期刊文献+
共找到31,916篇文章
< 1 2 250 >
每页显示 20 50 100
Development and characterization of bacterial wilt-resistant synthetic polyploid peanuts 被引量:1
1
作者 Pei Du Fanpei Zeng +12 位作者 Qian Wang Lijuan Miao Feiyan Qi Meili Yang Xiao Wang Hua Liu Guoquan Chen Liuyang Fu Suoyi Han Ziqi Sun Li Qin Wenzhao Dong Xinyou Zhang 《The Crop Journal》 2025年第1期125-134,共10页
Wild peanut(Arachis)species are promising sources of disease resistance for improving peanut cultivars.The objective of this study was to assess cross-compatibility among cultivated and wild peanuts in crosses between... Wild peanut(Arachis)species are promising sources of disease resistance for improving peanut cultivars.The objective of this study was to assess cross-compatibility among cultivated and wild peanuts in crosses between eight peanut cultivars and 27 wild species carrying the A,B,E,Ex,F,K,P,and H genomes.Embryo culture and chromosome doubling led to polyploids representing hybrids between cultivated peanut and A.stenosperma,A.macedoi,A.duranensis,A.villosa,and A.diogoi.The first two showed greater resistance to bacterial wilt than their cultivated parents.DNA markers were developed for verifying the hybrids and for identifying translocation or introgression lines with alien chromosome fragments. 展开更多
关键词 PEANUT Wild species Cross compatibility POLYPLOIDS bacterial wilt
在线阅读 下载PDF
Rice-fish coculture without phosphorus addition improves phosphorus availability in paddy soil by regulating phosphorus fraction partitioning and alkaline phosphomonoesterase-encoding bacterial community 被引量:1
2
作者 Xing LIU Yuting CHEN +4 位作者 Hongjun ZHENG Daolin SUN Jiaen ZHANG Qi JIA Qi CHEN 《Pedosphere》 2025年第4期715-727,共13页
Rice-fish coculture(RFC)has aroused extensive concern for its contribution to food security and resource conservation,but whether it can improve soil phosphorus(P)availability and affect microbe-mediated P turnover re... Rice-fish coculture(RFC)has aroused extensive concern for its contribution to food security and resource conservation,but whether it can improve soil phosphorus(P)availability and affect microbe-mediated P turnover remains elusive.Herein,we conducted a microcosm experiment to assess the impacts of RFC combined with(50 mg P kg^(-1)as KH2PO4)and without inorganic P addition on P fractions,P availability,and phoD-harboring bacterial community composition.The results revealed that RFC without P addition significantly improved P availability and phosphatase activity in paddy soil,while soil available P(AP),pH,and microbial biomass P(MBP)contributed to regulating P fractions.Moreover,the phoD-harboring bacterial abundance was linked to phosphatase activity,AP,total carbon(TC),and total P(TP)contents,and the ratios of TC to total nitrogen(TN)and TN to TP.We also found that the keystone taxa of phoD-harboring bacteria contributed to phosphatase production as well as organic P mineralization,thereby improving P availability.Our findings suggest that RFC without P addition is beneficial for promoting the expression of phoD-harboring bacterial functions to improve the capacity of P mineralization.Overall,our study provides insights into the responses of phoD-harboring bacterial functions for P turnover to RFC combined with and without P addition,showing the potential utilization of P resources in agricultural soil and the contribution of phosphatase activity to P acquisition in agriculture ecosystem. 展开更多
关键词 bacterial community composition microbial biomass phosphorus phoD-harboring bacteria phosphatase activity phosphorus mineralization
原文传递
ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis 被引量:1
3
作者 Shu Sian HOW Sheila NATHAN +1 位作者 Su Datt LAM Sylvia CHIENG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 2025年第1期58-75,共18页
Adenosine triphosphate(ATP)-binding cassette(ABC)transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer,against the concentrat... Adenosine triphosphate(ATP)-binding cassette(ABC)transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer,against the concentration gradient.These transporters comprise two highly conserved nucleotide-binding domains(NBDs)and two transmembrane domains(TMDs).Unlike ABC exporters,prokaryotic ABC importers require an additional substrate-binding protein(SBP)as a recognition site for specific substrate translocation.The discovery of a large number of ABC systems in bacterial pathogens revealed that these transporters are crucial for the establishment of bacterial infections.The existing literature has highlighted the roles of ABC transporters in bacterial growth,pathogenesis,and virulence.These roles include importing essential nutrients required for a variety of cellular processes and exporting outer membrane-associated virulence factors and antimicrobial substances.This review outlines the general structures and classification of ABC systems to provide a comprehensive view of the activities and roles of ABC transporters associated with bacterial virulence and pathogenesis during infection. 展开更多
