お? Following the theoretical result of Eliassen, the Sawyer-Eliassen equation for frontal circulations and the equation for forcing the meridional circulation within a circumpolar vortex are extended in isentropic ...お? Following the theoretical result of Eliassen, the Sawyer-Eliassen equation for frontal circulations and the equation for forcing the meridional circulation within a circumpolar vortex are extended in isentropic coordinates to describe the forcing of the azimuthally averaged mass-weighted radial-vertical circulation within translating extratropical and tropical cyclones. Several physical processes which are not evident in studies employing isobaric coordinates are isolated in this isentropic study. These processes include the effects of pressure torque, inertial torque and storm translation that are associated with the asymmetric structure in isentropic coordinates. This isentropic study also includes the effects of eddy angular momentum transport, diabatic heating and frictional torque that are common in both isentropic and isobaric studies. All of the processes are modulated by static, inertial and baroclinic stabilities. Consistent with the theoretical result of Eliassen, the numerical solution from this isentropic study shows that the roles of torque, diabatic heating and hydrodynamic stability in forcing the radial-vertical circulation within stable vortices are that 1) positive (negative) torque which results in the counterclockwise (clockwise) rotation of vortices also forces the outflow (inflow) branch of the radial-vertical circulation, 2) diabatic heating (cooling) forces the ascent (descent) branch of the radial-vertical circulation and 3) for given forcing, the weaker hydrodynamic stability results in a stronger radial-vertical circulation. It is the net inflow or convergence (net outflow or divergence), vertical motions and the associated redistribution of properties that favor the evolution of vortices with colorful weather events. Numerical solutions of this isentropic study are given in companion articles. The relatively important contribution of various physical processes to the forcing of the azimuthally-averaged mass-weighted radial-vertical circulation within different translating cyclones and in their different stages of development will be investigated.展开更多
This paper presents an extensive survey of the most commonly used tools for diagnosing unbalanced flow in the atmosphere, namely the Lagrangian Rossby number, Psi vector, divergence equation, nonlinear balance equatio...This paper presents an extensive survey of the most commonly used tools for diagnosing unbalanced flow in the atmosphere, namely the Lagrangian Rossby number, Psi vector, divergence equation, nonlinear balance equation, generalized omega-equation, and departure from fields obtained by potential vorticity (PV) inversion. The basic thoery, assumptions as well as implementation and limitations for each of the tools are all discussed. These tools are applied to high—resolution mesoscale model data to assess the role of unbalanced dynamics in the generation of a mesoscale gravity wave event over the East Coast of the United States. Comparison of these tools in this case study shows that these various methods agree to a large extent with each other though they differ in details. Key words Unbalanced flow - Geostrophic adjustment - Gravity waves - Nonlinear balance equation - Potential vorticity inversion - Omega equations - Rossby number This research was conducted under support from NSF grant ATM-9700626 of the United States. The numerical computations described herein were performed on the Cray T90 at the North Carolina Supercomputing Center and the Cray supercomputer at the NCAR Scientific Computing Division, which also provided the initialization fields for the MM5. Thanks are extended to Mark Stoelinga at University of Washington for the RIP post-processing package.展开更多
As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs us...As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs usually have the characteristics of rich adsorbed gas and obvious dynamic changes of porosity and permeability.A generalized material balance equation and the corresponding reserve evaluation method considering all the mechanisms for both shale gas reservoirs and CBM reservoirs are necessary.In this work,a generalized material balance equation(GMBE)considering the effects of critical desorption pressure,stress sensitivity,matrix shrinkage,water production,water influx,and solubility of natural gas in water is established.Then,by converting the GMBE to a linear relationship between two parameter groups related with known formation/fluid properties and dynamic performance data,the straight-line reserve evaluation method is proposed.By using the slope and the y-intercept of this straight line,the original adsorbed gas in place(OAGIP),original free gas in place(OFGIP),original dissolved gas in place(ODGIP),and the original gas in place(OGIP)can be quickly calculated.Third,two validation cases for shale gas reservoir and CBM reservoir are conducted using commercial reservoir simulator and the coalbed methane dynamic performance analysis software,respectively.Finally,two field studies in the Fuling shale gas field and the Baode CBM field are presented.Results show that the GMBE and the corresponding straight-line reserve evaluation method are rational,accurate,and effective for both shale gas reservoirs and CBM reservoirs.More detailed information about reserves of shale gas and CBM reservoirs can be clarified,and only the straight-line fitting approach is used to determine all kinds of reserves without iteration,proving that the proposed method has great advantages compared with other current methods.展开更多
