Rotating machines are very sensitive to mass unbalance which has a harmful effect on its running accuracy and service life. Therefore,a variety of dynamic balancing methods and devices are studied to reduce the vibrat...Rotating machines are very sensitive to mass unbalance which has a harmful effect on its running accuracy and service life. Therefore,a variety of dynamic balancing methods and devices are studied to reduce the vibration caused by mass unbalance. On-line active balancing is a new balancing procedure which is more convenient and precise than the previous methods. In this paper,an electromagnetic balancer based on ring coils and permanent magnets is presented. The balancer has a simple structure and the self-locking function without clutch,and transfers power by the non-contact electromagnetic field. In order to justify the rationality of its design,a two-dimension(2D) electromagnetic finite element model is conducted to verify that this magnetic circuit has no flux leakage and saturation. A three-dimension (3D) 1/10 model of the balancer is built to obtain the self-locking torque and driving torque. Based on the research work above,an electromagnetic balancer is developed. By testing the balancer using COCO80,it is verified effective to reduce the rotor unbalance at the speed of 1300 r/min.展开更多
Cloud computing is a collection of disparate resources or services,a web of massive infrastructures,which is aimed at achieving maximum utilization with higher availability at a minimized cost.One of the most attracti...Cloud computing is a collection of disparate resources or services,a web of massive infrastructures,which is aimed at achieving maximum utilization with higher availability at a minimized cost.One of the most attractive applications for cloud computing is the concept of distributed information processing.Security,privacy,energy saving,reliability and load balancing are the major challenges facing cloud computing and most information technology innovations.Load balancing is the process of redistributing workload among all nodes in a network;to improve resource utilization and job response time,while avoiding overloading some nodes when other nodes are underloaded or idle is a major challenge.Thus,this research aims to design a novel load balancing systems in a cloud computing environment.The research is based on the modification of the existing approaches,namely;particle swarm optimization(PSO),honeybee,and ant colony optimization(ACO)with mathematical expression to form a novel approach called PACOHONEYBEE.The experiments were conducted on response time and throughput.The results of the response time of honeybee,PSO,SASOS,round-robin,PSO-ACO,and P-ACOHONEYBEE are:2791,2780,2784,2767,2727,and 2599(ms)respectively.The outcome of throughput of honeybee,PSO,SASOS,round-robin,PSO-ACO,and P-ACOHONEYBEE are:7451,7425,7398,7357,7387 and 7482(bps)respectively.It is observed that P-ACOHONEYBEE approach produces the lowest response time,high throughput and overall improved performance for the 10 nodes.The research has helped in managing the imbalance drawback by maximizing throughput,and reducing response time with scalability and reliability.展开更多
The dynamic balancing is an important issue in mechanism design.For the existing balancing methods,both passive and active ones,there is still room for improvement in adaplability and independency.In view of this,a co...The dynamic balancing is an important issue in mechanism design.For the existing balancing methods,both passive and active ones,there is still room for improvement in adaplability and independency.In view of this,a concept of active balancer is developed as a new solution for the dynamic balancing with more flexibility.The proposed balancer is an independent additional device with a control system inside,which consists of a two-degree-of-freedom(DOF)linkage and a controllable motor,and can be attached to a machine expediently with little change to its original structure and motion.One of the two inputs of the two-DOF linkage shares the same shaft with its output,which is connected to the input shaft of a machine to be balanced and driven by the original actuator.The other input is driven by the control motor.By properly selecting the speed trajectories of the control motor and link parameters of the two-DOF linkage,one or more dynamic effects of the mechanisms can be minimized or eliminated adaptively.The design procedure of the active balancer is put forward and a two-step optimization is developed to find out optimal design parameters of the balancer for various design requirements and constraints.Taking a force-balanced crank-rocker mechanism as the reference mechanism,numerical examples are given to illustrate the design procedure.The balancing effects of the proposed balancer are compared with those of the existing adding dyads(DYAD)method.The results show that the introduction of the control system provides the active balancer with better balancing effect and more flexibility than the DYAD method.A considerable reduction in the dynamic effects(input torque,shaking moment and shaking force)can be achieved for different balancing object by designing the structural and control parameters of the balancer,and the deterioration of dynamic performance caused by alterative working conditions can be compensated effectively by redesigning the control parameters.展开更多
BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking rec...BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking recovery.OBJECTIVE:To determine whether early suspension-protected training with a personal assistant machine for stroke patients enhances walking ability and prevents muscle spasms.METHODS:Thirty-two early-stage stroke patients from Shenzhen University General Hospital and the China Rehabilitation Research Center were randomly assigned to the experimental group(n=16)and the control group(n=16).Both groups underwent 4 weeks of gait training under the suspension protection system for 30 minutes daily,5 days a week.The experimental group used the personal assistant machine during training.Three-dimensional gait analysis(using the Cortex motion capture system),Brunnstrom staging,Fugl-Meyer Assessment for lower limb motor function,Fugl-Meyer balance function,and the modified Ashworth Scale were evaluated within 1 week before the intervention and after 4 weeks of intervention.RESULTS AND CONCLUSION:After the 4-week intervention,all outcome measures showed significant changes in each group.The experimental group had a small but significant increase in the modified Ashworth Scale score(P<0.05,d=|0.15|),while the control group had a large significant increase(P<0.05,d=|1.48|).The experimental group demonstrated greater improvements in walking speed(16.5 to 38.44 cm/s,P<0.05,d=|4.01|),step frequency(46.44 to 64.94 steps/min,P<0.05,d=|2.32|),stride length(15.50 to 29.81 cm,P<0.05,d=|3.44|),and peak hip and knee flexion(d=|1.82|to|2.17|).After treatment,the experimental group showed significantly greater improvements than the control group in walking speed(38.44 vs.26.63 cm/s,P<0.05,d=|2.75|),stride length,peak hip and knee flexion(d=|1.31|to|1.45|),step frequency(64.94 vs.59.38 steps/min,P<0.05,d=|0.85|),and a reduced support phase(bilateral:24.31%vs.28.38%,P<0.05,d=|0.88|;non-paretic:66.19%vs.70.13%,P<0.05,d=|0.94|).For early hemiplegia,personal assistant machine-assisted gait training under the suspension protection system helps establish a correct gait pattern,prevents muscle spasms,and improves motor function.展开更多