关键词 ATP-binding cassette(ABC)transporter bacterial pathogenesis VIRULENCE
原文传递
Boosting charge transfer at inorganic/organic S-scheme interface for photo-Fenton degradation of antibiotics and bacterial inactivation 被引量:1
4
作者 Haotian Qin Yuxin Huang +2 位作者 Qiang Cheng Suding Yan Kai Wang 《Chinese Journal of Catalysis》 2025年第5期106-117,共12页
Solar-driven Fenton-like reactions are promising strategies for degrading pharmaceutical wastewater to address environmental challenges and antibiotic pollution.However,its efficacy is limited by suboptimal light abso... Solar-driven Fenton-like reactions are promising strategies for degrading pharmaceutical wastewater to address environmental challenges and antibiotic pollution.However,its efficacy is limited by suboptimal light absorption efficiency,rapid charge recombination,and inadequate interfacial charge transfer.In this study,an inorganic/organic S-scheme photo-Fenton system of pseudobrookite/carbon nitride(FTOCN)was synthesized via a hydrothermally coupled calcination process for the effective purification of tetracycline antibiotics under visible-light irradiation.The optimized FTOCN-2 heterostructure exhibits a significantly enhanced TC degradation capacity of 90%within 60 min.The rate constant of FTOCN-2 is 1.6 and 5.2 times greater than those of FTO and CN,respectively.Furthermore,FTOCN exhibits high antibacterial efficacy,highlighting its potential application in the purification of natural water.Measurements via a range of analytical techniques,including Kelvin probe force microscopy,density functional theory calculations,in situ X-ray photoelectron spectroscopy,and femtosecond transient absorption spectroscopy,corroborate the S-scheme mechanism.This study provides a novel perspective for the development of photo-Fenton systems with S-scheme heterojunctions for water purification. 展开更多
关键词 Photo-Fenton reaction Inorganic/organic heterojunction Antibiotics degradation bacterial inactivation S-scheme mechanism
在线阅读 下载PDF
Enhancing resistance to bacterial blight in rice using CRISPR-based base editing technology 被引量:1
5
作者 Chenhao Li Bo Liu +1 位作者 Hansong Dong Bing Yang 《The Crop Journal》 2025年第1期115-124,共10页
Bacterial blight(BB),caused by Xanthomonas oryzae pathovar oryzae(Xoo),poses a significant threat to rice production,particularly in Asia and West Africa.Breeding resistance against BB in elite rice varieties is cruci... Bacterial blight(BB),caused by Xanthomonas oryzae pathovar oryzae(Xoo),poses a significant threat to rice production,particularly in Asia and West Africa.Breeding resistance against BB in elite rice varieties is crucial to advancing rice breeding program and supporting smallholder farmers.Transcription Activator-Like effectors(TALes)are key virulence factors in Xoo,with some targeting the susceptibility(S)genes such as the sugar transporter SWEET genes in rice.Among these,SWEET14 is an important S gene,with its promoter bound by the TALe TalC which exists across all sequenced African Xoo isolates.In the present study,we utilized CRISPR/Cas9-based cytidine and adenine base editors to alter the effector binding element(EBE)of TalC in the promoter of SWEET14 in rice cultivars Kitaake,IR24,and Zhonghua 11.Mutations with C to T changes in EBE led to reduced SWEET14 induction by TalC-containing Xoo strains,resulting in resistance to African Xoo isolates reliant on TalC for virulence.Conversely,A to G changes retained SWEET14 inducibility and susceptibility to Xoo in edited lines.Importantly,no off-target mutations were detected at predicted sites,and the edited lines exhibited no obvious defects in major agronomic traits in Kitaake.These results underscore the effectiveness of base editing systems for both molecular biology research and crop improvement endeavors. 展开更多
关键词 Base editing Base editors CBE and ABE Rice improvement bacterial blight resistance
在线阅读 下载PDF
Combined Effect of Honey from Central West Brazil on Bacterial Membrane Permeability
6
作者 Mariana Lenina Menezes Aleixo Joziane da Cruz Mendonça +2 位作者 Rafael Bruno Rocha Benevides Larissa Maria Scalon Lemos Carla Galbiati 《Journal of Biosciences and Medicines》 2025年第1期316-337,共22页