Wave transmission and overtopping around nearshore breakwaters can have significant influence on the transmitted wave parameters,which affects wave conditions and sediment transportation and becomes the focus of desig...Wave transmission and overtopping around nearshore breakwaters can have significant influence on the transmitted wave parameters,which affects wave conditions and sediment transportation and becomes the focus of design in engineering.The objective of this paper is to present a simplified model to estimate these important wave parameters.This paper describes the incorporation of wave transmission and overtopping module into a wave model for multi-directional random wave transformation based on energy balance equation with the consideration of wave shoaling,refraction,diffraction,reflection and breaking.Wen's frequency spectrum and non-linear dispersion relation are also included in this model.The influence of wave parameters of transmitted waves through a smooth submerged breakwater has been considered in this model with an improved description of the transmitted wave spectrum of van der Meer et al.(2000) by Carevic et al.(2013).This improved wave model has been validated through available laboratory experiments.Then the verified model is applied to investigate the effect of wave transmission and overtopping on wave heights behind low-crested breakwaters in a project for nearshore area.Numerical calculations are carried out with and without consideration of the wave transmission and overtopping,and comparison of them indicates that there is a considerable difference in wave height and thus it is important to include wave transmission and overtopping in modelling nearshore wave field with the presence of low-crested breakwaters.Therefore,this model can provide a general estimate of the desired wave field parameters,which is adequate for engineers at the preliminary design stage of low-crested breakwaters.展开更多
Monte-Carlo (MC) method is widely adopted to take into account general dynamic equation (GDE) for particle coagulation, however popular MC method has high computation cost and statistical fatigue. A new Multi-Mont...Monte-Carlo (MC) method is widely adopted to take into account general dynamic equation (GDE) for particle coagulation, however popular MC method has high computation cost and statistical fatigue. A new Multi-Monte-Carlo (MMC) method, which has characteristics of time-driven MC method, constant number method and constant volume method, was promoted to solve GDE for coagulation. Firstly MMC method was described in details, including the introduction of weighted fictitious particle, the scheme of MMC method, the setting of time step, the judgment of the occurrence of coagulation event, the choice of coagulation partner and the consequential treatment of coagulation event. Secondly MMC method was validated by five special coagulation cases in which analytical solutions exist. The good agreement between the simulation results of MMC method and analytical solutions shows MMC method conserves high computation precision and has low computation cost. Lastly the different influence of different kinds of coagulation kernel on the process of coagulation was analyzed: constant coagulation kernel and Brownian coagulation kernel in continuum regime affect small particles much more than linear and quadratic coagulation kernel,whereas affect big particles much less than linear and quadratic coagulation kernel.展开更多
The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is present...The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.展开更多
In this paper the wave action balance equation in terms of frequency-direction spectrum is derived. A theoretical formulation is presented to generate an invariant frequency space to replace the varying wavenumber spa...In this paper the wave action balance equation in terms of frequency-direction spectrum is derived. A theoretical formulation is presented to generate an invariant frequency space to replace the varying wavenumber space through a Jacobian transformation in the wave action balance equation. The physical properties of the Jacobian incorporating the effects of water depths are discussed. The results provide a theoretical basis of wave action balance equations and ensure that the wave balance equations used in the SWAN or other numerical models are correct. It should be noted that the Jacobian is omitted in the wave action balance equations which are identical to a conventional action balance equation.展开更多
It is commonly known that the hydrodynamic equations can be derived from the Boltzmann equation. In this paper, we derive similar spin-dependent balance equations based on the spinor Boltzmann equation. Besides the us...It is commonly known that the hydrodynamic equations can be derived from the Boltzmann equation. In this paper, we derive similar spin-dependent balance equations based on the spinor Boltzmann equation. Besides the usual charge current, heat current, and pressure tensor, we also explore the characteristic spin accumulation and spin current as well as the spin-dependent pressure tensor and heat current in spintronics. The numerical results of these physical quantities are demonstrated using an example of spin-polarized transport through a mesoscopic ferromagnet.展开更多
