[Objective] This paper aims to construct an improved fuzzy decision tree which is based on clustering,and researches into its application in the screening of maize germplasm.[Method] A new decision tree algorithm base...[Objective] This paper aims to construct an improved fuzzy decision tree which is based on clustering,and researches into its application in the screening of maize germplasm.[Method] A new decision tree algorithm based upon clustering is adopted in this paper,which is improved against the defect that traditional decision tree algorithm fails to handle samples of no classes.Meanwhile,the improved algorithm is also applied to the screening of maize varieties.Through the indices as leaf area,plant height,dry weight,potassium(K) utilization and others,maize seeds with strong tolerance of hypokalemic are filtered out.[Result] The algorithm in the screening of maize germplasm has great applicability and good performance.[Conclusion] In the future more efforts should be made to compare improved the performance of fuzzy decision tree based upon clustering with the performance of traditional fuzzy one,and it should be applied into more realistic problems.展开更多
The idea of cooperation and the clustering amongst cognitive radios(CRs) has recently been focus of attention of research community, owing to its potential to improve performance of spectrum sensing(SS) schemes. This ...The idea of cooperation and the clustering amongst cognitive radios(CRs) has recently been focus of attention of research community, owing to its potential to improve performance of spectrum sensing(SS) schemes. This focus has led to the paradigm of cluster based cooperative spectrum sensing(CBCSS). In perspective of high date rate 4th generation wireless systems, which are characterized by orthogonal frequency division multiplexing(OFDM) and spatial diversity, there is a need to devise effective SS strategies. A novel CBCSS scheme is proposed for OFDM subcarrier detection in order to enable the non-contiguous OFDM(NC-OFDM) at the physical layer of CRs for efficient utilization of spectrum holes. Proposed scheme is based on the energy detection in MIMO CR network, using equal gain combiner as diversity combining technique, hard combining(AND, OR and Majority) rule as data fusion technique and antenna diversity based weighted clustering as virtual sub clustering algorithm. Results of proposed CBCSS are compared with conventional CBCSS scheme for AND, OR and Majority data fusion rules. Moreover the effects of antenna diversity, cooperation and cooperating clusters are also discussed.展开更多
Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of c...Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of coin-tap are classified through the grey clustering based on relation analysis,and corresponding improvements are made to the calculation method of the relation degree of nearness.First,the time history of acceleration is taken as the system behavior sequence.The improved correlation calculation method is used to solve the relation degree of nearness between the sequences,and the matrix of degree of grey relation is constructed based on this.Then,the sequence groups are summarized through the matrix,and the response signals of coin-tap are qualitatively classified according to the location of the reference sequence.Finally,the defect detection of composite materials is completed without pre-testing.The test results show that the accuracy of the coin-tap test based on improved grey clustering reaches 100%,which simplifies the operation steps while ensuring the reliability of the coin-tap test results.展开更多
Wireless sensor network(WSN)includes a set of self-organizing and homogenous nodes employed for data collection and tracking applications.It comprises a massive set of nodes with restricted energy and processing abili...Wireless sensor network(WSN)includes a set of self-organizing and homogenous nodes employed for data collection and tracking applications.It comprises a massive set of nodes with restricted energy and processing abilities.Energy dissipation is a major concern involved in the design of WSN.Clustering and routing protocols are considered effective ways to reduce the quantity of energy dissipation using metaheuristic algorithms.In order to design an energy aware cluster-based route planning scheme,this study introduces a novel Honey Badger Based Clustering with African Vulture Optimization based Routing(HBAC-AVOR)protocol for WSN.The presented HBAC-AVOR model mainly aims to cluster the nodes in WSN effectually and organize the routes in an energy-efficient way.The presented HBAC-AVOR model follows a two stage process.At the initial stage,the HBAC technique is exploited to choose an opti-mal set of cluster heads(CHs)utilizing afitness function involving many input parameters.Next,the AVOR approach was executed for determining the optimal routes to BS and thereby lengthens the lifetime of WSN.A detailed simulation analysis was executed to highlight the increased outcomes of the HBAC-AVOR protocol.On comparing with existing techniques,the HBAC-AVOR model has outperformed existing techniques with maximum lifetime.展开更多