This paper analyzes the load unbalance problem and voltage fluctuation problem in a 3-wire DC distribution system.It also analyzes a solution to these problems;a positive Buck-Boost voltage balancer is proposed and ex...This paper analyzes the load unbalance problem and voltage fluctuation problem in a 3-wire DC distribution system.It also analyzes a solution to these problems;a positive Buck-Boost voltage balancer is proposed and explored in order to fulfill the requirements of high quality power supply for the loads on its load side.Compared with the conventional balancer,a positive Buck-Boost converter is added to solve the voltage fluctuation problem,and the theories and methods of the voltage balancer are extended to analyze the working principle,derive the design equations,explore the stability,and calculate the efficiency.Both simulations and small power experiments are carried out to verify the validity of the working principle,the topology,and the control strategy.展开更多
Tajikistan contains the majority of Central Asia’s glaciers,which cover about 6.00%of the national territory;their rapid shrinkage poses a significant threat to regional water resource security.However,glacier monito...Tajikistan contains the majority of Central Asia’s glaciers,which cover about 6.00%of the national territory;their rapid shrinkage poses a significant threat to regional water resource security.However,glacier monitoring in Tajikistan was interrupted after 1991,creating a substantial gap in understanding the current state and temporal evolution of these glaciers.Based on glacier inventory data,in situ measurements,and published literature,this study examined the present status and recent variations of glaciers in Tajikistan through data integration and validation,literature collation and comparative analysis,and the application of Geographic Information System(GIS)spatial analysis techniques.As of 2023,Tajikistan possesses a total of 11,528 glaciers,encompassing an area of 7624.48(±305.58)km2.Small glaciers dominate in number,whereas large glaciers account for the majority of the total area.Over the past two decades,the glacier count has decreased by 2014,and the total area has decreased by 628.98 km2,corresponding to an average annual reduction rate of 0.33%.Regional shrinkage rates range from 4.10%to 22.28%.Glaciers have undergone accelerated mass loss during the past 20 a;only those on the northeastern Pamir Plateau exhibit a weak positive mass balance.Observations of typical monitored glaciers also reveal intensified melting and retreat,consistent with regional trends.In light of the recent acceleration of glacier shrinkage in Tajikistan,focused measures should be implemented to strengthen glacier monitoring,enhance public awareness of glacier preservation,and promote the sustainable development and utilization of glacier tourism.These findings bridge the knowledge gap regarding the spatiotemporal dynamics of Tajikistan’s glaciers over recent decades and provide essential data support for regional water resource management.展开更多
In the complex architecture of global value-chain(GVC)trade,firms’technological content increasingly reflects external knowledge flows.This study examines how inter-regional technological complementarity shapes firms...In the complex architecture of global value-chain(GVC)trade,firms’technological content increasingly reflects external knowledge flows.This study examines how inter-regional technological complementarity shapes firms’GVC advancement,measured by the domestic value-added rate(DVAR)in exports.Using integrated Chinese microdata(2000-2014),we find this complementarity significantly boosts export DVAR,explaining about one-quarter of its observed growth.Two mechanisms drive this effect:increased use of domestic intermediates and gains in firm productivity.The benefits are especially large for firms with lower human capital and for those in accessible,innovation-peripheral regions,helping narrow productivity gaps across firms and space.Affected firms also exhibit broader export scopes,higher product quality,more diversified destinations,and greater markups-firm-level evidence of GVC upgrading.These findings highlight how external technological linkages drive upgrading and underscore the importance of fostering inter-regional synergies for balanced development.展开更多
Lacustrine groundwater discharge(LGD)plays an important role in water resources management.Previous studies have focused on LGD process in a single lake,but the differences in LGD process within the same region have n...Lacustrine groundwater discharge(LGD)plays an important role in water resources management.Previous studies have focused on LGD process in a single lake,but the differences in LGD process within the same region have not been thoroughly investigated.In this study,multiple tracers(hydrochemistry,𝛿D,𝛿18O and 222Rn)were used to compare mechanisms of LGD in Daihai and Ulansuhai Lake in Inner Mongoli1,Northwest China.The hydrochemical types showed a trend from groundwater to lake water,indicating a hydraulic connection between them.In addition,the𝛿D and𝛿18O values of sediment pore water were between the groundwater and lake water,indicating the LGD processes.The radon mass balance model was used to estimate the average groundwater discharge rates of Daihai and Ulansuhai Lake,which were 2.79 mm/day and 3.02 mm/day,respectively.The total nitrogen(TN),total phosphorus(TP),and fluoride inputs associated with LGD in Daihai Lake accounted for 97.52%,96.59%,and 95.84%of the total inputs,respectively.In contrast,TN,TP and fluoride inputs in Ulansuhai Lake were 53.56%,40.98%,and 36.25%,respectively.This indicates that the pollutant inputs associated with LGD posed a potential threat to the ecological stability of Daihai and Ulansuhai Lake.By comparison,the differences of LGD process and associated pollutant flux were controlled by hydrogeological conditions,lakebed permeability and human activities.This study provides a reference for water resources management in Daihai and Ulansuhai Lake basins while improving the understanding of LGD in the Yellow River basin.展开更多
While the low-altitude platform(LAP)-based aerial cells help improve the coverage and capacity for the telecom operator,the deployment and management of the aerial fleet is a non-trivial problem from both a capital ex...While the low-altitude platform(LAP)-based aerial cells help improve the coverage and capacity for the telecom operator,the deployment and management of the aerial fleet is a non-trivial problem from both a capital expenditure(CAPEX)and an operational expenditure(OPEX)perspective.On the one hand,it is critical to keep the fleet size to a minimum to reduce CAPEX,while on the other hand,it is critical to optimally associate user equipment(UE)with aerial cells in order to maximize the use of aerial cell resources and serve more pieces of UE.Existing research on balancing UE load among aerial cells discusses mechanisms like coverage and capacity optimization.To the best of our knowledge,this is the first time we have treated the forecasted data traffic volume for each user as well as inter-UE traffic consideration to jointly optimize capacity maximization for aerial cells,latency minimization in inter-UE communication,and aerial fleet size minimization.To this end,we present a deep learning-based novel aerial load balancer(AeroLOBE)for aerial communication using a novel constraint fractional group multiple knapsack problem(F-GMKP)formulation and the knapsack optimization(KO)for associating users to LAPs,thereby enhancing performance for the network.Through mathematical modelling and extensive simulation,we show that AeroLOBE reduces the latency of inter-UE communication by over 39% and improves the resource utilization by over 10%,while keeping the blocking rate and fleet reduction targets similar or marginally better than the available load balancing schemes in the literature.展开更多
