By applying continuity and boundary conditions, the reflection and transmission coefficients of one- dimensional time-independent Schr6dinger equation with a symmetric barrier-type shifted Deng-Fan potential are ob- t...By applying continuity and boundary conditions, the reflection and transmission coefficients of one- dimensional time-independent Schr6dinger equation with a symmetric barrier-type shifted Deng-Fan potential are ob- tained and discussed. The numerical and graphical results are very sufficient, accurate and consistent with the conser- vation of probability.展开更多
The transition of the barrier-type thyristor (BTH) from blocking to conducting-state occurs between two entirely contrary physical states with great disparity in nature. The physical effects and mechanisms of the tr...The transition of the barrier-type thyristor (BTH) from blocking to conducting-state occurs between two entirely contrary physical states with great disparity in nature. The physical effects and mechanisms of the transition are studied in depth. The features of the transition snapback point are analyzed in detail. The transition snapback point has duality and is just the position where the barrier is flattened. It has a significant influence on the capture crosssection of the hole and high-level hole lifetime, resulting in the device entering into deep base conductance modulation. The physical nature of the negative differential resistance segment I-V characteristics is studied. It is testified by using experimental data that the deep conductance modulation is the basic feature and the linchpin of the transition process. The conditions and physical mechanisms of conductance modulation are investigated. The related physical subjects, including the flattening of the channel barrier, the buildup of the double injection, the formation of the plasma, the realization of the high-level injection, the elimination of the gate junction depletion region, the deep conductance modulation, and the increase in the hole's lifetime are all discussed in this paper.展开更多
A brand new and feasible method for measuring the carrier lifetime and capture cross-section of a barrier by using the negative resistance segment of the I-V characteristics of a barrier-type thyristor(BTH) is put f...A brand new and feasible method for measuring the carrier lifetime and capture cross-section of a barrier by using the negative resistance segment of the I-V characteristics of a barrier-type thyristor(BTH) is put forward.The measuring principle and calculation method are given.The BTH samples are experimentally measured and the results are analyzed in detail.展开更多
为提高势垒型中波InAs/InAsSb二类超晶格红外探测器器件性能,研究并设计了nBn势垒型InAs/InAsSb器件结构。针对InAs/InAsSb红外探测器器件结构特征,分析了暗电流的主导机制和能带特性,采用基于泊松方程、连续性方程和热方程的数值计算方...为提高势垒型中波InAs/InAsSb二类超晶格红外探测器器件性能,研究并设计了nBn势垒型InAs/InAsSb器件结构。针对InAs/InAsSb红外探测器器件结构特征,分析了暗电流的主导机制和能带特性,采用基于泊松方程、连续性方程和热方程的数值计算方法,通过精确调控吸收层掺杂、势垒层掺杂、势垒层厚度、温度和组分等,构建出高能量势垒以有效阻挡多数载流子,允许少数载流子迁移,实现价带偏移(Valence Band Offset,VBO)接近于零的要求,从而有效降低暗电流。研究结果表明,在1×10^(15)~1×10^(17)cm^(-3)范围内降低势垒层掺杂浓度,VBO和暗电流开启电压绝对值均会减小,当AlAs1-xSbx势垒中Sb组分为0.91时,VBO接近于零。对于吸收层,随着掺杂浓度的提高,暗电流呈现减小趋势,但趋势较不明显。在-0.5V偏压,140 K工作条件下,吸收层和势垒层掺杂浓度分别为1×10^(13)cm^(-3),1×10^(15)cm^(-3),吸收层与势垒层厚度分别为3μm,80 nm,得到器件结构参数优化后的暗电流低至4.5×10^(-7)A/cm^(2),证明InAs/InAsSb中波红外探测器具有高温工作的应用前景,可广泛应用于导弹预警、红外制导、航空航天等领域。展开更多
文摘By applying continuity and boundary conditions, the reflection and transmission coefficients of one- dimensional time-independent Schr6dinger equation with a symmetric barrier-type shifted Deng-Fan potential are ob- tained and discussed. The numerical and graphical results are very sufficient, accurate and consistent with the conser- vation of probability.
文摘The transition of the barrier-type thyristor (BTH) from blocking to conducting-state occurs between two entirely contrary physical states with great disparity in nature. The physical effects and mechanisms of the transition are studied in depth. The features of the transition snapback point are analyzed in detail. The transition snapback point has duality and is just the position where the barrier is flattened. It has a significant influence on the capture crosssection of the hole and high-level hole lifetime, resulting in the device entering into deep base conductance modulation. The physical nature of the negative differential resistance segment I-V characteristics is studied. It is testified by using experimental data that the deep conductance modulation is the basic feature and the linchpin of the transition process. The conditions and physical mechanisms of conductance modulation are investigated. The related physical subjects, including the flattening of the channel barrier, the buildup of the double injection, the formation of the plasma, the realization of the high-level injection, the elimination of the gate junction depletion region, the deep conductance modulation, and the increase in the hole's lifetime are all discussed in this paper.
文摘A brand new and feasible method for measuring the carrier lifetime and capture cross-section of a barrier by using the negative resistance segment of the I-V characteristics of a barrier-type thyristor(BTH) is put forward.The measuring principle and calculation method are given.The BTH samples are experimentally measured and the results are analyzed in detail.
文摘为提高势垒型中波InAs/InAsSb二类超晶格红外探测器器件性能,研究并设计了nBn势垒型InAs/InAsSb器件结构。针对InAs/InAsSb红外探测器器件结构特征,分析了暗电流的主导机制和能带特性,采用基于泊松方程、连续性方程和热方程的数值计算方法,通过精确调控吸收层掺杂、势垒层掺杂、势垒层厚度、温度和组分等,构建出高能量势垒以有效阻挡多数载流子,允许少数载流子迁移,实现价带偏移(Valence Band Offset,VBO)接近于零的要求,从而有效降低暗电流。研究结果表明,在1×10^(15)~1×10^(17)cm^(-3)范围内降低势垒层掺杂浓度,VBO和暗电流开启电压绝对值均会减小,当AlAs1-xSbx势垒中Sb组分为0.91时,VBO接近于零。对于吸收层,随着掺杂浓度的提高,暗电流呈现减小趋势,但趋势较不明显。在-0.5V偏压,140 K工作条件下,吸收层和势垒层掺杂浓度分别为1×10^(13)cm^(-3),1×10^(15)cm^(-3),吸收层与势垒层厚度分别为3μm,80 nm,得到器件结构参数优化后的暗电流低至4.5×10^(-7)A/cm^(2),证明InAs/InAsSb中波红外探测器具有高温工作的应用前景,可广泛应用于导弹预警、红外制导、航空航天等领域。