A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and...A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom(MDOF) system is approximated by using the modal energy-decomposition. Energybased base shear coefficients are verified by means of both pushover analysis and nonlinear time history(NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.展开更多
This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the...This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the base shear force-roof displacement curve of structure is converted to the capacity spectrum of an equivalent single-degree-of-freedom (SDOF) system. The capacity spectrum method (CSM) is programmed by means of MATLABT.0 computer language. A dual lateral force resisting system of 10-story steel frame-steel plate shear walls (SPSW) is designed according to the corresponding China design codes. The base shear force-roof displacement curve of structure subjected to the monotonic increasing lateral inverse triangular load is obtained by applying the equivalent strip model to stimulate SPSW and by using the finite element analysis software SAP2000 to make Pushover analysis. The seismic performance of this dual system subjected to three different conditions, i.e. the 8-intensity frequently occurred earthquake, fortification earthquake and seldom occurred earthquake, is evaluated by CSM program. The excessive safety of steel frame-SPSW system designed according to the present China design codes is pointed out and a new design method is suggested.展开更多
Firm joins were obtained between Ti(C,N)-based cermet and steel with Ag-Cu-Zn-Ni filler metal by vacuum brazing. The effects of technological parameters such as brazing temperature, holding time, and filler thicknes...Firm joins were obtained between Ti(C,N)-based cermet and steel with Ag-Cu-Zn-Ni filler metal by vacuum brazing. The effects of technological parameters such as brazing temperature, holding time, and filler thickness on the shear strength of the joints were investigated. The microstructure of welded area and the reaction products of the filler metal were examined by scanning electron microscopy (SEM), metallographic microscope (OM), energy-dispersive X-ray analysis (EDS), and X-ray diffraction (XRD). The brazing temperature of 870℃, holding time of 15 min, and filler thickness of 0.4 mm are a set of optimum technological parameters, under which the maximum shear strength of the joints, 176.5 MPa, is achieved. The results of microstructure show that the wettability of the filler metal on Ti(C,N)-based cermet and steel is well. A mutual solution layer and a diffusion layer exist between the welding base materials and the filler metal.展开更多
Effects of the tempering temperature and time on the shear modulus of Fe-Mn based alloys have been studied.The results show that(ΔG/G)-Tcurves of tempered alloys containing Cr and Ti have two extreme values—maximum ...Effects of the tempering temperature and time on the shear modulus of Fe-Mn based alloys have been studied.The results show that(ΔG/G)-Tcurves of tempered alloys containing Cr and Ti have two extreme values—maximum and minimum,and that the curves of tem- pered alloys containing Cr,Ni,W and C only have a maximum value.This is the reason that Ni,W and C decrease the transformation point T_N of the antiferromagnetism.The ΔG_λ ef- feet increases gradually with the rise of tempering temperature or with the increase of tem- pering time.展开更多
Shear bands in the interior of Pd(79)Cu6Si(10)P5,Pd(79)Cu3Ag3Si(10)P5, and Pd(79)Cu4Au2Si(10)P5 bulk metallic glasses were investigated by optical microscopy(OM) and scanning electron microscopy(SEM). ...Shear bands in the interior of Pd(79)Cu6Si(10)P5,Pd(79)Cu3Ag3Si(10)P5, and Pd(79)Cu4Au2Si(10)P5 bulk metallic glasses were investigated by optical microscopy(OM) and scanning electron microscopy(SEM). No shear bands can be observed in the samples before etching. By etching in aqua regia solution, shear bands are found to be susceptible to preferential etching, and multiple etched bands could be observed. The thickness of the etched bands is about 1-7 μm. Therefore, the preferentially etched shear bands found in the study are called the "extended" shear bands.The "extended" shear bands can be divided into three classes according to their features: early, developing, and well-developed "extended" shear bands with thickness of about 1, 5, and 7 μm, respectively. The interface between the well-developed "extended" shear bands and the matrix is clearer than that of the others.展开更多
Rigid ellipsoidal objects(gravels and porphyroclasts)in ductile zone is an important factor to indicate the kinematics and dynamics.Jeffery’s theory(Jeffery G,1922),a quantitative research method,for the rotation oft...Rigid ellipsoidal objects(gravels and porphyroclasts)in ductile zone is an important factor to indicate the kinematics and dynamics.Jeffery’s theory(Jeffery G,1922),a quantitative research method,for the rotation ofthe rigid objects(no deformation)in the Newtonian fluid of the simple deformation field has been widely applied by geologists to the study of fabrics in rocks.The theory展开更多