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ...Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.展开更多
Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as ...Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity.展开更多
Dune barrier systems represent highly sought-after coastal landscapes for tourism and urban development around the world.However,a century ago,they were considered hazardous environments due to their great dynamic nat...Dune barrier systems represent highly sought-after coastal landscapes for tourism and urban development around the world.However,a century ago,they were considered hazardous environments due to their great dynamic nature.As a result,stabilization practices were considered necessary.The systematic introduction of fast-growing exotic trees helped stabilize the sand,making it easier for tourism urbanization to take place,but also leading to erosion processes.This paper aims to assess long-term changes in vegetation cover over a large temperate barrier in Argentina.This complex region includes urban resorts,afforestation zones,and protected areas.A GIS-based geospatial analysis was conducted using a large satellite database(>350 images),and the future evolution of the vegetation was modeled.The results revealed two primary spatiotemporal patterns associated with a gradual expansion of vegetation cover,accompanied by a concurrent reduction in sandy areas.In 1986,the dune area comprised 75%more surface than vegetation,whereas in 2021,it represented 60%less than vegetation.Furthermore,the 2050 scenario suggests a potential 40%reduction of dunes in certain areas.It is necessary to enhance management actions aimed at maintaining dune mobility and ensuring local and regional sediment balance.Long-term management strategies must focus on restoring native plant communities and controlling invasive species,and avoiding new dune fixation initiatives based on the introduction of exotic species.展开更多
Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in t...Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.展开更多
Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the t...Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the type of fluid are conflicting and generally come from small single-center randomized controlled trials(RCTs).We therefore conducted a systematic review and meta-analysis to compare the effect of balanced solutions(BS)versus NS on patient-centered clinical outcomes in AP.Methods:From four databases searched up to October 2024,we included only RCTs of adult patients with AP that compared the use of BS(including LR,acetate Ringer’s,etc.)with NS.The primary out-come was the disease advances from AP to moderately severe and severe AP(MSAP/SAP).Trial sequential analyses(TSA)were conducted to control for type-I and type-II errors and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)was used to assess the quality of evidence.Results:Six RCTs were identified and included,involving 260 patients treated with BS and 298 patients with NS.Patients who received the BS had less MSAP/SAP[odds ratio(OR)=0.50,95%confidence in-terval(CI):0.29 to 0.85,P=0.01,I^(2)=0%;5 studies,299 patients],reduced the need of ICU admission(OR=0.60,95%CI:0.39 to 0.93,P=0.02,I^(2)=0%;5 studies,507 patients)and shorter length of hospital stay[mean difference(MD)=-0.88,95%CI:-1.48 to-0.28,P=0.004,I^(2)=0%;6 studies,558 patients;confirmed by TSA with high certainty]compared with those who received NS.The evidence for most of the clinical outcomes was rated as moderate to low due to the risk of bias,imprecision and inconsistency.Conclusions:BS,compared with NS,was associated with improved clinical outcomes in patients with AP.However,given the moderate to low quality of evidence for most of the outcomes assessed,further trials are warranted.展开更多
This paper proposes that China,under the challenge of balancing its development and security,can aim for the Paris Agreement's goal to limit global warming to no more than 2℃by actively seeking carbonpeak and car...This paper proposes that China,under the challenge of balancing its development and security,can aim for the Paris Agreement's goal to limit global warming to no more than 2℃by actively seeking carbonpeak and carbon-neutrality pathways that align with China's national conditions,rather than following the idealized path toward the 1.5℃target by initially relying on extensive negative-emission technologies such as direct air carbon capture and storage(DACCS).This work suggests that pursuing a 1.5℃target is increasingly less feasible for China,as it would potentially incur 3–4 times the cost of pursuing the 2℃target.With China being likely to achieve a peak in its emissions around 2028,at about 12.8 billion tonnes of anthropogenic carbon dioxide(CO_(2)),and become carbon neutral,projected global warming levels may be less severe after the 2050s than previously estimated.This could reduce the risk potential of climate tipping points and extreme events,especially considering that the other two major carbon emitters in the world(Europe and North America)have already passed their carbon peaks.While natural carbon sinks will contribute to China's carbon neutrality efforts,they are not expected to be decisive in the transition stages.This research also addresses the growing focus on climate overshoot,tipping points,extreme events,loss and damage,and methane reductions in international climate cooperation,emphasizing the need to balance these issues with China's development,security,and fairness considerations.China's pursuit of carbon neutrality will have significant implications for global emissions scenarios,warming levels,and extreme event projections,as well as for climate change hotspots of international concern,such as climate tipping points,the climate crisis,and the notion that the world has moved from a warming to a boiling era.Possible research recommendations for global emissions scenarios based on China's 2℃target pathway are also summarized.展开更多
OBJECTIVE:To investigate the difference in gut microbiota between population with damp-heat constitution(DHC)and balanced constitution(BC).METHODS:A multi-centered cross-sectional casecontrol study was conducted,which...OBJECTIVE:To investigate the difference in gut microbiota between population with damp-heat constitution(DHC)and balanced constitution(BC).METHODS:A multi-centered cross-sectional casecontrol study was conducted,which included 249 participants with damp-heat constitution or balanced constitution.Baseline information of participants was collected,and stool samples were collected for gut microbiota analysis.Principal coordinate analysis,linear discriminant analysis effect size analysis,receiver operating characteristic,random forest model,and phylogenetic investigation of communities by reconstruction of unobserved states methods were used to reveal the relationship between gut microbiota and the damp-heat constitution.RESULTS:Compared to those in the BC group,the richness and diversity of the microbiota,specifically those of several short-chain fatty acid producing genera such as Barnesiella,Coprobacter,and Butyricimonas,were significantly decreased in the DHC group.Regarding biological functions,flavonoid biosynthesis,propanoate metabolism,and nucleotide sugar metabolism were suppressed,while arachidonic acid metabolism and glutathione metabolism were enriched in the DHC group.Finally,a classifier based on the microbiota was constructed to discriminate between the DHC and BC populations.CONCLUSION:The gut microbiota of the DHC population exhibits significantly reduced diversity and is closely related to inflammation,metabolic disorders,and liver steatosis,which is consistent with clinical observations,thus serving as a potential diagnostic tool for traditional Chinese medicine constitution discrimination.展开更多