The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based t...The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based techniques with Self-Organizing Maps.展开更多
A modified DBSCAN algorithm is presented for deinterleaving of radar pulses in modern EW environments.A main characteristic of the proposed method is that using only time of arrival of pulses,the method can sort the p...A modified DBSCAN algorithm is presented for deinterleaving of radar pulses in modern EW environments.A main characteristic of the proposed method is that using only time of arrival of pulses,the method can sort the pulses efficiently.Other PDW information such as rise time,carrier frequency,pulse width,modulation on pulse,fall time and direction of arrival are not required.To identify the valid PRIs in a set of interleaved pulses,an innovative modification of the DBSCAN algorithm is introduced which is accurate and easy to implement.The proposed method determines valid PRIs more accurately and neglects the spurious ones more efficiently as compared to the classical histogram based algorithms such as SDIF.Furthermore,without specifying any input parameter,the proposed method can deinterleave radar pulses while up to 30%jitter is present in the associated PRI.The accuracy and efficiency of the proposed method are verified by computer simulations and real data results.Experimental simulations are based on different real and operational scenarios where the presence of missing and spurious pulses are also considered.So,the simulation results can be of practical significance.展开更多
The density based notion for clustering approach is used widely due to its easy implementation and ability to detect arbitrary shaped clusters in the presence of noisy data points without requiring prior knowledge of ...The density based notion for clustering approach is used widely due to its easy implementation and ability to detect arbitrary shaped clusters in the presence of noisy data points without requiring prior knowledge of the number of clusters to be identified. Density-based spatial clustering of applications with noise (DBSCAN) is the first algorithm proposed in the literature that uses density based notion for cluster detection. Since most of the real data set, today contains feature space of adjacent nested clusters, clearly DBSCAN is not suitable to detect variable adjacent density clusters due to the use of global density parameter neighborhood radius Y,.ad and minimum number of points in neighborhood Np~,. So the efficiency of DBSCAN depends on these initial parameter settings, for DBSCAN to work properly, the neighborhood radius must be less than the distance between two clusters otherwise algorithm merges two clusters and detects them as a single cluster. Through this paper: 1) We have proposed improved version of DBSCAN algorithm to detect clusters of varying density adjacent clusters by using the concept of neighborhood difference and using the notion of density based approach without introducing much additional computational complexity to original DBSCAN algorithm. 2) We validated our experimental results using one of our authors recently proposed space density indexing (SDI) internal cluster measure to demonstrate the quality of proposed clustering method. Also our experimental results suggested that proposed method is effective in detecting variable density adjacent nested clusters.展开更多
A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also fa...A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).展开更多
We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is ...We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is deter- mined to be a Si 170 cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300meV, which is a result of the large capacitance of a small silicon quantum dot (-1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the g factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.展开更多
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien...Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.展开更多