Honey, an apicultural product with a complex chemical composition, contains numerous bioactive compounds with potential antimicrobial effects. This study investigated the effect of Apis mellifera honey from Brazil’s ... Honey, an apicultural product with a complex chemical composition, contains numerous bioactive compounds with potential antimicrobial effects. This study investigated the effect of Apis mellifera honey from Brazil’s Central-West Region, combined with antibiotics, on bacterial membrane permeability, exploring the contributions of bioactive compounds and the botanical origin of honey. Six fresh Apis mellifera honey samples and their fractions (hexane and ethyl acetate) were analyzed, for a total of 18 samples. The bacteria Staphylococcus epidermidis, Helicobacter pylori and Enterococcus faecalis were used for antibacterial activity tests, which included minimum inhibitory concentration (MIC) determination and synergistic effect (checkerboard) assays. The total polyphenol and flavonoid contents were quantified, and the botanical origin was determined based on pollen analysis. The tested honey samples significantly affected bacterial membrane permeability when combined with rifampicin and clarithromycin. Although many honey-derived bioactive compounds, when isolated, did not exhibit significant activity against these bacteria, the additive or synergistic effect of multiple compounds acting on different targets appears to potentiate the antibacterial action. Descriptive statistical analysis, including means and 95% confidence intervals, confirmed the relevance of the findings. This study has provided an important discovery: Honey has an effect on bacterial membrane permeability, although the specific mechanisms involved in this process require further investigation. 展开更多
关键词 HONEY Mechanism of Action Antibacterial bacterial Membrane Permeability Bioactive Compounds
在线阅读 下载PDF
Nose-to-brain delivery of gold nanozyme with cascade effect for bacterial meningitis therapy
7
作者 Shu-Yue Deng Xin-Yu Zhou +10 位作者 Xiao-Peng Zou Fang Tang Dong Yang Cai-Xia Sun Jun Luo Xing Ge Jia-Ying Zhu Tian-Ye Fang Cai-Feng Yue Yan-Min Ju Jian-Jun Dai 《Rare Metals》 2025年第6期4014-4024,共11页
The presence of the blood–brain barrier limits the drug concentration in the brain,while low concentrations of antibiotics make it difficult to kill infecting bacteria and tends to induce drug resistance,making the c... The presence of the blood–brain barrier limits the drug concentration in the brain,while low concentrations of antibiotics make it difficult to kill infecting bacteria and tends to induce drug resistance,making the clinical treatment of bacterial meningitis challenging.Herein,a nose-to-brain delivery strategy of small-sized nanozyme has been fabricated for combating bacterial meningitis,to overcome the low drug concentration and drug resistance.This strategy was achieved by a proteinsupported Au nanozyme(ANZ).With a particle size of less than 10 nm,it possesses both glucose oxidase-like and peroxidase-like activities and can generate large amounts of reactive oxygen species through a cascade effect without the addition of external H_(2)O_(2).Benefiting from the cascade catalytic amplification effect generated by its dual enzymelike activities,ANZ shows significant broad-spectrum antibacterial activity without inducing bacterial resistance in vitro.Notably,small-sized ANZ exhibits higher brain entry efficiency and greater accumulation after intranasal administration compared to oral or intravenous administration.In a mouse model of bacterial meningitis,the mice treated with ANZ had lower bacterial loads in the brain and higher survival and clinical behavior scores compared to the classical antibiotic ceftriaxone.Additionally,the meningitis mice exhibited undamaged cognitive and behavioral abilities,indicating the excellent biocompatibility of ANZ.The above results demonstrate that nose-to-brain delivery of ANZ exhibits high intracerebral accumulation,strong antibacterial efficacy and does not lead to bacterial resistance.It holds broad prospects for the treatment of bacterial meningitis. 展开更多
关键词 Gold nanozyme bacterial meningitis Noseto-brain delivery bacterial resistance
原文传递
Compositional and functional succession of soil bacterial communities during long-term rice cultivation on saline-alkali soils:Insights derived from a new perspective on core bacterial taxa
8
作者 Yu SUN Li JI +4 位作者 Jingjing CHANG Yingxin LI Hongbin WANG Deliang LU Chunjie TIAN 《Pedosphere》 2025年第4期641-654,共14页