Reinforcing metal matrix composites(MMCs)with nanophases of distinct characteristics is an effective strategy for utilizing their individual advantages and achieving superior properties of the composite.In this study,...Reinforcing metal matrix composites(MMCs)with nanophases of distinct characteristics is an effective strategy for utilizing their individual advantages and achieving superior properties of the composite.In this study,a combination of molecular level mixing(MLM),segment ball milling(SBM),and in-situ solid-phase reaction was employed to fabricate Cu matrix composites(TiC-CNT/Cu)reinforced with TiC decorated CNT(TiC@CNT)and in-situ nanoscale TiC particles.The HRTEM results revealed the epitaxial growth of interfacial TiC on the surface of CNT(i.e.,CNT(0002)//TiC(200),and the formation of a semi-coherent interface between TiC and Cu matrix,which can effectively enhance the interfacial bonding strength and optimize load transfer efficiency of CNT.The independent in-situ TiC nanoparticles got into the grain interior through grain boundary migration,thereby significantly enhancing both strain hardening capacity and strength of the composite by fully utilizing the Orowan strengthening mechanism.Moreover,the enhanced bonding strength of the interface can also effectively suppress crack initiation and propagation,thereby improving the fracture toughness of the composite.The TiC-CNT/Cu composite with 1.2 vol.%CNT exhibited a tensile strength of 372 MPa,achieving a super high strengthening efficiency of 270,while simultaneously maintaining a remarkable ductility of 21.2%.Furthermore,the impact toughness of the TiC-CNT/Cu composite exhibited a significant enhancement of 70.7%compared to that of the CNT/Cu composite,reaching an impressive value of 251 kJ/m^(2),thereby demonstrating exceptional fracture toughness.Fully exploiting the synergistic strengthening effect of different nanophases can be an effective way to improve the comprehensive properties of MMCs.展开更多
The four-level nested neutral-point-clamped(4L-NNPC)inverter is a competitive topology among the various medium-voltage multilevel converters,and its main issue is flying-capacitor voltage unbalance.In this article,a ...The four-level nested neutral-point-clamped(4L-NNPC)inverter is a competitive topology among the various medium-voltage multilevel converters,and its main issue is flying-capacitor voltage unbalance.In this article,a novel carrier-interleaved pulse width modulation(CIPWM)method that satisfies the volt-sec balance principle is proposed with an advanced carrier distribution rule.By adopting the proposed CIPWM method,the redundant switching states of 4L-NNPC inverters can be evenly distributed into the output PWM waveform in each carrier period,and natural flying-capacitor voltage balance can be achieved.Furthermore,an active balancing strategy is also proposed to eliminate the voltage unbalance caused by nonideal factors,which is realized by simply adjusting the duty cycle and with no need to adjust the redundant switching states for 4L-NNPC inverters.The simulation and experimental results verify the effectiveness of the proposed CIPWM method and the flying-capacitor voltage balancing strategy.展开更多
The aim of this study is to observe the therapeutic effect of Inonotus Obliquus Polysaccharide(IOP)on chronic nonbacterial prostatitis(CNP)and its effect on the helper T cells(Th17)and regulatory T cells(Treg)immune i...The aim of this study is to observe the therapeutic effect of Inonotus Obliquus Polysaccharide(IOP)on chronic nonbacterial prostatitis(CNP)and its effect on the helper T cells(Th17)and regulatory T cells(Treg)immune imbalance.The CNP rat models established by injecting Xiaozhiling injection were randomly divided into the model group,cernilton(40 mg/kg,i.g.)group and low-dose(35 mg/kg,i.g.),medium-dose(70 mg/kg,i.g.)and high-dose(140 mg/kg,i.g.)groups,with the same volume of saline injected into the same site as the control group.The prostate’s wet weight and body mass served as the basis for calculating the prostate index.The serum level of prostate-specific antigen(PSA)was detected by ELISA and the histopathology of prostate tissue was detected by HE staining.The protein expression of Foxp3,ROR-γt and STAT3 in rat prostatic tissue was determined by Western blot.The levels of Th17 and Treg cells infiltrated into the spleen were measured by flow cytometry.The results showed that treatment with IOP significantly reduced the levels of prostate index and serum PSA,and attenuated the pathological injury of the prostate tissue induced by CNP.With respect to samples induced by CNP alone,IOP treatment repressed the increased mRNA levels of IL-6,IL-17,IL-21,IL-23,ROR-γt and STAT3 in prostate tissue,while increasing the mRNA levels of IL-10,TGF-βand Foxp3 in prostate tissue.Meanwhile,IOP treatment attenuated the upregulation of the protein expression levels of ROR-γt and STAT3 in prostate tissue.Additionally,the protein expression of Foxp3 in prostate tissue was increased in the IOP-treated group.Flow cytometry analysis further demonstrated that IOP treatment regulated the balance between Th17 and Treg cells in the spleen in rat with CNP.Our study is the first to elucidate that IOP has significant therapeutic effects on CNP through regulation of Th17/Treg balance.Collectively,the study provides evidence for the potential of IOP to treat CNP.展开更多
基金The National Science and Technology Major Project of China(No.2010ZX04012-014)
文摘Rotating machines are very sensitive to mass unbalance which has a harmful effect on its running accuracy and service life. Therefore,a variety of dynamic balancing methods and devices are studied to reduce the vibration caused by mass unbalance. On-line active balancing is a new balancing procedure which is more convenient and precise than the previous methods. In this paper,an electromagnetic balancer based on ring coils and permanent magnets is presented. The balancer has a simple structure and the self-locking function without clutch,and transfers power by the non-contact electromagnetic field. In order to justify the rationality of its design,a two-dimension(2D) electromagnetic finite element model is conducted to verify that this magnetic circuit has no flux leakage and saturation. A three-dimension (3D) 1/10 model of the balancer is built to obtain the self-locking torque and driving torque. Based on the research work above,an electromagnetic balancer is developed. By testing the balancer using COCO80,it is verified effective to reduce the rotor unbalance at the speed of 1300 r/min.