Objective: to explore the preventive effect of evidence-based cluster nursing intervention on stress injury of critical neonates in NICU. Methods: after the approval of the hospital ethics committee, 40 critically ill...Objective: to explore the preventive effect of evidence-based cluster nursing intervention on stress injury of critical neonates in NICU. Methods: after the approval of the hospital ethics committee, 40 critically ill newborns admitted to NICU from January 2020 to January 2022 were selected as the research objects, and randomly divided into two groups (n20). The conventional nursing was applied to the control group, and the evidence-based cluster nursing was applied to the observation group. The nursing effects of the two groups were compared and analyzed from the aspects of the occurrence of stress injuries of children, nursing outcomes and the survey results of family members satisfaction with nursing. Results: compared with the control group, the incidence of stress injury in the observation group was lower, and the observation group had a longer time from hospital admission to stress injury, a shorter hospital stay, a higher cure rate, and a higher total nursing satisfaction, with statistical significance (P<0.05). Conclusion: in the process of monitoring and treatment of critical neonates in NICU, stress injury is easy to occur. Once it happens, it will directly affect the prognosis, increase the probability of poor prognosis, prolong the treatment time, and increase the related expenses. Cluster nursing based on evidence can effectively control the stress injury, and then promote the rapid recovery of children.展开更多
In an Underwater Wireless Sensor Network(UWSN),extreme energy loss is carried out by the early expiration of sensor nodes and causes a reduction in efficiency in the submerged acoustic sensor system.Systems based on c...In an Underwater Wireless Sensor Network(UWSN),extreme energy loss is carried out by the early expiration of sensor nodes and causes a reduction in efficiency in the submerged acoustic sensor system.Systems based on clustering strategies,instead of each node sending information by itself,utilize cluster heads to collect information inside the clusters for forwarding collective information to sink.This can effectively minimize the total energy loss during transmission.The environment of UWSN is 3D architecture-based and follows a complex hierarchical clustering strategy involving its most effecting unique parameters such as propagation delay and limited transmission bandwidth.Round base clustering strategy works in rounds,where each round comprises three fundamental stages:cluster head selection,grouping or node association,and data aggregation followed by forwarding data to the sink.In UWSN,the energy consumed during the formation of clusters has been considered casually or completely evaded in the previous works.In this paper,the cluster head setup period has been considered the main contributor to extra energy utilizer.A numerical channel model is proposed to compute extra energy.It is performed by using a UWSN broad model.The results have shown that extra maximum energy consumption is approximately 12.9 percent of the system total energy consumed in information transmissions.展开更多
Density based clustering algorithms(DBCLAs)rely on the notion of density to identify clusters of arbitrary shapes,sizes with varying densities.Existing surveys on DB-CLAs cover only a selected set of algorithms.These ...Density based clustering algorithms(DBCLAs)rely on the notion of density to identify clusters of arbitrary shapes,sizes with varying densities.Existing surveys on DB-CLAs cover only a selected set of algorithms.These surveys fail to provide an extensive information about a variety of DBCLAs proposed till date including a taxonomy of the algorithms.In this paper we present a comprehensive survey of various DB-CLAS over last two decades along with their classification.We group the DBCLAs in each of the four categories:density definition,parameter sensitivity,execution mode and nature of*data and further divide them into various classes under each of these categories.In addition,we compare the DBCLAs through their common features and variations in citation and conceptual dependencies.We identify various application areas of DBCLAS in domains such as astronomy,earth sciences,molecular biology,geography,multimedia.Our survey also identifies probable future directions of DBCLAs where involvement of density based methods may lead to favorable results.展开更多
This paper exposes some intrlnsic chsracterlstlca of the spectral clustering method by using the tools from the mstrlx perturbation theory. We construct s welght mstrix of s graph and study Its elgenvalues and elgenve...This paper exposes some intrlnsic chsracterlstlca of the spectral clustering method by using the tools from the mstrlx perturbation theory. We construct s welght mstrix of s graph and study Its elgenvalues and elgenvectors. It shows that the number of clusters Is equal to the number of elgenvslues that are larger than 1, and the number of polnts In each of the clusters can be spproxlmsted by the associated elgenvslue. It also shows that the elgenvector of the weight rnatrlx can be used dlrectly to perform clusterlng; that Is, the dlrectlonsl angle between the two-row vectors of the mstrlx derlved from the elgenvectors Is s sultable distance measure for clustsrlng. As s result, an unsupervised spectral clusterlng slgorlthm based on welght mstrlx (USCAWM) Is developed. The experlmental results on s number of srtlficisl and real-world data sets show the correctness of the theoretical analysis.展开更多