With the increasing demand for lightweight and lower fuel consumption and safety of automobile industry, lightweight materials of high strength steel (HSS) are more and more widely used. The hot stamping technology, w...With the increasing demand for lightweight and lower fuel consumption and safety of automobile industry, lightweight materials of high strength steel (HSS) are more and more widely used. The hot stamping technology, which is determined by the inherent mechanical properties of high strength steel, makes molds prone to wear failure in the harsh service environments. In this paper, a finite element model is proposed for analyzing the value and distributions law of friction shear stress of contact surface of the pin disk. Through the simulation process of sliding wear, two kinds of different cladding materials of the pin specimens including H13 and Fe65, were experimented under three different loads by using the software ABAQUS. And then the pin-on- disk wear test at elevated temperature was conducted to verify the effectiveness of the simula-tion results. The results showed that the friction shear stress of pin with iron-based cladding and H13 steel was different under different loads, but the distribution was basically the same;the normal friction shear stress increased gradually along the direction of the pin movement, and the tangential shear stress increased gradually from the center of the pin to the outside of the circle;the value of the friction shear stress of the normal joints on the contact surface was periodically fluctuating in the whole dynamic analysis step, while it was basically stable in the tangential direction.展开更多
Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronins company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Eff...Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronins company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results shaw that the thickness of interface reaction layer of the nickel- based alloy is 14. 3 μm, which is only 4. 33% of base material. The weld is made up of two phases, α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184. 9 MPa.展开更多
Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This ...Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This model also considers the influence of confining pressure. In this paper, the calibration of the model is detailed and numerical simulations of the main mechanical behavior of cement paste over a large range of stress are described, showing good agreement with experimental results. The ease study shows that this cup model has extensive applicability for cement-based materials and other quasi-brittle and high-porosity materials in a complex stress state.展开更多
The lap joints of Fe-based metallic glass ribbons were carried by resistance spot welding, and the microstructures of spot welds were investigated by X-ray diffraction and transmission electron microscopy. The results...The lap joints of Fe-based metallic glass ribbons were carried by resistance spot welding, and the microstructures of spot welds were investigated by X-ray diffraction and transmission electron microscopy. The results indicated that the perfect formations of joints without typical defects such as spatter were achieved with optimized parameters. Except for little nano-particle Fe2B, no other crystalline particle was detected by TEM, revealing that the most microstructure in spot weld remains amorphous. The maximum tensile-shearing force was 45.0 N with the optimized parameters of 1 kA weld current, 30 N electrode force and 0.02 ms weld time. The spot weld failed as pullout failure mode propagating along the interface of nugget zone. The study demonstrates that resistance spot welding is an effective and practical welding process for Fe-based metallic glass.展开更多
Elevated temperature creep behaviors at 1100℃ over a wide stress regime of 120-174 MPa of a thirdgeneration Ni-based single crystal superalloy were studied. With a reduced stress from 174 to 120 MPa, the creep life i...Elevated temperature creep behaviors at 1100℃ over a wide stress regime of 120-174 MPa of a thirdgeneration Ni-based single crystal superalloy were studied. With a reduced stress from 174 to 120 MPa, the creep life increased by a factor of 10.5, from 87 h to 907 h, presenting a strong stress dependence. A splitting phenomenon of the close-(about 100 nm) and sparse-(above 120 nm) spaced dislocation networks became more obvious with increasing stress. Simultaneously, ao<010> superdislocations with low mobil让ies were frequently observed under a lower stress to pass through γ precipitates by a combined slip and climb of two ao<110> superpartials or pure climb. However, ao<110> superdislocations with higher mobility were widely found under a higher stress, which directly sheared into y precipitates. Based on the calculated critical resolved shear stresses for various creep mechanisms, the favorable creep mechanism was systematically analyzed. Furthermore, combined with the microstructural evolutions during different creep stages, the dominant creep mechanism changed from the dislocation climbing to Orowan looping and precipitates shearing under a stress regime of 137-174MPa, while the dislocation dim bing mechanism was operative throughout the whole creep stage un der a stress of 120 MPa, resulting a superior creep performanee.展开更多
The aim of this study is to describe the main behavior of cement-based materials under large compression state based on the recent experimental research. In this paper, the strainstress relations are firstly analyzed ...The aim of this study is to describe the main behavior of cement-based materials under large compression state based on the recent experimental research. In this paper, the strainstress relations are firstly analyzed and confining pressure state is regarded as low/medium/high state. A generalized cup modeling is introduced by a coupled deviatoric shearing, pore collapse and damage mechanism within thermodynamic framework. A series of numerical simulations are performed for the considered cement paste and concrete. Comparisons between numerical predictions and experimental results show that the proposed model is able to describe the main features of mechanical behavior under large range of compression state.展开更多