The conversion of saline-alkali soils into paddy fields for long-term rice cultivation involves multiple disturbances,and as a result,soil microbial communities are altered to adapt to changing environmental condition... The conversion of saline-alkali soils into paddy fields for long-term rice cultivation involves multiple disturbances,and as a result,soil microbial communities are altered to adapt to changing environmental conditions.However,a comprehensive understanding of the succession of soil bacterial communities that occurs during this process is still lacking.In the present study,we utilized data obtained from paddy fields of different rice cultivation years(0-23 years)to investigate the compositional and functional succession of soil bacterial communities.We focused on core bacterial taxa that were specifically enriched at different successional stages.Generalized joint attribute modeling(GJAM)was used to identify core bacterial taxa.Results indicated that the bare saline-alkali soil(0 year,prior to any rice cultivation)shared few core amplicon sequence variants(ASVs)with paddy fields.In the bare saline-alkali soil,Longimicrobiaceae from the phylum Gemmatimonadetes was dominant,while the dominance was subsequently replaced by Burkholderiaceae and Pedosphaeraceae--phyla affiliated with Proteobacteria and Verrucomicrobia--after 5 and 23 years of rice cultivation,respectively.The relative abundances of nitrogen metabolism functions in the core bacterial communities of the bare saline-alkali soil were higher than those at other successional stages,while sulfur metabolism functions exhibited the opposite trend.These indicated that the role of the core bacterial taxa in mediating nutrient cycling also evolved and adapted to changing soil conditions as rice cultivation was established.Redundancy analysis(RDA)indicated that the composition of the core bacterial community in paddy fields with rice cultivation for 0,2 and 4,6,8,10,and 12,and 20 and 23 years were driven by soil nitrate nitrogen content,pH,available phosphorus content,and the ratio of total carbon to total nitrogen,respectively.In summary,the present study provides insights into the succession of soil bacterial communities and core bacterial taxa that occurs during long-term rice cultivation. 展开更多
关键词 bacterial compositional analysis ecosystem functions generalized joint attribute modeling paddy field soil bacterial succession
原文传递
Unveiling the impact:COVID-19's influence on bacterial resistance in the Kingdom of Bahrain
9
作者 Nermin K Saeed Safiya K Almusawi +1 位作者 Noor A Albalooshi Mohammed Al-Beltagi 《World Journal of Virology》 2025年第1期83-98,共16页
BACKGROUND Antibiotic resistance is a growing global health threat,and understanding local trends in bacterial isolates and their susceptibility patterns is crucial for effective infection control and antimicrobial st... BACKGROUND Antibiotic resistance is a growing global health threat,and understanding local trends in bacterial isolates and their susceptibility patterns is crucial for effective infection control and antimicrobial stewardship.The coronavirus disease 2019(COVID-19)pandemic has introduced additional complexities,potentially influencing these patterns.AIM To analyze trends in bacterial isolates and their antibiotic susceptibility patterns at Salmaniya Medical Complex from 2018 to 2023,with a specific focus on the impact of the COVID-19 pandemic on these trends.METHODS A retrospective analysis of microbiological data was conducted,covering the period from 2018 to 2023.The study included key bacterial pathogens such as Escherichia coli(E.coli),Klebsiella pneumoniae,Acinetobacter baumannii,Pseudomonas aeruginosa,and Staphylococcus aureus,among others.The antibiotic susceptibility profiles of these isolates were assessed using standard laboratory methods.To contextualize the findings,the findings were compared with similar studies from other regions,including China,India,Romania,Saudi Arabia,the United Arab Emirates,Malaysia,and United States.RESULTS The study revealed fluctuating trends in the prevalence of bacterial isolates,with notable changes during the COVID-19 pandemic.For example,a significant increase in the prevalence of Staphylococcus aureus was observed during the pandemic years,while the prevalence of E.coli showed a more variable pattern.Antibiotic resistance rates varied among the different pathogens,with a concerning rise in resistance to commonly used antibiotics,particularly among Klebsiella pneumoniae and E.coli.Additionally,the study identified an alarming increase in the prevalence of multidrug-resistant(MDR)strains,especially within