Brain cancer is the premier reason for cancer deaths all over the world.The diagnosis of brain cancer at an initial stage is mediocre,as the radiologist is ineffectual.Different experiments have been conducted and dem...Brain cancer is the premier reason for cancer deaths all over the world.The diagnosis of brain cancer at an initial stage is mediocre,as the radiologist is ineffectual.Different experiments have been conducted and demonstrated clearly that the algorithms for nodule segmentation are unsuccessful.Therefore,the research has consolidated incremental clustering focused on superpixel segmentation as an appropriate optimization approach for the accurate segmentation of pulmonary nodules.The key aim of the research is to refine brain CT images to accurately distinguish tumors and the segmentation of small-scale anomalous nodules in the brain region.In the beginning stage,an anisotropic diffusion filters(ADF)method with un-sharp intensification masking is utilized to eliminate the noise discernment in images.In the following stage,within the improved nodule image sequence,a Superpixel Segmentation Based Iterative Clustering(SSBIC)algorithm is proposed for irregular brain tissue prediction.Subsequently,the brain nodule samples are captured using deep learning methods:Advanced Grey Wolf Optimization(AGWO)with ONN(AGWO-ONN)and Advanced GWO with CNN-based(AGWOCNN).The proposed technique indicates that the sensitivity is increased and the calculation time is decreased.Consequently,the proposed methodology manifests that the advanced Computer-Assisted Diagnosis(CAD)system has outstanding potential for automatic brain tumor diagnosis.The average segmentation time of the nodule slice order is 1.06s,and 97%of AGWO-ONN and 97.6%of AGWO-CNN achieve the best classification reliability.展开更多
Process safety in chemical industries is considered to be one of the important goals towards sustainable development.This is due to the fact that,major accidents still occur and continue to exert significant reputatio...Process safety in chemical industries is considered to be one of the important goals towards sustainable development.This is due to the fact that,major accidents still occur and continue to exert significant reputational and financial impacts on process industries.Alarm systems constitute an indispensable component of automation as they draw the attention of process operators to any abnormal conditi on in the plant.Therefore,if deployed properly,alarm systems can play a critical role in helping plant operators ensure process safety and profitability.How-ever,in practice,many process plants suffer from poor alarm system configuration which leads to nuisance alarms and alarm floods that compromise safety.A vast amount of research has primarily focused on developing sophisticated alarm management algorithms to address specific issues.In this article,we provide a simple,practical,systematic approach that can be applied by plant engineers(i.e.,non-experts)to improve industrial alarm system performance.The proposed approach is demonstrated using an industrial power plant case study.展开更多
The desire to deliver measured amount of insulin continuously to patients with type I diabetes, for glycemic control, has attracted a lot of attention. Continuous subcutaneous insulin infusion has seen some success in...The desire to deliver measured amount of insulin continuously to patients with type I diabetes, for glycemic control, has attracted a lot of attention. Continuous subcutaneous insulin infusion has seen some success in recent years. However, occlusion of insulin delivery may prevent the patient from receiving the prescribed dosage, with adverse consequence. An in vitro study of insulin delivery is performed, using different insulin pumps, insulin analogs and operating conditions. The aim is to identify incidences of occlusion due to bubble formation in the infusion line. A detailed statistical analysis was performed on the data collected to determine any significant differences and deviations in insulin delivery rates that might be due to factors such as: pump type, the set basal flow rate, insulin type, vibration, and possible insulin occlusion due to air bubble formation within the infusion line. Our findings from the Graeco-Latin Square design model show that there are statistical differences due to the devices, and statistical identifiable clusters are used to distinguish the devices. Such hierarchical models used to describe the analyses, include the flow rate, the pump types, and the activity level.展开更多
Mixture regression is a regression problem with mixed data. Specifically, in the observations, some data are from one model, while others from other models. Only after assuming the quantity of the model is given, EM o...Mixture regression is a regression problem with mixed data. Specifically, in the observations, some data are from one model, while others from other models. Only after assuming the quantity of the model is given, EM or other algorithms can be used to solve this problem. We propose an information criterion for mixture regression model in this paper. Compared to ordinary information citizen by data simulations, results show our citizen has better performance on choosing the correct quantity of models.展开更多