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all pl...In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all plasma within a reactor is completely confined only by the reactor walls.However,in industrial plasma reactors for semiconductor manufacturing,the plasma is partially confined by internal reactor structures.We predict the effect of the open boundary area(A′_(L,eff))and ion escape velocity(u_(i))on electron temperature and density by developing new particle and energy balance equations.Theoretically,we found a low ion escape velocity(u_(i)/u_(B)≈0.2)and high open boundary area(A′_(L,eff)/A_(T,eff)≈0.6)to result in an approximately 38%increase in electron density and an 8%decrease in electron temperature compared to values in a fully bounded reactor.Additionally,we suggest that the velocity of ions passing through the open boundary should exceedω_(pi)λ_(De)under the condition E^(2)_(0)?(Φ/λ_(De))^(2).展开更多
Beginning with the explicitly covariant Maxwell equations in media, we deduce an explicitly covariant stress-energy-momentum balance equation in material media. Proceeding in this way we avoid mixing external fields a...Beginning with the explicitly covariant Maxwell equations in media, we deduce an explicitly covariant stress-energy-momentum balance equation in material media. Proceeding in this way we avoid mixing external fields and self fields, as occurs if one begins with Lorentz's law, the most usual approach appearing in textbooks. Indeed our deduction implies a generalized force density in which the total fields appear. As an application of the present deduction, we discuss briefly the Abraham-Minkowski controversy, showing its relation to open or closed electromagnetic systems. This approach will be interesting for scholars as well as graduate students interested in conceptual problems of relativistic electromagnetism.展开更多
On the morning of July 2, at the Sandton Convention Center in Johannesburg, Kobus van der Wath was addressing dozens of South Afri -- o can suppliers and buyers about the changes of China's role in the global supply...On the morning of July 2, at the Sandton Convention Center in Johannesburg, Kobus van der Wath was addressing dozens of South Afri -- o can suppliers and buyers about the changes of China's role in the global supply chain. Wath is a South African who has worked in Asia for 17 yeaxs. His company The Beijing Axis specializes in providing international bush^ess consultation and procurement services to foreign companies coming to China and to Chinese companies going overseas.展开更多
This paper introduces dynamic mode decomposition(DMD)as a novel approach to model the breakage kinetics of particulate systems.DMD provides a data-driven framework to identify a best-fit linear dynamics model from a s...This paper introduces dynamic mode decomposition(DMD)as a novel approach to model the breakage kinetics of particulate systems.DMD provides a data-driven framework to identify a best-fit linear dynamics model from a sequence of system measurement snapshots,bypassing the nontrivial task of determining appropriate mathemat-ical forms for the breakage kernel functions.A key innovation of our method is the instilling of physics-informed constraints into the DMD eigenmodes and eigenvalues,ensuring they adhere to the physical structure of particle breakage processes even under sparse measurement data.The integration of eigen-constraints is computationally aided by a zeroth-order global optimizer for solving the nonlinear,nonconvex optimization problem that elicits system dynamics from data.Our method is evaluated against the state-of-the-art optimized DMD algorithm using both generated data and real-world data of a batch grinding mill,showcasing over an order of magnitude lower prediction errors in data reconstruction and forecasting.展开更多
This study concerns the heat transfer processes during ice accretion on wires. The steady state heat balance equation assumed to describe the thermodynamics at the surface of a current heated wire subjected to icing i...This study concerns the heat transfer processes during ice accretion on wires. The steady state heat balance equation assumed to describe the thermodynamics at the surface of a current heated wire subjected to icing is obtained by analyzing and computing each terms of heat flux. The surface temperature of wire is derived from the heat balance equation, which gives out a proposed estimation of the current intensity to prevent the wire icing展开更多
The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave ener...The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave energy conservation models for the simulation of shallow water waves are introduced, with emphasis placed on the SWAN model, which takes use of the most advanced wave research achievements and has been applied to several theoretical and field conditions. The characteristics and applicability of the model, the finite difference numerical scheme of the action balance equation and its source terms computing methods are described in detail. The model has been verified with the propagation refraction numerical experiments for waves propagating in following and opposing currents; finally, the model is applied to the Haian Gulf area to simulate the wave height and wave period field there, and the results are compared with observed data.展开更多
Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents...Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents the sum of precipitation, evaporation, surface runoff, soil water and groundwater exchanges. Water storage change data during the period of 2003-2008 for the source region of the Yellow River were collected from Gravity Recovery and Climate Experiment (GRACE) satellite data. The monthly actual evaporation was estimated according to the water balance equation. The simulated actual evaporation was significantly consistent and correlative with not only the observed pan (20 cm) data, but also the simulated results of the version 2 of Simple Biosphere model. The average annual evaporation of the Tangnaihai Basin was 506.4 mm, where evaporation in spring, summer, autumn and winter was 130.9 mm, 275.2 mm, 74.3 mm and 26.1 mm, and accounted for 25.8%, 54.3%, 14.7% and 5.2% of the average annual evaporation, respectively, The precipitation increased slightly and the actual evaporation showed an obvious decrease. The water storage change of the source region of the Yellow River displayed an increase of 0.51 mm per month from 2003 to 2008, which indicated that the storage capacity has significantly increased, probably caused by the degradation of permafrost and the increase of the thickness of active layers. The decline of actual evaporation and the increase of water storage capacity resulted in the increase of river runoff.展开更多
A general CFD-PBE(computational fluid dynamics-population balance equation) solver for gas–liquid poly-dispersed flows of both low and high gas volume fractions is developed in OpenFOAM(open-source field operation an...A general CFD-PBE(computational fluid dynamics-population balance equation) solver for gas–liquid poly-dispersed flows of both low and high gas volume fractions is developed in OpenFOAM(open-source field operation and manipulation) in this work. Implementation of this solver in OpenFOAM is illustrated in detail. The PBE is solved with the cell average technique. The coupling between pressure and velocity is dealt with the transient PIMPLE algorithm, which is a merged PISO-SIMPLE(pressure implicit split operator-semi-implicit method for pressure-linked equations) algorithm. Results show generally good agreement with the published experimental data, whereas the modeling precision could be improved further with more sophisticated closure models for interfacial forces, the models for the bubble-induced turbulence and those for bubble coalescence and breakage.The results also indicate that the PBE could be solved out the PIMPLE loop to save much computation time while still preserving the time information on variables. This is important for CFD-PBE modeling of many actual gas–liquid problems, which are commonly high-turbulent flows with intrinsic transient and 3 D characteristics.展开更多
In this work,a flowing material balance equation(FMBE)is established for under saturated coalbed methane(CBM)reservoirs,which considers immobile free gas expansion effect at the dewatering stage.Based on the establish...In this work,a flowing material balance equation(FMBE)is established for under saturated coalbed methane(CBM)reservoirs,which considers immobile free gas expansion effect at the dewatering stage.Based on the established FMBE,five straight-line methods are proposed to determine the control area,initial water reserve,initial free gas reserve,initial adsorbed gas reserve,original gas in place,as well as permeability at the same time.Subsequently,the proposed FMBE methods for undersaturated CBM reservoirs are validated against a reservoir simulation software with and without considering free gas expansion.Finally,the proposed methods are applied in a field case when considering free gas expansion effect.Validation cases show that the straight-line relationships for the proposed five FMBE methods are excellent,and good agreements are obtained among the actual reserves and permeabilities and those evaluated by the proposed five FMBE methods,indicating the proposed five FMBE methods are effective and rational for CBM reservoirs.Results show that a small amount of free gas will result in a great deviation in reserve evaluation;hence,the immobile free gas expansion effect should be considered when establishing the material balance equation of undersaturated CBM reservoirs at the dewatering stage.展开更多
When vegetation and bare soil coexist, in consideration of some ecological conditions of plant, the total evapotranspiration rate of the oasis and the temperature of vegetation and soil in different climatic and ecolo...When vegetation and bare soil coexist, in consideration of some ecological conditions of plant, the total evapotranspiration rate of the oasis and the temperature of vegetation and soil in different climatic and ecological conditions are calculated by using the thermal energy balance equations of vegetation and soil The evapotranspiration rate depends on climatic and ecological conditions, in some conditions, quasi-bifurcation and multi-equilibrium state appear in the solutions of evapotranspiration rate in the areas covered by small part of vegetation.展开更多
The purpose is to reestablish rather complete basic balance equations and boundary conditions for polar thermomechanical continua based on the restudy of the traditional theories of micropolar thermoelasticity and the...The purpose is to reestablish rather complete basic balance equations and boundary conditions for polar thermomechanical continua based on the restudy of the traditional theories of micropolar thermoelasticity and thermopiezoelectricity . The equations of motion and the local balance equation of energy rate for micropolar thermoelasticity are derived from the rather complete principle of virtual power. The equations of motion, the balance equation of entropy and all boundary conditions are derived from the rather complete Hamilton principle . The new balance equations of momentum and energy rate which are essentially different from the existing results are presented. The corresponding results of micromorphic thermoelasticity and couple stress elastodynamics may be naturally obtained by the transition and the reduction from the micropolar case , respectively . Finally , the results of micropolar thermopiezoelectricity are directly given .展开更多