Guwahati, the major city in the North Eastern region of India is growing rapidly in every aspect with major infrastructures like sports complex, educational institutions, hospitals, flyovers, multiplex halls, etc. Kno...Guwahati, the major city in the North Eastern region of India is growing rapidly in every aspect with major infrastructures like sports complex, educational institutions, hospitals, flyovers, multiplex halls, etc. Knowledge of the subsurface soil condition is necessary to ensure the structural safety and serviceability of the above mentioned structures before any construction. Therefore, contour maps of Standard penetration test N value, ground water table and shear wave velocity map using Geographical Information System (GIS) platform will be of great help to the foundation designers at the initial stage for site selection and preliminary foundation design under static and seismic condition. Contour maps of Standard penetration test N value at different depth and average contour map of N value of Guwahati city have been prepared. Standard penetration Test N values and depth of water table were taken from a data base of 200 boreholes up to 30 meter depth to prepare N value contour map of Guwahati city. A regression equation between shear wave velocity V<sub>s</sub> and Standard penetration test N value based on twenty seven previous similar correlations was also developed. This regression equation was used to determine shear wave velocity of Guwahati city. The average shear wave velocities for 30 m depth for all locations had been determined and used to generate map on (GIS) platform. Other subsurface geotechnical information of Guwahati city like soil classification and depth to water level from ground surface is also presented in the form of GIS based maps in order to form a data base.展开更多
The traditional degradation of organic pollutants is based on the sacrifice of chemical or biological reagents. In this study, a purely physical technique was developed to break the chemical bonds and consequently dec...The traditional degradation of organic pollutants is based on the sacrifice of chemical or biological reagents. In this study, a purely physical technique was developed to break the chemical bonds and consequently decompose macromolecules in aqueous solution. Assisted with a high-speed mechanical blade, refined quartz sand grains with particularly sharp nanoscale edges can act as ‘nano-knives', which are able to cut the long chain of carboxymethyl cellulose(CMC, as a model molecule). High performance size exclusion chromatography measurements evidenced that the original CMC molecules(41,000 Da) were decomposed into a series of smaller molecules(460, 1000, 2200, 21,000, 27,000 and 31,000 Da). Consequently, the initial viscosity of the CMC solution(2 g/L) rapidly decreased by approximately 50% after 3 min treatment by the nano-knife materials along with the mechanical blade. Fourier transform infrared(FTIR) spectra indicated that the original functional groups were still present and new functional groups were not produced after shearing. The intensity of the main functional groupβ-1-4-glycosidic bond(wavenumber 1062 cm-1) was observed to markedly decrease after shearing. These results indicated that the long-chain CMC was cleaved into short-chain CMC. A degradation mechanism was proposed whereby the cutting force generated by the rapid motion of the nano-knives may be responsible for the breakage of β-1-4-glycosidic bonds in the macromolecular cellulose backbone. These results provide support for a potentially more affordable and environment-friendly strategy for physical-based decomposition of recalcitrant organic pollutants from aqueous solution without the need of chemical or biological reagents.展开更多
In order to investigate the yielding behavior of the newly developed Ni 3 Al-based intermetallic alloy IC10, yield stresses have been measured in tension and compression with different orientations. The specimens were...In order to investigate the yielding behavior of the newly developed Ni 3 Al-based intermetallic alloy IC10, yield stresses have been measured in tension and compression with different orientations. The specimens were cut from a sheet with different angles inclined from the solidification direction. The inclined angles were taken to be 0 , 22.5 , 45 , 67.5 and 90 . All experiments were conducted at room temperature except for orientation 0 , whose deformation temperatures ranged from 298 to 1273 K. Experimental results show that the yield strength of alloy IC10 has the anomalous behavior which has been observed for other Ll 2 -long-range ordered intermetallic alloys, but it is less pronounced. The abnormalities show the following characteristics: (i) the yield strength increases as the temperature is raised below the peak temperature, (ii) yield strength anisotropy, (iii) tension/compression asymmetry. Compared to Ni 3 Al single crystals, the polycrystalline exhibits some different yielding behaviors which may be due to the high volume fraction of c phase.展开更多
文摘A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom(MDOF) system is approximated by using the modal energy-decomposition. Energybased base shear coefficients are verified by means of both pushover analysis and nonlinear time history(NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.