In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the c...In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the center of attraction will be the nodes’ lifetime enhancement and routing. In the scenario of cluster based WSN, multi-hop mode of communication reduces the communication cast by increasing average delay and also increases the routing overhead. In this proposed scheme, two ideas are introduced to overcome the delay and routing overhead. To achieve the higher degree in the lifetime of the nodes, the residual energy (remaining energy) of the nodes for multi-hop node choice is taken into consideration first. Then the modification in the routing protocol is evolved (Multi-Hop Dynamic Path-Selection Algorithm—MHDP). A dynamic path updating is initiated in frequent interval based on nodes residual energy to avoid the data loss due to path extrication and also to avoid the early dying of nodes due to elevation of data forwarding. The proposed method improves network’s lifetime significantly. The diminution in the average delay and increment in the lifetime of network are also accomplished. The MHDP offers 50% delay lesser than clustering. The average residual energy is 20% higher than clustering and 10% higher than multi-hop clustering. The proposed method improves network lifetime by 40% than clustering and 30% than multi-hop clustering which is considerably much better than the preceding methods.展开更多
文摘[Objective] This paper aims to construct an improved fuzzy decision tree which is based on clustering,and researches into its application in the screening of maize germplasm.[Method] A new decision tree algorithm based upon clustering is adopted in this paper,which is improved against the defect that traditional decision tree algorithm fails to handle samples of no classes.Meanwhile,the improved algorithm is also applied to the screening of maize varieties.Through the indices as leaf area,plant height,dry weight,potassium(K) utilization and others,maize seeds with strong tolerance of hypokalemic are filtered out.[Result] The algorithm in the screening of maize germplasm has great applicability and good performance.[Conclusion] In the future more efforts should be made to compare improved the performance of fuzzy decision tree based upon clustering with the performance of traditional fuzzy one,and it should be applied into more realistic problems.
文摘The idea of cooperation and the clustering amongst cognitive radios(CRs) has recently been focus of attention of research community, owing to its potential to improve performance of spectrum sensing(SS) schemes. This focus has led to the paradigm of cluster based cooperative spectrum sensing(CBCSS). In perspective of high date rate 4th generation wireless systems, which are characterized by orthogonal frequency division multiplexing(OFDM) and spatial diversity, there is a need to devise effective SS strategies. A novel CBCSS scheme is proposed for OFDM subcarrier detection in order to enable the non-contiguous OFDM(NC-OFDM) at the physical layer of CRs for efficient utilization of spectrum holes. Proposed scheme is based on the energy detection in MIMO CR network, using equal gain combiner as diversity combining technique, hard combining(AND, OR and Majority) rule as data fusion technique and antenna diversity based weighted clustering as virtual sub clustering algorithm. Results of proposed CBCSS are compared with conventional CBCSS scheme for AND, OR and Majority data fusion rules. Moreover the effects of antenna diversity, cooperation and cooperating clusters are also discussed.
基金National Key Research and Development Project of China(No.2018YFB1701200)。
文摘Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of coin-tap are classified through the grey clustering based on relation analysis,and corresponding improvements are made to the calculation method of the relation degree of nearness.First,the time history of acceleration is taken as the system behavior sequence.The improved correlation calculation method is used to solve the relation degree of nearness between the sequences,and the matrix of degree of grey relation is constructed based on this.Then,the sequence groups are summarized through the matrix,and the response signals of coin-tap are qualitatively classified according to the location of the reference sequence.Finally,the defect detection of composite materials is completed without pre-testing.The test results show that the accuracy of the coin-tap test based on improved grey clustering reaches 100%,which simplifies the operation steps while ensuring the reliability of the coin-tap test results.