文摘お? Following the theoretical result of Eliassen, the Sawyer-Eliassen equation for frontal circulations and the equation for forcing the meridional circulation within a circumpolar vortex are extended in isentropic coordinates to describe the forcing of the azimuthally averaged mass-weighted radial-vertical circulation within translating extratropical and tropical cyclones. Several physical processes which are not evident in studies employing isobaric coordinates are isolated in this isentropic study. These processes include the effects of pressure torque, inertial torque and storm translation that are associated with the asymmetric structure in isentropic coordinates. This isentropic study also includes the effects of eddy angular momentum transport, diabatic heating and frictional torque that are common in both isentropic and isobaric studies. All of the processes are modulated by static, inertial and baroclinic stabilities. Consistent with the theoretical result of Eliassen, the numerical solution from this isentropic study shows that the roles of torque, diabatic heating and hydrodynamic stability in forcing the radial-vertical circulation within stable vortices are that 1) positive (negative) torque which results in the counterclockwise (clockwise) rotation of vortices also forces the outflow (inflow) branch of the radial-vertical circulation, 2) diabatic heating (cooling) forces the ascent (descent) branch of the radial-vertical circulation and 3) for given forcing, the weaker hydrodynamic stability results in a stronger radial-vertical circulation. It is the net inflow or convergence (net outflow or divergence), vertical motions and the associated redistribution of properties that favor the evolution of vortices with colorful weather events. Numerical solutions of this isentropic study are given in companion articles. The relatively important contribution of various physical processes to the forcing of the azimuthally-averaged mass-weighted radial-vertical circulation within different translating cyclones and in their different stages of development will be investigated.
文摘This paper presents an extensive survey of the most commonly used tools for diagnosing unbalanced flow in the atmosphere, namely the Lagrangian Rossby number, Psi vector, divergence equation, nonlinear balance equation, generalized omega-equation, and departure from fields obtained by potential vorticity (PV) inversion. The basic thoery, assumptions as well as implementation and limitations for each of the tools are all discussed. These tools are applied to high—resolution mesoscale model data to assess the role of unbalanced dynamics in the generation of a mesoscale gravity wave event over the East Coast of the United States. Comparison of these tools in this case study shows that these various methods agree to a large extent with each other though they differ in details. Key words Unbalanced flow - Geostrophic adjustment - Gravity waves - Nonlinear balance equation - Potential vorticity inversion - Omega equations - Rossby number This research was conducted under support from NSF grant ATM-9700626 of the United States. The numerical computations described herein were performed on the Cray T90 at the North Carolina Supercomputing Center and the Cray supercomputer at the NCAR Scientific Computing Division, which also provided the initialization fields for the MM5. Thanks are extended to Mark Stoelinga at University of Washington for the RIP post-processing package.
基金supported by Science and Technology Major Project of Shanxi Province,China(No.20201101002)Science and Technology Major Project of China,China(No.2016ZX05043002)+1 种基金National Natural Science Foundation Project of China,China(No.51874319)Science Foundation of China University of Petroleum(Beijing),China(No.2462020QNXZ003)to support part of this work
文摘As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs usually have the characteristics of rich adsorbed gas and obvious dynamic changes of porosity and permeability.A generalized material balance equation and the corresponding reserve evaluation method considering all the mechanisms for both shale gas reservoirs and CBM reservoirs are necessary.In this work,a generalized material balance equation(GMBE)considering the effects of critical desorption pressure,stress sensitivity,matrix shrinkage,water production,water influx,and solubility of natural gas in water is established.Then,by converting the GMBE to a linear relationship between two parameter groups related with known formation/fluid properties and dynamic performance data,the straight-line reserve evaluation method is proposed.By using the slope and the y-intercept of this straight line,the original adsorbed gas in place(OAGIP),original free gas in place(OFGIP),original dissolved gas in place(ODGIP),and the original gas in place(OGIP)can be quickly calculated.Third,two validation cases for shale gas reservoir and CBM reservoir are conducted using commercial reservoir simulator and the coalbed methane dynamic performance analysis software,respectively.Finally,two field studies in the Fuling shale gas field and the Baode CBM field are presented.Results show that the GMBE and the corresponding straight-line reserve evaluation method are rational,accurate,and effective for both shale gas reservoirs and CBM reservoirs.More detailed information about reserves of shale gas and CBM reservoirs can be clarified,and only the straight-line fitting approach is used to determine all kinds of reserves without iteration,proving that the proposed method has great advantages compared with other current methods.