Klebsiella pneumoniae and E.coli isolates.The impact of the COVID-19 pandemic on these trends was evident,with shifts in the frequency,resistance patterns,and the emergence of MDR bacteria among several key pathogens.CONCLUSION This study highlights the dynamic nature of bacterial isolates and their antibiotic susceptibility patterns at Salmaniya Medical Complex,particularly in the context of the COVID-19 pandemic.The findings underscore the need for continuous monitoring and effective anti-microbial stewardship programs to combat the evolving threat of antibiotic resistance.Further research and policy initiatives are required to address the identified challenges and improve patient outcomes in the face of these ongoing challenges. 展开更多
关键词 Multidrug-resistant organisms Antibiotic susceptibility COVID-19 pandemic Antimicrobial stewardship bacterial isolates Salmaniya Medical Complex Bahrain
暂未订购
Anchoring nanoscale zero-valent iron within bacterial cellulose particles for boosting efficient adsorption of Co(Ⅱ) and Sr(Ⅱ) from seawater: Dual system and varying adsorption mechanisms
10
作者 Rong Cheng Yating Chen +5 位作者 Mi Kang Peiwen Jiang Lei Shi Jianzhong Zheng Xiang Zheng Jianlong Wang 《Journal of Environmental Sciences》 2025年第8期457-469,共13页
Increasing attention has been paid to radioactive wastewater to direct discharge in Japan or accidental leaks.Strontium-90(90Sr)and Cobalt-60(^(60)Co)are the most hazardous nuclides in waste discharged form nuclear re... Increasing attention has been paid to radioactive wastewater to direct discharge in Japan or accidental leaks.Strontium-90(90Sr)and Cobalt-60(^(60)Co)are the most hazardous nuclides in waste discharged form nuclear reactors.Because of their high solubility and long half-lives,these radioisotopes can persist for hundreds of years before decaying to negligible levels.Herein,a green and biodegradable material nanoscale zero-valent iron(nZVI)supported by bacterial cellulose particles(BCP-nZVI)is constructed for the first time to adsorb Co^(2+)and Sr^(2+)in single and binary systems.BCP-nZVI shows superior adsorption capacities of Co^(2+)and Sr^(2+)in a single system within a wide range of pH values from 5 to 7,while the coexistence of Co^(2+)adsorption inhibits the Sr^(2+)in binary system.Pseudo-second-order dynamics model and Langmuir isothermal model can be indicated the BCP-nZVI adsorption progress with 107.10 mg/g(Co^(2+))and 64.96 mg/g(Sr^(2+))maximum adsorption capacity.BCP-nZVI has outstanding stability,allowing it to be stored for more than one month with compromising its performance.More importantly,BCP-nZVI exhibits exceptional removal efficiency of Co^(2+)(92.53%)and Sr^(2+)(58.62%)removal in natural seawater systems.The mechanism investigation illustrates the high adsorption capacity of BCP-nZVI for Co^(2+)is controlled by redox and hydroxyl complexation.While Sr^(2+)is controlled by hydroxyl complexed adsorption,thus it has weak against interference by cations like Na^(+),Ca^(2+),etc.BCP-nZVI exhibits the advantages of high adsorption capacity,wide pH range,strong stability,and good applicability in natural seawater,which has excellent potential for application in radioactive ions removal. 展开更多
关键词 NZVI bacterial cellulose RADIONUCLIDE ADSORPTION Adsorption mechanism
原文传递
Genome-wide analysis of AhCN genes reveals that AhCN34 is involved in bacterial wilt resistance in peanut
11
作者 Kai Zhao Yanzhe Li +20 位作者 Zhan Li Zenghui Cao Xingli Ma Rui Ren Kuopeng Wang Lin Meng YangYang Miaomiao Yao Yang Yang Xiaoxuan Wang Jinzhi Wang Sasa Hu Yaoyao Li Qian Ma Di Cao Kunkun Zhao Ding Qiu Fangping Gong Zhongfeng Li Xingguo Zhang Dongmei Yin 《Journal of Integrative Agriculture》 2025年第10期3757-3771,共15页
Peanut(Arachis hypogaea L.)bacterial wilt(BW)is a devastating soil-borne disease caused by Ralstonia solanacearum(RS)that poses a significant threat to peanut yield and quality.Nucleotide-binding leucine-rich repeat(N... Peanut(Arachis hypogaea L.)bacterial wilt(BW)is a devastating soil-borne disease caused by Ralstonia solanacearum(RS)that poses a significant threat to peanut yield and quality.Nucleotide-binding leucine-rich repeat(NBS-LRR)proteins are a class of plant-specific immune receptors that recognize pathogen-secreted effector molecules and activate immune responses to resist pathogen infections.However,the precise functions of AhCN genes(where CN is a class of nucleotide-binding site,leucine-rich repeat receptor(NLR)genes that lack LRR structural domains)in peanut plants are not fully understood.In this study,a total of 150 AhCN genes were identified and classified