Base-catalyzed nucleophilic substitution reactions ofβ-ketonitrile with azodicarboxylates have been developed.A series of disubstituted C—N coupling products were obtained in good to excellent yields under Et_(3)N c...Base-catalyzed nucleophilic substitution reactions ofβ-ketonitrile with azodicarboxylates have been developed.A series of disubstituted C—N coupling products were obtained in good to excellent yields under Et_(3)N catalysis.Monosubstitu-tion C—N bond formation reaction catalyzed by K_(2)CO_(3) also gave novel enol-based target products.This method is simple and mild,with good chemoselectivity,excellent substrate compatibility and tolerance for various functional groups,and achieves gram-scale synthesis.The reaction is a nucleophilic substitution process without the involvement of free radicals.展开更多
Two novel and environmentally benign solvent systems, organic acids-ennchea high temperature liquid water (HTLW) and NH3-enriched HTLW, were developed, which can enhance the reaction rate of acid/base-catalyzed orga...Two novel and environmentally benign solvent systems, organic acids-ennchea high temperature liquid water (HTLW) and NH3-enriched HTLW, were developed, which can enhance the reaction rate of acid/base-catalyzed organic reactions in HTLW. We investigated the decomposition of fructose in organic acids-enriched HTLW, hydrolysis of cinnamaldehyde and aldol condensation of phenylaldehyde with acetaldehyde in NH3-enriched HTLW. The experimental results demonstrated that organic acids-enriched or NH3-enriched HTLW can greatly accelerate acid/base-catalyzed organic reactions in HTLW.展开更多
文摘Base-catalyzed nucleophilic substitution reactions ofβ-ketonitrile with azodicarboxylates have been developed.A series of disubstituted C—N coupling products were obtained in good to excellent yields under Et_(3)N catalysis.Monosubstitu-tion C—N bond formation reaction catalyzed by K_(2)CO_(3) also gave novel enol-based target products.This method is simple and mild,with good chemoselectivity,excellent substrate compatibility and tolerance for various functional groups,and achieves gram-scale synthesis.The reaction is a nucleophilic substitution process without the involvement of free radicals.
基金The authors are grateful for the financial support of the National Natural Science Foundation of China(20476089,20176054)Project of the Ministry of Science and Technology of China (No.2004CCA0500) Zhejing Provincial Natural Science Foundation of China(ZE0214).
文摘Two novel and environmentally benign solvent systems, organic acids-ennchea high temperature liquid water (HTLW) and NH3-enriched HTLW, were developed, which can enhance the reaction rate of acid/base-catalyzed organic reactions in HTLW. We investigated the decomposition of fructose in organic acids-enriched HTLW, hydrolysis of cinnamaldehyde and aldol condensation of phenylaldehyde with acetaldehyde in NH3-enriched HTLW. The experimental results demonstrated that organic acids-enriched or NH3-enriched HTLW can greatly accelerate acid/base-catalyzed organic reactions in HTLW.