文摘Wireless sensor network(WSN)includes a set of self-organizing and homogenous nodes employed for data collection and tracking applications.It comprises a massive set of nodes with restricted energy and processing abilities.Energy dissipation is a major concern involved in the design of WSN.Clustering and routing protocols are considered effective ways to reduce the quantity of energy dissipation using metaheuristic algorithms.In order to design an energy aware cluster-based route planning scheme,this study introduces a novel Honey Badger Based Clustering with African Vulture Optimization based Routing(HBAC-AVOR)protocol for WSN.The presented HBAC-AVOR model mainly aims to cluster the nodes in WSN effectually and organize the routes in an energy-efficient way.The presented HBAC-AVOR model follows a two stage process.At the initial stage,the HBAC technique is exploited to choose an opti-mal set of cluster heads(CHs)utilizing afitness function involving many input parameters.Next,the AVOR approach was executed for determining the optimal routes to BS and thereby lengthens the lifetime of WSN.A detailed simulation analysis was executed to highlight the increased outcomes of the HBAC-AVOR protocol.On comparing with existing techniques,the HBAC-AVOR model has outperformed existing techniques with maximum lifetime.
文摘The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based techniques with Self-Organizing Maps.
文摘A modified DBSCAN algorithm is presented for deinterleaving of radar pulses in modern EW environments.A main characteristic of the proposed method is that using only time of arrival of pulses,the method can sort the pulses efficiently.Other PDW information such as rise time,carrier frequency,pulse width,modulation on pulse,fall time and direction of arrival are not required.To identify the valid PRIs in a set of interleaved pulses,an innovative modification of the DBSCAN algorithm is introduced which is accurate and easy to implement.The proposed method determines valid PRIs more accurately and neglects the spurious ones more efficiently as compared to the classical histogram based algorithms such as SDIF.Furthermore,without specifying any input parameter,the proposed method can deinterleave radar pulses while up to 30%jitter is present in the associated PRI.The accuracy and efficiency of the proposed method are verified by computer simulations and real data results.Experimental simulations are based on different real and operational scenarios where the presence of missing and spurious pulses are also considered.So,the simulation results can be of practical significance.
文摘The density based notion for clustering approach is used widely due to its easy implementation and ability to detect arbitrary shaped clusters in the presence of noisy data points without requiring prior knowledge of the number of clusters to be identified. Density-based spatial clustering of applications with noise (DBSCAN) is the first algorithm proposed in the literature that uses density based notion for cluster detection. Since most of the real data set, today contains feature space of adjacent nested clusters, clearly DBSCAN is not suitable to detect variable adjacent density clusters due to the use of global density parameter neighborhood radius Y,.ad and minimum number of points in neighborhood Np~,. So the efficiency of DBSCAN depends on these initial parameter settings, for DBSCAN to work properly, the neighborhood radius must be less than the distance between two clusters otherwise algorithm merges two clusters and detects them as a single cluster. Through this paper: 1) We have proposed improved version of DBSCAN algorithm to detect clusters of varying density adjacent clusters by using the concept of neighborhood difference and using the notion of density based approach without introducing much additional computational complexity to original DBSCAN algorithm. 2) We validated our experimental results using one of our authors recently proposed space density indexing (SDI) internal cluster measure to demonstrate the quality of proposed clustering method. Also our experimental results suggested that proposed method is effective in detecting variable density adjacent nested clusters.
基金Supported by the National Natural Science Foundation of China(61103157)
文摘A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFA0303200the National Natural Science Foundation of China under Grant Nos U1732273,U1732159,91421109,91622115,11522432,11574217 and 61774133the Natural Science Foundation of Jiangsu Province under Grant No BK20160659
文摘We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is deter- mined to be a Si 170 cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300meV, which is a result of the large capacitance of a small silicon quantum dot (-1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the g factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.
文摘Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.
文摘Objective: to explore the preventive effect of evidence-based cluster nursing intervention on stress injury of critical neonates in NICU. Methods: after the approval of the hospital ethics committee, 40 critically ill newborns admitted to NICU from January 2020 to January 2022 were selected as the research objects, and randomly divided into two groups (n20). The conventional nursing was applied to the control group, and the evidence-based cluster nursing was applied to the observation group. The nursing effects of the two groups were compared and analyzed from the aspects of the occurrence of stress injuries of children, nursing outcomes and the survey results of family members satisfaction with nursing. Results: compared with the control group, the incidence of stress injury in the observation group was lower, and the observation group had a longer time from hospital admission to stress injury, a shorter hospital stay, a higher cure rate, and a higher total nursing satisfaction, with statistical significance (P<0.05). Conclusion: in the process of monitoring and treatment of critical neonates in NICU, stress injury is easy to occur. Once it happens, it will directly affect the prognosis, increase the probability of poor prognosis, prolong the treatment time, and increase the related expenses. Cluster nursing based on evidence can effectively control the stress injury, and then promote the rapid recovery of children.