基金Project (No. 50578099) supported by the National Natural ScienceFoundation of China
文摘This paper presents some methods that the standard acceleration design response spectra derived from the present China code for seismic design of buildings are transformed into the seismic demand spectra, and that the base shear force-roof displacement curve of structure is converted to the capacity spectrum of an equivalent single-degree-of-freedom (SDOF) system. The capacity spectrum method (CSM) is programmed by means of MATLABT.0 computer language. A dual lateral force resisting system of 10-story steel frame-steel plate shear walls (SPSW) is designed according to the corresponding China design codes. The base shear force-roof displacement curve of structure subjected to the monotonic increasing lateral inverse triangular load is obtained by applying the equivalent strip model to stimulate SPSW and by using the finite element analysis software SAP2000 to make Pushover analysis. The seismic performance of this dual system subjected to three different conditions, i.e. the 8-intensity frequently occurred earthquake, fortification earthquake and seldom occurred earthquake, is evaluated by CSM program. The excessive safety of steel frame-SPSW system designed according to the present China design codes is pointed out and a new design method is suggested.
基金supported by the National Natural Science Foundation of China (No. 50074014)
文摘Firm joins were obtained between Ti(C,N)-based cermet and steel with Ag-Cu-Zn-Ni filler metal by vacuum brazing. The effects of technological parameters such as brazing temperature, holding time, and filler thickness on the shear strength of the joints were investigated. The microstructure of welded area and the reaction products of the filler metal were examined by scanning electron microscopy (SEM), metallographic microscope (OM), energy-dispersive X-ray analysis (EDS), and X-ray diffraction (XRD). The brazing temperature of 870℃, holding time of 15 min, and filler thickness of 0.4 mm are a set of optimum technological parameters, under which the maximum shear strength of the joints, 176.5 MPa, is achieved. The results of microstructure show that the wettability of the filler metal on Ti(C,N)-based cermet and steel is well. A mutual solution layer and a diffusion layer exist between the welding base materials and the filler metal.
文摘Effects of the tempering temperature and time on the shear modulus of Fe-Mn based alloys have been studied.The results show that(ΔG/G)-Tcurves of tempered alloys containing Cr and Ti have two extreme values—maximum and minimum,and that the curves of tem- pered alloys containing Cr,Ni,W and C only have a maximum value.This is the reason that Ni,W and C decrease the transformation point T_N of the antiferromagnetism.The ΔG_λ ef- feet increases gradually with the rise of tempering temperature or with the increase of tem- pering time.
基金financially supported by the National Natural Science Foundation of China (Nos. 51101133 and 51101134)the Encouraging Foundation for Outstanding Youth Scientists of Shandong Province, China (No. BS2012CL036)the Shandong Provincial Natural Science Foundation, China (No. ZR2011EL025)
文摘Shear bands in the interior of Pd(79)Cu6Si(10)P5,Pd(79)Cu3Ag3Si(10)P5, and Pd(79)Cu4Au2Si(10)P5 bulk metallic glasses were investigated by optical microscopy(OM) and scanning electron microscopy(SEM). No shear bands can be observed in the samples before etching. By etching in aqua regia solution, shear bands are found to be susceptible to preferential etching, and multiple etched bands could be observed. The thickness of the etched bands is about 1-7 μm. Therefore, the preferentially etched shear bands found in the study are called the "extended" shear bands.The "extended" shear bands can be divided into three classes according to their features: early, developing, and well-developed "extended" shear bands with thickness of about 1, 5, and 7 μm, respectively. The interface between the well-developed "extended" shear bands and the matrix is clearer than that of the others.
