indicated that the outstanding catalytic performance of Au/Zn0.7Cu0.3O was correlated with the small size of Au nanoparticles(NPs),good low-temperature reducibility,high concentration of surface oxygen species,and collaborative interaction between Au NPs and mixed oxide. 展开更多
关键词 Gold catalysis ZnO-CuO mixed oxides ALCOHOLS Aerobic oxidation base-free reaction
在线阅读 下载PDF
Efficient base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over copper-doped manganese oxide nanorods with tert-butanol as solvent 被引量:2
10
作者 Feng Cheng Dongwen Guo +4 位作者 Jinhua Lai Meihui Long Wenguang Zhao Xianxiang Liu Dulin Yin 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2021年第4期960-968,共9页
2,5-Furandicarboxylic acid(FDCA)is an important and renewable building block and can serve as an alternative to terephthalic acid in the production of biobased degradable plastic.In this study,Cu-doped MnO_(2) nanorod... 2,5-Furandicarboxylic acid(FDCA)is an important and renewable building block and can serve as an alternative to terephthalic acid in the production of biobased degradable plastic.In this study,Cu-doped MnO_(2) nanorods were prepared by a facile hydrothermal redox method and employed as catalysts for the selective oxidation of 5-hydroxymethylfurfural(HMF)to FDCA using tert-butyl hydroperoxide(TBHP)as an oxidant.The catalysts were characterized using X-ray diffraction analysis,Fourier transform infrared spectroscopy,thermo-gravimetric analysis,and transmission electron microscopy.The effects of oxidants,solvents,and reaction conditions on the oxidation of HMF were investigated,and a reaction mechanism was proposed.Experimental results demonstrated that 99.4% conversion of HMF and 96.3% selectivity of FDCA were obtained under suitable conditions,and tert-butanol was the most suitable solvent when TBHP was used as an oxidant.More importantly,the Cu-doped MnO_(2) catalyst can maintain durable catalytic activity after being recycled for more than ten times. 展开更多
关键词 5-HYDROXYMETHYLFURFURAL 2 5-furandicarboxylic acid selective oxidation Cu-doped MnO_(2) biomass transformation
原文传递
Synergy in magnetic Ni_(x)Co_(1)O_(y) oxides enables base-free selective oxidation of 5-hydroxymethylfurfural on loaded Au nanoparticles 被引量:1
11
作者 Hao Zhang Yinghao Wang +5 位作者 Qizhao Zhang Bang Gu Qinghu Tang Qiue Cao Kun Wei Wenhao Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期526-536,I0014,共12页
The base-free aerobic oxidation of 5-hydroxymethylfurfural(HMF) to 2,5-furandicarboxylic acid(FDCA)in water is recognized as an important and sustainable upgrading process for cellulosic carbohydrates.However,selectiv... The base-free aerobic oxidation of 5-hydroxymethylfurfural(HMF) to 2,5-furandicarboxylic acid(FDCA)in water is recognized as an important and sustainable upgrading process for cellulosic carbohydrates.However,selectivity control still remains a challenge.Here,we disclose that the unique synergy in magnetic Ni_(x)Co_(1)O_(y)(x=1,3 and 5) bimetallic oxides can induce reactive oxygen defects and simultaneously stabilize small-sized metallic Au nanoparticles in the Au/Ni_(x)Co_(1)O_(y)catalysts.Such catalytic features render effective adsorption and activation of O_(2),OH and C=O groups,realizing selective oxidation of HMF to FDCA.On a series of magnetic Au/Ni_(x)Co_(1)O_(y)catalysts with almost identical Au loadings(ca.0.5 wt%) and particle sizes(ca.2.7 nm),the variable Ni/Co molar ratios give rise to the tunable electron density of Au sites and synergistic effect between NiO and CoO_(y).The initial conversion rates of HMF and its derived intermediates(i.e., DFF,HMFCA and FFCA) show a volcano-like dependence on the number of oxygen defects(i.e.,O_(2)^(-)and O^(-)) and electron-rich Au0sites.The optimum Au/Ni3Co1Oycatalyst exhibits a highest productivity of FDCA(12.5 mmol_(FDCA)mol_(Au)^(-1)h^(-1)) among all the Au catalysts in the literature and achieves> 99% yield of FDCA at 120℃ and 10 bar of O_(2).In addition,this catalyst can be easily recovered by a magnet and show superior stability and reusability during six consecutive cycling tests.This work may shed a light on Au catalysis for the base-free oxidation of biomass compounds by smartly using the synergy in bimetallic oxide carriers. 展开更多