文摘In an Underwater Wireless Sensor Network(UWSN),extreme energy loss is carried out by the early expiration of sensor nodes and causes a reduction in efficiency in the submerged acoustic sensor system.Systems based on clustering strategies,instead of each node sending information by itself,utilize cluster heads to collect information inside the clusters for forwarding collective information to sink.This can effectively minimize the total energy loss during transmission.The environment of UWSN is 3D architecture-based and follows a complex hierarchical clustering strategy involving its most effecting unique parameters such as propagation delay and limited transmission bandwidth.Round base clustering strategy works in rounds,where each round comprises three fundamental stages:cluster head selection,grouping or node association,and data aggregation followed by forwarding data to the sink.In UWSN,the energy consumed during the formation of clusters has been considered casually or completely evaded in the previous works.In this paper,the cluster head setup period has been considered the main contributor to extra energy utilizer.A numerical channel model is proposed to compute extra energy.It is performed by using a UWSN broad model.The results have shown that extra maximum energy consumption is approximately 12.9 percent of the system total energy consumed in information transmissions.
文摘Density based clustering algorithms(DBCLAs)rely on the notion of density to identify clusters of arbitrary shapes,sizes with varying densities.Existing surveys on DB-CLAs cover only a selected set of algorithms.These surveys fail to provide an extensive information about a variety of DBCLAs proposed till date including a taxonomy of the algorithms.In this paper we present a comprehensive survey of various DB-CLAS over last two decades along with their classification.We group the DBCLAs in each of the four categories:density definition,parameter sensitivity,execution mode and nature of*data and further divide them into various classes under each of these categories.In addition,we compare the DBCLAs through their common features and variations in citation and conceptual dependencies.We identify various application areas of DBCLAS in domains such as astronomy,earth sciences,molecular biology,geography,multimedia.Our survey also identifies probable future directions of DBCLAs where involvement of density based methods may lead to favorable results.
基金Supported by the National Natural Science Foundation of China (Grant No. 60375003)the Aeronatical Science Foundation of China (Grant No. 03I53059)
文摘This paper exposes some intrlnsic chsracterlstlca of the spectral clustering method by using the tools from the mstrlx perturbation theory. We construct s welght mstrix of s graph and study Its elgenvalues and elgenvectors. It shows that the number of clusters Is equal to the number of elgenvslues that are larger than 1, and the number of polnts In each of the clusters can be spproxlmsted by the associated elgenvslue. It also shows that the elgenvector of the weight rnatrlx can be used dlrectly to perform clusterlng; that Is, the dlrectlonsl angle between the two-row vectors of the mstrlx derlved from the elgenvectors Is s sultable distance measure for clustsrlng. As s result, an unsupervised spectral clusterlng slgorlthm based on welght mstrlx (USCAWM) Is developed. The experlmental results on s number of srtlficisl and real-world data sets show the correctness of the theoretical analysis.