基金Taif University Researchers are supporting project number(TURSP-2020/211),Taif University,Taif,Saudi Arabia.
文摘Cloud computing is a collection of disparate resources or services,a web of massive infrastructures,which is aimed at achieving maximum utilization with higher availability at a minimized cost.One of the most attractive applications for cloud computing is the concept of distributed information processing.Security,privacy,energy saving,reliability and load balancing are the major challenges facing cloud computing and most information technology innovations.Load balancing is the process of redistributing workload among all nodes in a network;to improve resource utilization and job response time,while avoiding overloading some nodes when other nodes are underloaded or idle is a major challenge.Thus,this research aims to design a novel load balancing systems in a cloud computing environment.The research is based on the modification of the existing approaches,namely;particle swarm optimization(PSO),honeybee,and ant colony optimization(ACO)with mathematical expression to form a novel approach called PACOHONEYBEE.The experiments were conducted on response time and throughput.The results of the response time of honeybee,PSO,SASOS,round-robin,PSO-ACO,and P-ACOHONEYBEE are:2791,2780,2784,2767,2727,and 2599(ms)respectively.The outcome of throughput of honeybee,PSO,SASOS,round-robin,PSO-ACO,and P-ACOHONEYBEE are:7451,7425,7398,7357,7387 and 7482(bps)respectively.It is observed that P-ACOHONEYBEE approach produces the lowest response time,high throughput and overall improved performance for the 10 nodes.The research has helped in managing the imbalance drawback by maximizing throughput,and reducing response time with scalability and reliability.
基金supported by National Natural Science Foundation of China(Grant No.50405004,50875018)Key Project of National Natural Science Foundation of China(Grant No.50335040)
文摘The dynamic balancing is an important issue in mechanism design.For the existing balancing methods,both passive and active ones,there is still room for improvement in adaplability and independency.In view of this,a concept of active balancer is developed as a new solution for the dynamic balancing with more flexibility.The proposed balancer is an independent additional device with a control system inside,which consists of a two-degree-of-freedom(DOF)linkage and a controllable motor,and can be attached to a machine expediently with little change to its original structure and motion.One of the two inputs of the two-DOF linkage shares the same shaft with its output,which is connected to the input shaft of a machine to be balanced and driven by the original actuator.The other input is driven by the control motor.By properly selecting the speed trajectories of the control motor and link parameters of the two-DOF linkage,one or more dynamic effects of the mechanisms can be minimized or eliminated adaptively.The design procedure of the active balancer is put forward and a two-step optimization is developed to find out optimal design parameters of the balancer for various design requirements and constraints.Taking a force-balanced crank-rocker mechanism as the reference mechanism,numerical examples are given to illustrate the design procedure.The balancing effects of the proposed balancer are compared with those of the existing adding dyads(DYAD)method.The results show that the introduction of the control system provides the active balancer with better balancing effect and more flexibility than the DYAD method.A considerable reduction in the dynamic effects(input torque,shaking moment and shaking force)can be achieved for different balancing object by designing the structural and control parameters of the balancer,and the deterioration of dynamic performance caused by alterative working conditions can be compensated effectively by redesigning the control parameters.
文摘BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking recovery.OBJECTIVE:To determine whether early suspension-protected training with a personal assistant machine for stroke patients enhances walking ability and prevents muscle spasms.METHODS:Thirty-two early-stage stroke patients from Shenzhen University General Hospital and the China Rehabilitation Research Center were randomly assigned to the experimental group(n=16)and the control group(n=16).Both groups underwent 4 weeks of gait training under the suspension protection system for 30 minutes daily,5 days a week.The experimental group used the personal assistant machine during training.Three-dimensional gait analysis(using the Cortex motion capture system),Brunnstrom staging,Fugl-Meyer Assessment for lower limb motor function,Fugl-Meyer balance function,and the modified Ashworth Scale were evaluated within 1 week before the intervention and after 4 weeks of intervention.RESULTS AND CONCLUSION:After the 4-week intervention,all outcome measures showed significant changes in each group.The experimental group had a small but significant increase in the modified Ashworth Scale score(P<0.05,d=|0.15|),while the control group had a large significant increase(P<0.05,d=|1.48|).The experimental group demonstrated greater improvements in walking speed(16.5 to 38.44 cm/s,P<0.05,d=|4.01|),step frequency(46.44 to 64.94 steps/min,P<0.05,d=|2.32|),stride length(15.50 to 29.81 cm,P<0.05,d=|3.44|),and peak hip and knee flexion(d=|1.82|to|2.17|).After treatment,the experimental group showed significantly greater improvements than the control group in walking speed(38.44 vs.26.63 cm/s,P<0.05,d=|2.75|),stride length,peak hip and knee flexion(d=|1.31|to|1.45|),step frequency(64.94 vs.59.38 steps/min,P<0.05,d=|0.85|),and a reduced support phase(bilateral:24.31%vs.28.38%,P<0.05,d=|0.88|;non-paretic:66.19%vs.70.13%,P<0.05,d=|0.94|).For early hemiplegia,personal assistant machine-assisted gait training under the suspension protection system helps establish a correct gait pattern,prevents muscle spasms,and improves motor function.
基金supported in part by the National High Technology Research and Development of China("863 Program")(Grant No.2013AA050104)
文摘This paper analyzes the load unbalance problem and voltage fluctuation problem in a 3-wire DC distribution system.It also analyzes a solution to these problems;a positive Buck-Boost voltage balancer is proposed and explored in order to fulfill the requirements of high quality power supply for the loads on its load side.Compared with the conventional balancer,a positive Buck-Boost converter is added to solve the voltage fluctuation problem,and the theories and methods of the voltage balancer are extended to analyze the working principle,derive the design equations,explore the stability,and calculate the efficiency.Both simulations and small power experiments are carried out to verify the validity of the working principle,the topology,and the control strategy.