文摘Rigid ellipsoidal objects(gravels and porphyroclasts)in ductile zone is an important factor to indicate the kinematics and dynamics.Jeffery’s theory(Jeffery G,1922),a quantitative research method,for the rotation ofthe rigid objects(no deformation)in the Newtonian fluid of the simple deformation field has been widely applied by geologists to the study of fabrics in rocks.The theory
文摘With the increasing demand for lightweight and lower fuel consumption and safety of automobile industry, lightweight materials of high strength steel (HSS) are more and more widely used. The hot stamping technology, which is determined by the inherent mechanical properties of high strength steel, makes molds prone to wear failure in the harsh service environments. In this paper, a finite element model is proposed for analyzing the value and distributions law of friction shear stress of contact surface of the pin disk. Through the simulation process of sliding wear, two kinds of different cladding materials of the pin specimens including H13 and Fe65, were experimented under three different loads by using the software ABAQUS. And then the pin-on- disk wear test at elevated temperature was conducted to verify the effectiveness of the simula-tion results. The results showed that the friction shear stress of pin with iron-based cladding and H13 steel was different under different loads, but the distribution was basically the same;the normal friction shear stress increased gradually along the direction of the pin movement, and the tangential shear stress increased gradually from the center of the pin to the outside of the circle;the value of the friction shear stress of the normal joints on the contact surface was periodically fluctuating in the whole dynamic analysis step, while it was basically stable in the tangential direction.
文摘Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronins company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results shaw that the thickness of interface reaction layer of the nickel- based alloy is 14. 3 μm, which is only 4. 33% of base material. The weld is made up of two phases, α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184. 9 MPa.
基金supported by the National Natural Science Foundation of China (Grant No.50808066)the Scientific Research Foundation for Returned Overseas Chinese Scholars
文摘Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This model also considers the influence of confining pressure. In this paper, the calibration of the model is detailed and numerical simulations of the main mechanical behavior of cement paste over a large range of stress are described, showing good agreement with experimental results. The ease study shows that this cup model has extensive applicability for cement-based materials and other quasi-brittle and high-porosity materials in a complex stress state.
基金the National Natural Science Foundation of China(No.51461031)the State Key Lab of Advanced Metals and Materials(No.2013-Z05)+2 种基金the Department of Education Fund of jiangxi(GJJ150733)the Beijing Natural Science Foundation(No.214200)the Program for Excellent Talents in Beijing Municipality
文摘The lap joints of Fe-based metallic glass ribbons were carried by resistance spot welding, and the microstructures of spot welds were investigated by X-ray diffraction and transmission electron microscopy. The results indicated that the perfect formations of joints without typical defects such as spatter were achieved with optimized parameters. Except for little nano-particle Fe2B, no other crystalline particle was detected by TEM, revealing that the most microstructure in spot weld remains amorphous. The maximum tensile-shearing force was 45.0 N with the optimized parameters of 1 kA weld current, 30 N electrode force and 0.02 ms weld time. The spot weld failed as pullout failure mode propagating along the interface of nugget zone. The study demonstrates that resistance spot welding is an effective and practical welding process for Fe-based metallic glass.
基金supported by the National Natural Science Foundation of China (Nos. 51771148, 51331005, 51631008 and 51690163)the National Key Research and Development Program (Nos. 2016YFB0701400 and 2017YFB0702902)Fundamental Research Funds for the Central Universities (Nos. 3102017ZY054 and 3102018jcc009)
文摘Elevated temperature creep behaviors at 1100℃ over a wide stress regime of 120-174 MPa of a thirdgeneration Ni-based single crystal superalloy were studied. With a reduced stress from 174 to 120 MPa, the creep life increased by a factor of 10.5, from 87 h to 907 h, presenting a strong stress dependence. A splitting phenomenon of the close-(about 100 nm) and sparse-(above 120 nm) spaced dislocation networks became more obvious with increasing stress. Simultaneously, ao<010> superdislocations with low mobil让ies were frequently observed under a lower stress to pass through γ precipitates by a combined slip and climb of two ao<110> superpartials or pure climb. However, ao<110> superdislocations with higher mobility were widely found under a higher stress, which directly sheared into y precipitates. Based on the calculated critical resolved shear stresses for various creep mechanisms, the favorable creep mechanism was systematically analyzed. Furthermore, combined with the microstructural evolutions during different creep stages, the dominant creep mechanism changed from the dislocation climbing to Orowan looping and precipitates shearing under a stress regime of 137-174MPa, while the dislocation dim bing mechanism was operative throughout the whole creep stage un der a stress of 120 MPa, resulting a superior creep performanee.