文摘Brain cancer is the premier reason for cancer deaths all over the world.The diagnosis of brain cancer at an initial stage is mediocre,as the radiologist is ineffectual.Different experiments have been conducted and demonstrated clearly that the algorithms for nodule segmentation are unsuccessful.Therefore,the research has consolidated incremental clustering focused on superpixel segmentation as an appropriate optimization approach for the accurate segmentation of pulmonary nodules.The key aim of the research is to refine brain CT images to accurately distinguish tumors and the segmentation of small-scale anomalous nodules in the brain region.In the beginning stage,an anisotropic diffusion filters(ADF)method with un-sharp intensification masking is utilized to eliminate the noise discernment in images.In the following stage,within the improved nodule image sequence,a Superpixel Segmentation Based Iterative Clustering(SSBIC)algorithm is proposed for irregular brain tissue prediction.Subsequently,the brain nodule samples are captured using deep learning methods:Advanced Grey Wolf Optimization(AGWO)with ONN(AGWO-ONN)and Advanced GWO with CNN-based(AGWOCNN).The proposed technique indicates that the sensitivity is increased and the calculation time is decreased.Consequently,the proposed methodology manifests that the advanced Computer-Assisted Diagnosis(CAD)system has outstanding potential for automatic brain tumor diagnosis.The average segmentation time of the nodule slice order is 1.06s,and 97%of AGWO-ONN and 97.6%of AGWO-CNN achieve the best classification reliability.
文摘Process safety in chemical industries is considered to be one of the important goals towards sustainable development.This is due to the fact that,major accidents still occur and continue to exert significant reputational and financial impacts on process industries.Alarm systems constitute an indispensable component of automation as they draw the attention of process operators to any abnormal conditi on in the plant.Therefore,if deployed properly,alarm systems can play a critical role in helping plant operators ensure process safety and profitability.How-ever,in practice,many process plants suffer from poor alarm system configuration which leads to nuisance alarms and alarm floods that compromise safety.A vast amount of research has primarily focused on developing sophisticated alarm management algorithms to address specific issues.In this article,we provide a simple,practical,systematic approach that can be applied by plant engineers(i.e.,non-experts)to improve industrial alarm system performance.The proposed approach is demonstrated using an industrial power plant case study.
文摘The desire to deliver measured amount of insulin continuously to patients with type I diabetes, for glycemic control, has attracted a lot of attention. Continuous subcutaneous insulin infusion has seen some success in recent years. However, occlusion of insulin delivery may prevent the patient from receiving the prescribed dosage, with adverse consequence. An in vitro study of insulin delivery is performed, using different insulin pumps, insulin analogs and operating conditions. The aim is to identify incidences of occlusion due to bubble formation in the infusion line. A detailed statistical analysis was performed on the data collected to determine any significant differences and deviations in insulin delivery rates that might be due to factors such as: pump type, the set basal flow rate, insulin type, vibration, and possible insulin occlusion due to air bubble formation within the infusion line. Our findings from the Graeco-Latin Square design model show that there are statistical differences due to the devices, and statistical identifiable clusters are used to distinguish the devices. Such hierarchical models used to describe the analyses, include the flow rate, the pump types, and the activity level.
文摘Mixture regression is a regression problem with mixed data. Specifically, in the observations, some data are from one model, while others from other models. Only after assuming the quantity of the model is given, EM or other algorithms can be used to solve this problem. We propose an information criterion for mixture regression model in this paper. Compared to ordinary information citizen by data simulations, results show our citizen has better performance on choosing the correct quantity of models.
文摘In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the center of attraction will be the nodes’ lifetime enhancement and routing. In the scenario of cluster based WSN, multi-hop mode of communication reduces the communication cast by increasing average delay and also increases the routing overhead. In this proposed scheme, two ideas are introduced to overcome the delay and routing overhead. To achieve the higher degree in the lifetime of the nodes, the residual energy (remaining energy) of the nodes for multi-hop node choice is taken into consideration first. Then the modification in the routing protocol is evolved (Multi-Hop Dynamic Path-Selection Algorithm—MHDP). A dynamic path updating is initiated in frequent interval based on nodes residual energy to avoid the data loss due to path extrication and also to avoid the early dying of nodes due to elevation of data forwarding. The proposed method improves network’s lifetime significantly. The diminution in the average delay and increment in the lifetime of network are also accomplished. The MHDP offers 50% delay lesser than clustering. The average residual energy is 20% higher than clustering and 10% higher than multi-hop clustering. The proposed method improves network lifetime by 40% than clustering and 30% than multi-hop clustering which is considerably much better than the preceding methods.