基金supported by the National Key R&D Plan“Inter-governmental International Science&Technology Innovation Cooperation”Key Specialized Program,China(2025YFE0102800)the Program of the State Key Laboratory of Cryospheric Science and Frozen Soil Engineering,Chinese Academy of Sciences(CSFSE-ZZ-2403).
文摘Tajikistan contains the majority of Central Asia’s glaciers,which cover about 6.00%of the national territory;their rapid shrinkage poses a significant threat to regional water resource security.However,glacier monitoring in Tajikistan was interrupted after 1991,creating a substantial gap in understanding the current state and temporal evolution of these glaciers.Based on glacier inventory data,in situ measurements,and published literature,this study examined the present status and recent variations of glaciers in Tajikistan through data integration and validation,literature collation and comparative analysis,and the application of Geographic Information System(GIS)spatial analysis techniques.As of 2023,Tajikistan possesses a total of 11,528 glaciers,encompassing an area of 7624.48(±305.58)km2.Small glaciers dominate in number,whereas large glaciers account for the majority of the total area.Over the past two decades,the glacier count has decreased by 2014,and the total area has decreased by 628.98 km2,corresponding to an average annual reduction rate of 0.33%.Regional shrinkage rates range from 4.10%to 22.28%.Glaciers have undergone accelerated mass loss during the past 20 a;only those on the northeastern Pamir Plateau exhibit a weak positive mass balance.Observations of typical monitored glaciers also reveal intensified melting and retreat,consistent with regional trends.In light of the recent acceleration of glacier shrinkage in Tajikistan,focused measures should be implemented to strengthen glacier monitoring,enhance public awareness of glacier preservation,and promote the sustainable development and utilization of glacier tourism.These findings bridge the knowledge gap regarding the spatiotemporal dynamics of Tajikistan’s glaciers over recent decades and provide essential data support for regional water resource management.
基金supported by the following grants:National Social Science Fund of China(NSSFC)(Major Project)“Research on the Mechanism and Breakthrough Path for Achieving Key Core Technologies through the Coupling of Innovation Chains and Industrial Chains”(Grant No.22&ZD093)Key Research Institute of Humanities and Social Sciences,Ministry of Education“Research on Innovation Development Theory Based on Chinese Practice”(Grant No.23CEDRZ03).
文摘In the complex architecture of global value-chain(GVC)trade,firms’technological content increasingly reflects external knowledge flows.This study examines how inter-regional technological complementarity shapes firms’GVC advancement,measured by the domestic value-added rate(DVAR)in exports.Using integrated Chinese microdata(2000-2014),we find this complementarity significantly boosts export DVAR,explaining about one-quarter of its observed growth.Two mechanisms drive this effect:increased use of domestic intermediates and gains in firm productivity.The benefits are especially large for firms with lower human capital and for those in accessible,innovation-peripheral regions,helping narrow productivity gaps across firms and space.Affected firms also exhibit broader export scopes,higher product quality,more diversified destinations,and greater markups-firm-level evidence of GVC upgrading.These findings highlight how external technological linkages drive upgrading and underscore the importance of fostering inter-regional synergies for balanced development.
基金supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2023QN04011)the National Natural Science Foundation of China(Nos.42307092 and 52279067)+1 种基金Ordos Science and Technology Major Project(No.ZD20232303)Project of Key Laboratory of River and Lake in Inner Mongolia Autonomous Region(No.2022QZBZ0003).
文摘Lacustrine groundwater discharge(LGD)plays an important role in water resources management.Previous studies have focused on LGD process in a single lake,but the differences in LGD process within the same region have not been thoroughly investigated.In this study,multiple tracers(hydrochemistry,𝛿D,𝛿18O and 222Rn)were used to compare mechanisms of LGD in Daihai and Ulansuhai Lake in Inner Mongoli1,Northwest China.The hydrochemical types showed a trend from groundwater to lake water,indicating a hydraulic connection between them.In addition,the𝛿D and𝛿18O values of sediment pore water were between the groundwater and lake water,indicating the LGD processes.The radon mass balance model was used to estimate the average groundwater discharge rates of Daihai and Ulansuhai Lake,which were 2.79 mm/day and 3.02 mm/day,respectively.The total nitrogen(TN),total phosphorus(TP),and fluoride inputs associated with LGD in Daihai Lake accounted for 97.52%,96.59%,and 95.84%of the total inputs,respectively.In contrast,TN,TP and fluoride inputs in Ulansuhai Lake were 53.56%,40.98%,and 36.25%,respectively.This indicates that the pollutant inputs associated with LGD posed a potential threat to the ecological stability of Daihai and Ulansuhai Lake.By comparison,the differences of LGD process and associated pollutant flux were controlled by hydrogeological conditions,lakebed permeability and human activities.This study provides a reference for water resources management in Daihai and Ulansuhai Lake basins while improving the understanding of LGD in the Yellow River basin.
文摘While the low-altitude platform(LAP)-based aerial cells help improve the coverage and capacity for the telecom operator,the deployment and management of the aerial fleet is a non-trivial problem from both a capital expenditure(CAPEX)and an operational expenditure(OPEX)perspective.On the one hand,it is critical to keep the fleet size to a minimum to reduce CAPEX,while on the other hand,it is critical to optimally associate user equipment(UE)with aerial cells in order to maximize the use of aerial cell resources and serve more pieces of UE.Existing research on balancing UE load among aerial cells discusses mechanisms like coverage and capacity optimization.To the best of our knowledge,this is the first time we have treated the forecasted data traffic volume for each user as well as inter-UE traffic consideration to jointly optimize capacity maximization for aerial cells,latency minimization in inter-UE communication,and aerial fleet size minimization.To this end,we present a deep learning-based novel aerial load balancer(AeroLOBE)for aerial communication using a novel constraint fractional group multiple knapsack problem(F-GMKP)formulation and the knapsack optimization(KO)for associating users to LAPs,thereby enhancing performance for the network.Through mathematical modelling and extensive simulation,we show that AeroLOBE reduces the latency of inter-UE communication by over 39% and improves the resource utilization by over 10%,while keeping the blocking rate and fleet reduction targets similar or marginally better than the available load balancing schemes in the literature.