基金supported by the NSFC-Shandong Joint Fund Project(No.U1706226)Research Award Fund for Outstanding Young and Middle-aged Scientists of Shandong Province(No.ZR2016EEB06)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents
文摘Wave transmission and overtopping around nearshore breakwaters can have significant influence on the transmitted wave parameters,which affects wave conditions and sediment transportation and becomes the focus of design in engineering.The objective of this paper is to present a simplified model to estimate these important wave parameters.This paper describes the incorporation of wave transmission and overtopping module into a wave model for multi-directional random wave transformation based on energy balance equation with the consideration of wave shoaling,refraction,diffraction,reflection and breaking.Wen's frequency spectrum and non-linear dispersion relation are also included in this model.The influence of wave parameters of transmitted waves through a smooth submerged breakwater has been considered in this model with an improved description of the transmitted wave spectrum of van der Meer et al.(2000) by Carevic et al.(2013).This improved wave model has been validated through available laboratory experiments.Then the verified model is applied to investigate the effect of wave transmission and overtopping on wave heights behind low-crested breakwaters in a project for nearshore area.Numerical calculations are carried out with and without consideration of the wave transmission and overtopping,and comparison of them indicates that there is a considerable difference in wave height and thus it is important to include wave transmission and overtopping in modelling nearshore wave field with the presence of low-crested breakwaters.Therefore,this model can provide a general estimate of the desired wave field parameters,which is adequate for engineers at the preliminary design stage of low-crested breakwaters.
文摘Monte-Carlo (MC) method is widely adopted to take into account general dynamic equation (GDE) for particle coagulation, however popular MC method has high computation cost and statistical fatigue. A new Multi-Monte-Carlo (MMC) method, which has characteristics of time-driven MC method, constant number method and constant volume method, was promoted to solve GDE for coagulation. Firstly MMC method was described in details, including the introduction of weighted fictitious particle, the scheme of MMC method, the setting of time step, the judgment of the occurrence of coagulation event, the choice of coagulation partner and the consequential treatment of coagulation event. Secondly MMC method was validated by five special coagulation cases in which analytical solutions exist. The good agreement between the simulation results of MMC method and analytical solutions shows MMC method conserves high computation precision and has low computation cost. Lastly the different influence of different kinds of coagulation kernel on the process of coagulation was analyzed: constant coagulation kernel and Brownian coagulation kernel in continuum regime affect small particles much more than linear and quadratic coagulation kernel,whereas affect big particles much less than linear and quadratic coagulation kernel.
基金Supported by the International Cooperation and Exchanges Foundation of Henan Province (084300510060)the Youth Science Foundation of Henan University of Science and Technology of China (2008QN026)
文摘The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.
基金supported by the Science Council,with contract number NSC95-2221-E-006-462Research Center of Ocean Environment and Technology,under the contract NCKU-NSYSU
文摘In this paper the wave action balance equation in terms of frequency-direction spectrum is derived. A theoretical formulation is presented to generate an invariant frequency space to replace the varying wavenumber space through a Jacobian transformation in the wave action balance equation. The physical properties of the Jacobian incorporating the effects of water depths are discussed. The results provide a theoretical basis of wave action balance equations and ensure that the wave balance equations used in the SWAN or other numerical models are correct. It should be noted that the Jacobian is omitted in the wave action balance equations which are identical to a conventional action balance equation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274378)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB08-3)the MOST of China(Grant No.2013CB933401)
文摘It is commonly known that the hydrodynamic equations can be derived from the Boltzmann equation. In this paper, we derive similar spin-dependent balance equations based on the spinor Boltzmann equation. Besides the usual charge current, heat current, and pressure tensor, we also explore the characteristic spin accumulation and spin current as well as the spin-dependent pressure tensor and heat current in spintronics. The numerical results of these physical quantities are demonstrated using an example of spin-polarized transport through a mesoscopic ferromagnet.
