This paper presents a photonic crystal(PhC)line-defect slow-light waveguide modified by resonant rings.We introduce resonant rings into the line defect,constructing a slow-light waveguide with high normalized delay ba...This paper presents a photonic crystal(PhC)line-defect slow-light waveguide modified by resonant rings.We introduce resonant rings into the line defect,constructing a slow-light waveguide with high normalized delay bandwidth product(NDBP)and low group velocity dispersion(GVD).We simulate,analyze,and optimize the structural parameters of this slow-light waveguide using the finite difference time domain(FDTD)method,theoretically achieving a maximum group index of 3.7,maximum bandwidth of 15.6 nm,and maximum NDBP of 0.4416 for slow-light effect.The resonant ring-modified PhC slow-light waveguide designed in this paper exhibits GVD lower than the order of 10^(−20)s^(2)/m over a normalized frequency range from 0.3554 to 0.4175.This study is expected to provide theoretical references for the study of slow-light buffering devices based on PhCs with high NDBP values.展开更多
基金supported by the Graduate Student Innovation Fund of Xi’an Shiyou University(No.YCS21211087).
文摘This paper presents a photonic crystal(PhC)line-defect slow-light waveguide modified by resonant rings.We introduce resonant rings into the line defect,constructing a slow-light waveguide with high normalized delay bandwidth product(NDBP)and low group velocity dispersion(GVD).We simulate,analyze,and optimize the structural parameters of this slow-light waveguide using the finite difference time domain(FDTD)method,theoretically achieving a maximum group index of 3.7,maximum bandwidth of 15.6 nm,and maximum NDBP of 0.4416 for slow-light effect.The resonant ring-modified PhC slow-light waveguide designed in this paper exhibits GVD lower than the order of 10^(−20)s^(2)/m over a normalized frequency range from 0.3554 to 0.4175.This study is expected to provide theoretical references for the study of slow-light buffering devices based on PhCs with high NDBP values.