文摘Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2682024GF019)。
文摘Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity.
基金supported by the Ministry of Science,Technology and Innovation of Argentina trough the project“Topografía,escurrimiento superficial y monitoreo de playas en el Partido de Villa Gesell,provincia de Buenos Aires”(Impact.AR N°106-RESOL-2022-224-APN-SACT#MCT)by the Nacional Council of Scientific and Technical Research(CONICET)through the project“Impactos de la reversión del nivel del mar en Buenos Aires,Argentina”(PIP 21/2311220200100041CO-RESOL-2021-1639-APN-DIR#CONICET)。
文摘Dune barrier systems represent highly sought-after coastal landscapes for tourism and urban development around the world.However,a century ago,they were considered hazardous environments due to their great dynamic nature.As a result,stabilization practices were considered necessary.The systematic introduction of fast-growing exotic trees helped stabilize the sand,making it easier for tourism urbanization to take place,but also leading to erosion processes.This paper aims to assess long-term changes in vegetation cover over a large temperate barrier in Argentina.This complex region includes urban resorts,afforestation zones,and protected areas.A GIS-based geospatial analysis was conducted using a large satellite database(>350 images),and the future evolution of the vegetation was modeled.The results revealed two primary spatiotemporal patterns associated with a gradual expansion of vegetation cover,accompanied by a concurrent reduction in sandy areas.In 1986,the dune area comprised 75%more surface than vegetation,whereas in 2021,it represented 60%less than vegetation.Furthermore,the 2050 scenario suggests a potential 40%reduction of dunes in certain areas.It is necessary to enhance management actions aimed at maintaining dune mobility and ensuring local and regional sediment balance.Long-term management strategies must focus on restoring native plant communities and controlling invasive species,and avoiding new dune fixation initiatives based on the introduction of exotic species.
基金supported by the National Natural Science Foundation of China(42177341)the Natural Science Basic Research Program of Shanxi,China(202203021222138).
文摘Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.
文摘Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the type of fluid are conflicting and generally come from small single-center randomized controlled trials(RCTs).We therefore conducted a systematic review and meta-analysis to compare the effect of balanced solutions(BS)versus NS on patient-centered clinical outcomes in AP.Methods:From four databases searched up to October 2024,we included only RCTs of adult patients with AP that compared the use of BS(including LR,acetate Ringer’s,etc.)with NS.The primary out-come was the disease advances from AP to moderately severe and severe AP(MSAP/SAP).Trial sequential analyses(TSA)were conducted to control for type-I and type-II errors and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)was used to assess the quality of evidence.Results:Six RCTs were identified and included,involving 260 patients treated with BS and 298 patients with NS.Patients who received the BS had less MSAP/SAP[odds ratio(OR)=0.50,95%confidence in-terval(CI):0.29 to 0.85,P=0.01,I^(2)=0%;5 studies,299 patients],reduced the need of ICU admission(OR=0.60,95%CI:0.39 to 0.93,P=0.02,I^(2)=0%;5 studies,507 patients)and shorter length of hospital stay[mean difference(MD)=-0.88,95%CI:-1.48 to-0.28,P=0.004,I^(2)=0%;6 studies,558 patients;confirmed by TSA with high certainty]compared with those who received NS.The evidence for most of the clinical outcomes was rated as moderate to low due to the risk of bias,imprecision and inconsistency.Conclusions:BS,compared with NS,was associated with improved clinical outcomes in patients with AP.However,given the moderate to low quality of evidence for most of the outcomes assessed,further trials are warranted.
基金supported by the top-level design of the National Natural Science Foundation of China(NSFC)Major Project“Realization of optimal carbon neutral pathway and coupling of multi-scale interaction patterns of natural-social systems in China”(42341202)the Basic Scientific Research Fund of the Chinese Academy of Meteorological Sciences(2021Z014)。
文摘This paper proposes that China,under the challenge of balancing its development and security,can aim for the Paris Agreement's goal to limit global warming to no more than 2℃by actively seeking carbonpeak and carbon-neutrality pathways that align with China's national conditions,rather than following the idealized path toward the 1.5℃target by initially relying on extensive negative-emission technologies such as direct air carbon capture and storage(DACCS).This work suggests that pursuing a 1.5℃target is increasingly less feasible for China,as it would potentially incur 3–4 times the cost of pursuing the 2℃target.With China being likely to achieve a peak in its emissions around 2028,at about 12.8 billion tonnes of anthropogenic carbon dioxide(CO_(2)),and become carbon neutral,projected global warming levels may be less severe after the 2050s than previously estimated.This could reduce the risk potential of climate tipping points and extreme events,especially considering that the other two major carbon emitters in the world(Europe and North America)have already passed their carbon peaks.While natural carbon sinks will contribute to China's carbon neutrality efforts,they are not expected to be decisive in the transition stages.This research also addresses the growing focus on climate overshoot,tipping points,extreme events,loss and damage,and methane reductions in international climate cooperation,emphasizing the need to balance these issues with China's development,security,and fairness considerations.China's pursuit of carbon neutrality will have significant implications for global emissions scenarios,warming levels,and extreme event projections,as well as for climate change hotspots of international concern,such as climate tipping points,the climate crisis,and the notion that the world has moved from a warming to a boiling era.Possible research recommendations for global emissions scenarios based on China's 2℃target pathway are also summarized.