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
文摘In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all plasma within a reactor is completely confined only by the reactor walls.However,in industrial plasma reactors for semiconductor manufacturing,the plasma is partially confined by internal reactor structures.We predict the effect of the open boundary area(A′_(L,eff))and ion escape velocity(u_(i))on electron temperature and density by developing new particle and energy balance equations.Theoretically,we found a low ion escape velocity(u_(i)/u_(B)≈0.2)and high open boundary area(A′_(L,eff)/A_(T,eff)≈0.6)to result in an approximately 38%increase in electron density and an 8%decrease in electron temperature compared to values in a fully bounded reactor.Additionally,we suggest that the velocity of ions passing through the open boundary should exceedω_(pi)λ_(De)under the condition E^(2)_(0)?(Φ/λ_(De))^(2).
文摘Beginning with the explicitly covariant Maxwell equations in media, we deduce an explicitly covariant stress-energy-momentum balance equation in material media. Proceeding in this way we avoid mixing external fields and self fields, as occurs if one begins with Lorentz's law, the most usual approach appearing in textbooks. Indeed our deduction implies a generalized force density in which the total fields appear. As an application of the present deduction, we discuss briefly the Abraham-Minkowski controversy, showing its relation to open or closed electromagnetic systems. This approach will be interesting for scholars as well as graduate students interested in conceptual problems of relativistic electromagnetism.
文摘On the morning of July 2, at the Sandton Convention Center in Johannesburg, Kobus van der Wath was addressing dozens of South Afri -- o can suppliers and buyers about the changes of China's role in the global supply chain. Wath is a South African who has worked in Asia for 17 yeaxs. His company The Beijing Axis specializes in providing international bush^ess consultation and procurement services to foreign companies coming to China and to Chinese companies going overseas.
基金supported by the Ramanujan Fellowship from the Science and Engineering Research Board,Government of India(Grant No.RJF/2022/000115).
文摘This paper introduces dynamic mode decomposition(DMD)as a novel approach to model the breakage kinetics of particulate systems.DMD provides a data-driven framework to identify a best-fit linear dynamics model from a sequence of system measurement snapshots,bypassing the nontrivial task of determining appropriate mathemat-ical forms for the breakage kernel functions.A key innovation of our method is the instilling of physics-informed constraints into the DMD eigenmodes and eigenvalues,ensuring they adhere to the physical structure of particle breakage processes even under sparse measurement data.The integration of eigen-constraints is computationally aided by a zeroth-order global optimizer for solving the nonlinear,nonconvex optimization problem that elicits system dynamics from data.Our method is evaluated against the state-of-the-art optimized DMD algorithm using both generated data and real-world data of a batch grinding mill,showcasing over an order of magnitude lower prediction errors in data reconstruction and forecasting.
文摘This study concerns the heat transfer processes during ice accretion on wires. The steady state heat balance equation assumed to describe the thermodynamics at the surface of a current heated wire subjected to icing is obtained by analyzing and computing each terms of heat flux. The surface temperature of wire is derived from the heat balance equation, which gives out a proposed estimation of the current intensity to prevent the wire icing
基金"333"Project Scientific Research Foundation of Jiangsu ProvinceScience Fundation of Hohai University(3853)
文摘The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave energy conservation models for the simulation of shallow water waves are introduced, with emphasis placed on the SWAN model, which takes use of the most advanced wave research achievements and has been applied to several theoretical and field conditions. The characteristics and applicability of the model, the finite difference numerical scheme of the action balance equation and its source terms computing methods are described in detail. The model has been verified with the propagation refraction numerical experiments for waves propagating in following and opposing currents; finally, the model is applied to the Haian Gulf area to simulate the wave height and wave period field there, and the results are compared with observed data.
基金funded by the Global Change Research Program of China (2010CB951401)the National Natural Science Foundation of China (41030638, 41121001, 41030527,41130641,and 41201025)the One Hundred Talents Program of the Chinese Academy of Sciences
文摘Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents the sum of precipitation, evaporation, surface runoff, soil water and groundwater exchanges. Water storage change data during the period of 2003-2008 for the source region of the Yellow River were collected from Gravity Recovery and Climate Experiment (GRACE) satellite data. The monthly actual evaporation was estimated according to the water balance equation. The simulated actual evaporation was significantly consistent and correlative with not only the observed pan (20 cm) data, but also the simulated results of the version 2 of Simple Biosphere model. The average annual evaporation of the Tangnaihai Basin was 506.4 mm, where evaporation in spring, summer, autumn and winter was 130.9 mm, 275.2 mm, 74.3 mm and 26.1 mm, and accounted for 25.8%, 54.3%, 14.7% and 5.2% of the average annual evaporation, respectively, The precipitation increased slightly and the actual evaporation showed an obvious decrease. The water storage change of the source region of the Yellow River displayed an increase of 0.51 mm per month from 2003 to 2008, which indicated that the storage capacity has significantly increased, probably caused by the degradation of permafrost and the increase of the thickness of active layers. The decline of actual evaporation and the increase of water storage capacity resulted in the increase of river runoff.