关键词 Aerobic oxidation 2 5-Furandicarboxylic acid C=O group conversion Magnetic catalyst Oxygen defects Synergistic effect
在线阅读 下载PDF
High temperature oxidation behavior of TiNbMoAlSi refractory high entropy alloy developed by electron beam additive manufacturing 被引量:3
12
作者 Zhe Li Liang Wang +9 位作者 Yong Yang Chen Liu Baoxian Su Qingda Zhang Zhiwen Li Jiaqi Huang Binbin Wang Liangshun Luo Ruirun Chen Yanqing Su 《Journal of Materials Science & Technology》 2025年第12期131-146,共16页
Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-depo... Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys. 展开更多
关键词 Refractory high entropy alloy oxidation Electron beam freeform fabrication Multilayer oxide First principles calculations
原文传递
Impact of pitch fraction oxidation on the structure and sodium storage properties of derived carbon materials 被引量:1
13
作者 QI Su-xia YANG Tao +6 位作者 SONG Yan ZHAO Ning LIU Jun-qing TIAN Xiao-dong WU Jin-ru LI Hui LIU Zhan-jun 《新型炭材料(中英文)》 北大核心 2025年第2期421-439,共19页
Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation ac... Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g). 展开更多
关键词 Pitch fractions Air oxidation Derived carbon materials Na^(+)storage
在线阅读 下载PDF
High-Temperature Oxidation Property and Corrosion and Wear Resistance of Laser Cladding Co-based Coatings on Pure Zr Surface 被引量:1
14
作者 Xia Chaoqun Yang Bo +3 位作者 Liu Shuguang Zhang Bo Zhong Hua Li Qiang 《稀有金属材料与工程》 北大核心 2025年第6期1397-1409,共13页
Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,a... Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution. 展开更多
关键词 Zr metal laser cladding Co-based coating high-temperature oxidation resistance wear resistance
原文传递
A critical review on oxidation behavior of Co-based superalloys 被引量:3
15
作者 Chenghao PEI Qingshuang MA +4 位作者 Qiuzhi GAO Yue YANG Yuhang DU Hailian ZHANG Huijun LI 《Chinese Journal of Aeronautics》 2025年第3期183-206,共24页
The novel Co-based superalloys are extensively used in gas-powered and jet engine turbines due to their excellent high-temperature performance, achieved by strengthening the L12-γ′ ordered phase. This review present... The novel Co-based superalloys are extensively used in gas-powered and jet engine turbines due to their excellent high-temperature performance, achieved by strengthening the L12-γ′ ordered phase. This review presents an overview of the research progress on oxidation behavior of Co-based superalloys, including oxidation kinetics, oxides morphology, the formation and spallation of oxide layers, and importantly, the synergistic effects of alloying elements on oxidation resistance—a critical area considering the complex interactions with multiple alloying elements. Additionally, this review compares the oxidation resistance of single crystal versus polycrystalline alloys. The effect of phase interface and dislocations on oxidation behavior is also discussed. While significant progress has been achieved, areas necessitating further investigation include optimizing alloy compositions for enhanced oxidation resistance and understanding the long-term stability of oxide layers. The future prospects for Co-based superalloys are promising as ongoing research aims to address the existing challenges and unlock new applications at even higher operating temperatures. 展开更多
关键词 COBALT SUPERALLOYS oxidation Alloying elements MICROSTRUCTURE Temperature
原文传递
Hypidone hydrochloride(YL-0919)ameliorates functional deficits after traumatic brain injury in mice by activating the sigma-1 receptor for antioxidation 被引量:2
16
作者 Yafan Bai Hui Ma +5 位作者 Yue Zhang Jinfeng Li Xiaojuan Hou Yixin Yang Guyan Wang Yunfeng Li 《Neural Regeneration Research》 SCIE CAS 2025年第8期2325-2336,共12页
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0... Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury. 展开更多