基金supported by One Thousand Talents Scheme of China, the National Natural Science Foundation of China(No. 50808066)the Fundamental Research Funds for the Central Universities of China (No. 2009B14814)
文摘The aim of this study is to describe the main behavior of cement-based materials under large compression state based on the recent experimental research. In this paper, the strainstress relations are firstly analyzed and confining pressure state is regarded as low/medium/high state. A generalized cup modeling is introduced by a coupled deviatoric shearing, pore collapse and damage mechanism within thermodynamic framework. A series of numerical simulations are performed for the considered cement paste and concrete. Comparisons between numerical predictions and experimental results show that the proposed model is able to describe the main features of mechanical behavior under large range of compression state.
文摘Guwahati, the major city in the North Eastern region of India is growing rapidly in every aspect with major infrastructures like sports complex, educational institutions, hospitals, flyovers, multiplex halls, etc. Knowledge of the subsurface soil condition is necessary to ensure the structural safety and serviceability of the above mentioned structures before any construction. Therefore, contour maps of Standard penetration test N value, ground water table and shear wave velocity map using Geographical Information System (GIS) platform will be of great help to the foundation designers at the initial stage for site selection and preliminary foundation design under static and seismic condition. Contour maps of Standard penetration test N value at different depth and average contour map of N value of Guwahati city have been prepared. Standard penetration Test N values and depth of water table were taken from a data base of 200 boreholes up to 30 meter depth to prepare N value contour map of Guwahati city. A regression equation between shear wave velocity V<sub>s</sub> and Standard penetration test N value based on twenty seven previous similar correlations was also developed. This regression equation was used to determine shear wave velocity of Guwahati city. The average shear wave velocities for 30 m depth for all locations had been determined and used to generate map on (GIS) platform. Other subsurface geotechnical information of Guwahati city like soil classification and depth to water level from ground surface is also presented in the form of GIS based maps in order to form a data base.
基金supported by the National Natural Science Foundation of China (Nos. 21277161, 41573114)the National Key Research and Development Program of China (No. 2017YFA0207204)
文摘The traditional degradation of organic pollutants is based on the sacrifice of chemical or biological reagents. In this study, a purely physical technique was developed to break the chemical bonds and consequently decompose macromolecules in aqueous solution. Assisted with a high-speed mechanical blade, refined quartz sand grains with particularly sharp nanoscale edges can act as ‘nano-knives', which are able to cut the long chain of carboxymethyl cellulose(CMC, as a model molecule). High performance size exclusion chromatography measurements evidenced that the original CMC molecules(41,000 Da) were decomposed into a series of smaller molecules(460, 1000, 2200, 21,000, 27,000 and 31,000 Da). Consequently, the initial viscosity of the CMC solution(2 g/L) rapidly decreased by approximately 50% after 3 min treatment by the nano-knife materials along with the mechanical blade. Fourier transform infrared(FTIR) spectra indicated that the original functional groups were still present and new functional groups were not produced after shearing. The intensity of the main functional groupβ-1-4-glycosidic bond(wavenumber 1062 cm-1) was observed to markedly decrease after shearing. These results indicated that the long-chain CMC was cleaved into short-chain CMC. A degradation mechanism was proposed whereby the cutting force generated by the rapid motion of the nano-knives may be responsible for the breakage of β-1-4-glycosidic bonds in the macromolecular cellulose backbone. These results provide support for a potentially more affordable and environment-friendly strategy for physical-based decomposition of recalcitrant organic pollutants from aqueous solution without the need of chemical or biological reagents.
文摘In order to investigate the yielding behavior of the newly developed Ni 3 Al-based intermetallic alloy IC10, yield stresses have been measured in tension and compression with different orientations. The specimens were cut from a sheet with different angles inclined from the solidification direction. The inclined angles were taken to be 0 , 22.5 , 45 , 67.5 and 90 . All experiments were conducted at room temperature except for orientation 0 , whose deformation temperatures ranged from 298 to 1273 K. Experimental results show that the yield strength of alloy IC10 has the anomalous behavior which has been observed for other Ll 2 -long-range ordered intermetallic alloys, but it is less pronounced. The abnormalities show the following characteristics: (i) the yield strength increases as the temperature is raised below the peak temperature, (ii) yield strength anisotropy, (iii) tension/compression asymmetry. Compared to Ni 3 Al single crystals, the polycrystalline exhibits some different yielding behaviors which may be due to the high volume fraction of c phase.