基金Supported by the National Key Research and Development Program(2016YFB0301702)National Natural Science Foundation of China(21776284,21476236)+1 种基金Key Research Program of Frontier Sciences,CAS(QYZDJ-SSW-JSC030)Jiangsu National Synergetic Innovation Center for Advanced Materials
文摘A general CFD-PBE(computational fluid dynamics-population balance equation) solver for gas–liquid poly-dispersed flows of both low and high gas volume fractions is developed in OpenFOAM(open-source field operation and manipulation) in this work. Implementation of this solver in OpenFOAM is illustrated in detail. The PBE is solved with the cell average technique. The coupling between pressure and velocity is dealt with the transient PIMPLE algorithm, which is a merged PISO-SIMPLE(pressure implicit split operator-semi-implicit method for pressure-linked equations) algorithm. Results show generally good agreement with the published experimental data, whereas the modeling precision could be improved further with more sophisticated closure models for interfacial forces, the models for the bubble-induced turbulence and those for bubble coalescence and breakage.The results also indicate that the PBE could be solved out the PIMPLE loop to save much computation time while still preserving the time information on variables. This is important for CFD-PBE modeling of many actual gas–liquid problems, which are commonly high-turbulent flows with intrinsic transient and 3 D characteristics.
基金supported by the National Science and Technology Major Projects of China(No.2016ZX05042 and No.2017ZX05039)the National Natural Science Foundation Projects of China(No.51504269 and No.51490654)Science Foundation of China University of Petroleum,Beijing(No.C201605)to support part of this work。
文摘In this work,a flowing material balance equation(FMBE)is established for under saturated coalbed methane(CBM)reservoirs,which considers immobile free gas expansion effect at the dewatering stage.Based on the established FMBE,five straight-line methods are proposed to determine the control area,initial water reserve,initial free gas reserve,initial adsorbed gas reserve,original gas in place,as well as permeability at the same time.Subsequently,the proposed FMBE methods for undersaturated CBM reservoirs are validated against a reservoir simulation software with and without considering free gas expansion.Finally,the proposed methods are applied in a field case when considering free gas expansion effect.Validation cases show that the straight-line relationships for the proposed five FMBE methods are excellent,and good agreements are obtained among the actual reserves and permeabilities and those evaluated by the proposed five FMBE methods,indicating the proposed five FMBE methods are effective and rational for CBM reservoirs.Results show that a small amount of free gas will result in a great deviation in reserve evaluation;hence,the immobile free gas expansion effect should be considered when establishing the material balance equation of undersaturated CBM reservoirs at the dewatering stage.
基金National Key Project of Fundamental Research "The ecological environment evolution and control in western China arid area"! (G
文摘When vegetation and bare soil coexist, in consideration of some ecological conditions of plant, the total evapotranspiration rate of the oasis and the temperature of vegetation and soil in different climatic and ecological conditions are calculated by using the thermal energy balance equations of vegetation and soil The evapotranspiration rate depends on climatic and ecological conditions, in some conditions, quasi-bifurcation and multi-equilibrium state appear in the solutions of evapotranspiration rate in the areas covered by small part of vegetation.
基金the National Natural Science Foundation of China (10072024) the Research Foundation of Liaoning Education Committee (990111001)
文摘The purpose is to reestablish rather complete basic balance equations and boundary conditions for polar thermomechanical continua based on the restudy of the traditional theories of micropolar thermoelasticity and thermopiezoelectricity . The equations of motion and the local balance equation of energy rate for micropolar thermoelasticity are derived from the rather complete principle of virtual power. The equations of motion, the balance equation of entropy and all boundary conditions are derived from the rather complete Hamilton principle . The new balance equations of momentum and energy rate which are essentially different from the existing results are presented. The corresponding results of micromorphic thermoelasticity and couple stress elastodynamics may be naturally obtained by the transition and the reduction from the micropolar case , respectively . Finally , the results of micropolar thermopiezoelectricity are directly given .