关键词 antidepressant drug blood-brain barrier cognitive function hypidone hydrochloride(YL-0919) neurological function nuclear factor-erythroid 2 related factor 2 oxidative stress sigma-1 receptor superoxide dismutase traumatic brain injury
暂未订购
Boosting Alcohol Oxidation Electrocatalysis with Multifactorial Engineered Pd_(1)/Pt Single‑Atom Alloy‑BiO_(x)Adatoms Surface 被引量:1
17
作者 Yujia Liao Wen Chen +9 位作者 Yutian Ding Lei Xie Qi Yang Qilong Wu Xianglong Liu Jinliang Zhu Renfei Feng Xian‑Zhu Fu Shuiping Luo Jing‑Li Luo 《Nano-Micro Letters》 2025年第7期396-409,共14页
Engineering nanomaterials at single-atomic sites could enable unprecedented catalytic properties for broad applications,yet it remains challenging to do so on the surface of multimetallic nanocrystals.Herein,we presen... Engineering nanomaterials at single-atomic sites could enable unprecedented catalytic properties for broad applications,yet it remains challenging to do so on the surface of multimetallic nanocrystals.Herein,we present the multifactorial engineering(size,shape,phase,and composition)of the fully ordered PtBi nanoplates at atomic level,achieving a unique catalyst surface where the face-centered cubic(fcc)Pt edges are modified by the isolated Pd atoms and BiO_(x)adatoms.This Pd_(1)/Pt-BiO_(x)electrocatalyst exhibits an ultrahigh mass activity of 16.01 A mg^(-1)Pt+Pd toward ethanol oxidation in alkaline electrolyte and enables a direct ethanol fuel cell of peak power density of 56.7 mW cm^(−2).The surrounding BiO_(x)adatoms are critical for mitigating CO-poisoning on the Pt surface,and the Pd_(1)/Pt single-atom alloy further facilitates the electrooxidation of CH_(3)CH_(2)OH.This work offers new insights into the rational design and construction of sophisticated catalyst surface at single-atomic sites for highly efficient electrocatalysis. 展开更多
关键词 ELECTROCATALYSIS Alcohol oxidation Single-atom alloy INTERMETALLIC Fuel cell
在线阅读 下载PDF
The growth behavior and performance of microarc oxidation coating on AZ91/Ti composite: Influence of Ti-reinforcement phase and electrolyte 被引量:1
18
作者 Jinchao Jiao Yongrui Gu +4 位作者 Jin Zhang Yong Lian Xintao Li Kaihong Zheng Fusheng Pan 《Journal of Magnesium and Alloys》 2025年第3期1160-1175,共16页
Magnesium matrix composites with both high strength and ductility have been achieved by introducing pure Ti particles.However,the properties of the surfaces of the composites need to be improved by surface technology,... Magnesium matrix composites with both high strength and ductility have been achieved by introducing pure Ti particles.However,the properties of the surfaces of the composites need to be improved by surface technology,such as micro-arc oxidation(MAO).In this study,we investigated the influence of the Ti-reinforcement phase on coating growth and evolution by subjecting both AZ91 alloy and AZ91/Ti composite to MAO treatment using silicate-based and phosphate-based electrolytes.Results revealed that the Ti-reinforcement phase influenced the MAO process,altering discharge behavior,and leading to a decreased cell voltage.The vigorous discharge of the Ti-reinforcement phase induced the formation of coating discharge channels,concurrently dissolving and oxidizing Ti-reinforcement to produce a composite ceramic coating with TiO2.The MAO coating on the AZ91/Ti composite exhibited a dark blue macromorphology and distinctive local micromorphological anomalies.In silicate electrolyte,a“volcano-like”localized morphology centered on the discharge channel emerged.In contrast,treatment in phosphate-based electrolyte resulted in a coating morphology similar to typical porous ceramic coatings,with visible radial discharge micropores at the reinforcement phase location.Compared to the AZ91 alloy,the coating on the AZ91/Ti composite exhibited lower thickness and higher porosity.MAO treatment reduced the self-corrosion current density of the AZ91/Ti surface by two orders of magnitude.The silicate coating demonstrated better corrosion resistance than the phosphate coating,attributed to its lower porosity.The formation mechanism of MAO coatings on AZ91/Ti composites in phosphate-based and silicate-based electrolytes was proposed. 展开更多