基金National Nonprofit Institute Research Grant for the Institute of Basic Theory for Chinese Medicine,China Academy of Chinese Medical Sciences:Mechanism of Regulating Phlegm-Dampness Constitution to Prevent Metabolic Diseases based on Gut Microbiota-host DNA Methylation(No.YZ-202151)。
文摘OBJECTIVE:To investigate the difference in gut microbiota between population with damp-heat constitution(DHC)and balanced constitution(BC).METHODS:A multi-centered cross-sectional casecontrol study was conducted,which included 249 participants with damp-heat constitution or balanced constitution.Baseline information of participants was collected,and stool samples were collected for gut microbiota analysis.Principal coordinate analysis,linear discriminant analysis effect size analysis,receiver operating characteristic,random forest model,and phylogenetic investigation of communities by reconstruction of unobserved states methods were used to reveal the relationship between gut microbiota and the damp-heat constitution.RESULTS:Compared to those in the BC group,the richness and diversity of the microbiota,specifically those of several short-chain fatty acid producing genera such as Barnesiella,Coprobacter,and Butyricimonas,were significantly decreased in the DHC group.Regarding biological functions,flavonoid biosynthesis,propanoate metabolism,and nucleotide sugar metabolism were suppressed,while arachidonic acid metabolism and glutathione metabolism were enriched in the DHC group.Finally,a classifier based on the microbiota was constructed to discriminate between the DHC and BC populations.CONCLUSION:The gut microbiota of the DHC population exhibits significantly reduced diversity and is closely related to inflammation,metabolic disorders,and liver steatosis,which is consistent with clinical observations,thus serving as a potential diagnostic tool for traditional Chinese medicine constitution discrimination.
基金financially supported by the National Natural Science Foundation of China(No.52371136)the Yunnan Provincial Science and Technology Department(No.202202AG050004).
文摘Reinforcing metal matrix composites(MMCs)with nanophases of distinct characteristics is an effective strategy for utilizing their individual advantages and achieving superior properties of the composite.In this study,a combination of molecular level mixing(MLM),segment ball milling(SBM),and in-situ solid-phase reaction was employed to fabricate Cu matrix composites(TiC-CNT/Cu)reinforced with TiC decorated CNT(TiC@CNT)and in-situ nanoscale TiC particles.The HRTEM results revealed the epitaxial growth of interfacial TiC on the surface of CNT(i.e.,CNT(0002)//TiC(200),and the formation of a semi-coherent interface between TiC and Cu matrix,which can effectively enhance the interfacial bonding strength and optimize load transfer efficiency of CNT.The independent in-situ TiC nanoparticles got into the grain interior through grain boundary migration,thereby significantly enhancing both strain hardening capacity and strength of the composite by fully utilizing the Orowan strengthening mechanism.Moreover,the enhanced bonding strength of the interface can also effectively suppress crack initiation and propagation,thereby improving the fracture toughness of the composite.The TiC-CNT/Cu composite with 1.2 vol.%CNT exhibited a tensile strength of 372 MPa,achieving a super high strengthening efficiency of 270,while simultaneously maintaining a remarkable ductility of 21.2%.Furthermore,the impact toughness of the TiC-CNT/Cu composite exhibited a significant enhancement of 70.7%compared to that of the CNT/Cu composite,reaching an impressive value of 251 kJ/m^(2),thereby demonstrating exceptional fracture toughness.Fully exploiting the synergistic strengthening effect of different nanophases can be an effective way to improve the comprehensive properties of MMCs.
基金supported by Beijing Natural Science Foundation under Grant L242006.
文摘The four-level nested neutral-point-clamped(4L-NNPC)inverter is a competitive topology among the various medium-voltage multilevel converters,and its main issue is flying-capacitor voltage unbalance.In this article,a novel carrier-interleaved pulse width modulation(CIPWM)method that satisfies the volt-sec balance principle is proposed with an advanced carrier distribution rule.By adopting the proposed CIPWM method,the redundant switching states of 4L-NNPC inverters can be evenly distributed into the output PWM waveform in each carrier period,and natural flying-capacitor voltage balance can be achieved.Furthermore,an active balancing strategy is also proposed to eliminate the voltage unbalance caused by nonideal factors,which is realized by simply adjusting the duty cycle and with no need to adjust the redundant switching states for 4L-NNPC inverters.The simulation and experimental results verify the effectiveness of the proposed CIPWM method and the flying-capacitor voltage balancing strategy.
基金Shanxi Province Traditional Chinese Medicine Administration Research Project(Grant No.2022ZYYC094)Science and technology innovation project of universities in Shanxi Province(Grant No.2022L342)+1 种基金Shanxi Leader Team of Medical Science&Technology Innovations(Grant No.2020TD02)Discipline Construction Project of Chinese Medicine Chemistry(Grant No.2024XKJS-25).
文摘The aim of this study is to observe the therapeutic effect of Inonotus Obliquus Polysaccharide(IOP)on chronic nonbacterial prostatitis(CNP)and its effect on the helper T cells(Th17)and regulatory T cells(Treg)immune imbalance.The CNP rat models established by injecting Xiaozhiling injection were randomly divided into the model group,cernilton(40 mg/kg,i.g.)group and low-dose(35 mg/kg,i.g.),medium-dose(70 mg/kg,i.g.)and high-dose(140 mg/kg,i.g.)groups,with the same volume of saline injected into the same site as the control group.The prostate’s wet weight and body mass served as the basis for calculating the prostate index.The serum level of prostate-specific antigen(PSA)was detected by ELISA and the histopathology of prostate tissue was detected by HE staining.The protein expression of Foxp3,ROR-γt and STAT3 in rat prostatic tissue was determined by Western blot.The levels of Th17 and Treg cells infiltrated into the spleen were measured by flow cytometry.The results showed that treatment with IOP significantly reduced the levels of prostate index and serum PSA,and attenuated the pathological injury of the prostate tissue induced by CNP.With respect to samples induced by CNP alone,IOP treatment repressed the increased mRNA levels of IL-6,IL-17,IL-21,IL-23,ROR-γt and STAT3 in prostate tissue,while increasing the mRNA levels of IL-10,TGF-βand Foxp3 in prostate tissue.Meanwhile,IOP treatment attenuated the upregulation of the protein expression levels of ROR-γt and STAT3 in prostate tissue.Additionally,the protein expression of Foxp3 in prostate tissue was increased in the IOP-treated group.Flow cytometry analysis further demonstrated that IOP treatment regulated the balance between Th17 and Treg cells in the spleen in rat with CNP.Our study is the first to elucidate that IOP has significant therapeutic effects on CNP through regulation of Th17/Treg balance.Collectively,the study provides evidence for the potential of IOP to treat CNP.