关键词 Magnesium matrix composites Ti-reinforcement Micro-arc oxidation Growth behavior
在线阅读 下载PDF
Enhancing Corrosion Resistance and Antibacterial Properties of ZK60 Magnesium Alloy Using Micro-Arc Oxidation Coating Containing Nano-Zinc Oxide 被引量:2
19
作者 Jin-Xiu Li Jun-Xiu Chen +6 位作者 M.A.Siddiqui S.K.Kolawole Yang Yang Ying Shen Jian-Ping Yang Jian-Hua Wang Xu-Ping Su 《Acta Metallurgica Sinica(English Letters)》 2025年第1期45-58,共14页
Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates... Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates the preparation of ZnO-containing micro-arc oxidation coatings with dual functionality by incorporating nano-ZnO into MAO electrolyte.The influence of varying ZnO concentrations on the microstructure,corrosion resistance,and antibacterial properties of the coating was examined through microstructure analysis,immersion tests,electrochemical experiments,and antibacterial assays.The findings revealed that the addition of nano-ZnO significantly enhanced the corrosion resistance of the MAO-coated alloy.Specifically,when the ZnO concentration in the electrolyte was 5 g/L,the corrosion rate was more than ten times lower compared to the MAO coatings without ZnO.Moreover,the antibacterial efficacy of ZnO+MAO coating,prepared with a ZnO concentration of 5 g/L,surpassed 95%after 24 h of co-culturing with Staphylococcus aureus(S.aureus).The nano-ZnO+MAO-coated alloy exhibited exceptional degradation resistance,corrosion resistance,and antibacterial effectiveness. 展开更多
关键词 NANO-ZNO Micro-arc oxidation(MAO)coating ZK60 alloy Corrosion behavior Antibacterial characteristics
原文传递
Optimization of corrosion resistance of AZ31 Mg alloy through hydration-driven interaction between quinolin-8-ol and plasma electrolytic oxidation-formed MgO layer 被引量:1
20
作者 Mosab Kaseem Talitha Tara Thanaa +2 位作者 Ananda Repycha Safira Alireza Askari Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 2025年第1期71-82,共12页
This study presents a novel approach to improving the anticorrosive performance of AZ31 Mg alloy by exploiting the role of the hydration reaction to induce interactions between Quinolin-8-ol(8HQ)molecules and the poro... This study presents a novel approach to improving the anticorrosive performance of AZ31 Mg alloy by exploiting the role of the hydration reaction to induce interactions between Quinolin-8-ol(8HQ)molecules and the porous MgO layer formed via plasma electrolytic oxidation(PEO).The AZ31 Mg alloy,initially coated with a PEO layer,underwent a dipping treatment in an ethanolic solution of 0.05 M 8HQ at 50℃ for 3 h.The results were compared with those from a different procedure where the PEO layer was subjected to a hydration reaction for 2 h at 90℃ before immersion in the 8HQ solution under the same conditions.The hydration treatment played a crucial role by converting MgO to Mg(OH)_(2),significantly enhancing the surface reactivity.This transformation introduced hydroxyl groups(−OH)on the surface,which facilitated donor-acceptor interactions with the electron-accepting sites on 8HQ molecules.The calculated binding energy(Ebinding)from DFT indicated that the interaction energy of 8HQ with Mg(OH)_(2) was lower compared to 8HQ with MgO,suggesting easier adsorption of 8HQ molecules on the hydrated surface.This,combined with the increased number of active sites and enhanced surface area,allowed for extensive surface coverage by 8HQ,leading to the formation of a stable,flake-like protective layer that sealed the majority of pores on the PEO layer.DFT calculations further suggested that the hydration treatment provided multiple active sites,enabling effective contact with 8HQ and rapid electron transfer,creating ideal conditions for charge-transfer-induced physical and chemical bonding.This study shows that hydration and 8HQ treatments significantly enhance the corrosion resistance of Mg alloys,highlighting their potential for advanced anticorrosive coatings. 展开更多
关键词 Mg alloy Plasma electrolytic oxidation Quinolin-8-ol HYDRATION Corrosion
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部