into nine subfamilies based on a systematic phylogenetic analysis.The AhCN genes showed highly conserved structural features,and the promoter cis-elements indicated involvement in plant hormone signaling and defense responses.After inoculation with RS,the highly resistant peanut variety‘H108’significantly outperformed the susceptible variety‘H107’based on physiological indicators such as plant height,main stem diameter,and fresh weight,likely due to the inhibition of bacterial proliferation and diffusion in the stem vascular bundle.AhCN34 was found to be significantly upregulated in‘H108’compared to‘H107’during plant infection and in response to treatments with each of three plant hormones.Importantly,AhCN34 overexpression in peanut leaves enhanced their resistance to BW.These findings demonstrate the great potential of AhCN34 for applications in peanut resistance breeding.Our identification and characterization of the AhCN genes provide insights into the mechanisms underlying BW resistance in peanut and can inform future research into genetic methods of improving BW resistance in peanut. 展开更多
关键词 PEANUT bacterial wilt RESISTANCE NLR genes DISEASE
在线阅读 下载PDF
Long-term inorganic fertilizer exposure disturbed functional traits and gut bacterial conditionally rare or abundant taxa in collembolan(Entomobrya proxima Folsom)
12
作者 Xinyue Yang Gang Li Weiming Xiu 《Soil Ecology Letters》 2025年第3期199-210,共12页
The functional traits of soil fauna are closely related to ecosystem functions.The gut microbiota,which can reflect environmental changes,may be associated with functional traits.Therefore,in this study,collembolan(En... The functional traits of soil fauna are closely related to ecosystem functions.The gut microbiota,which can reflect environmental changes,may be associated with functional traits.Therefore,in this study,collembolan(Entomobrya proxima)was used to clarify the linkage response of specific gut taxa and traits under long-term urea exposure.A small amount of urea had positive effects on functional traits of E.proxima.Chao1 and Shannon indices of gut bacteria conditionally rare or abundant taxa(CRAT)gradually decreased under low and medium fertilizer,while increased under high fertilizer.Shannon index of abundant taxa(AT)showed a similar trend to that of CRAT except that the value of Shannon index was higher at high fertilizer than that of medium treatments.The structure and community assembly of CRAT changed significantly,and with the increase of urea addition amount,the dominant mechanism of community assembly changed from a deterministic process to a stochastic process.The niche width of AT and CRAT decreased.Relative abundance of some genera in AT and CRAT was closely related to functional traits.In conclusion,CRAT was more sensitive to urea than AT,had the potential to characterize functional traits of E.proxima,which will provide a basis for predicting the changes of soil animal traits and functions under the change of agricultural fertilizer strategy in the future. 展开更多
关键词 COLLEMBOLAN functional traits intestinal bacterial community AT CRAT
原文传递
Assessment of the clinical value of procalcitonin and C-reactive protein in the diagnosis of bacterial pneumonia: A meta-analysis
13
作者 Li-Shan Jiang Si-Qi Sun +3 位作者 Jun Li Yi-Mao Wu Qian Zhang Meng-Yao Li 《Infectious Diseases Research》 2025年第4期29-41,共13页
Background:Bacterial pneumonia continues to be a significant global health concern,particularly among high-risk groups,necessitating the development of precise and early diagnostic biomarkers.While the efficacy of pro... Background:Bacterial pneumonia continues to be a significant global health concern,particularly among high-risk groups,necessitating the development of precise and early diagnostic biomarkers.While the efficacy of procalcitonin(PCT)and C-reactive protein(CRP)as inflammatory markers is widely recognized,their relative diagnostic performance across different age groups remains debate.This meta-analysis was designed to assess the diagnostic accuracy of PCT and CRP in bacterial pneumonia.Methods:In this meta-analysis adhering to PRISMA guidelines,we searched PubMed,Web of Science,and the Cochrane Library for relevant diagnostic accuracy studies.From 19 included studies(n=2,603),data were extracted to construct tables.Study quality was assessed with the QUADAS-2 tool.The bivariate random-effects model was employed to derive pooled sensitivity,specificity,positive and negative likelihood ratios,and summary AUCs.To explore the substantial heterogeneity(I^(2)>80%),we performed pre-specified subgroup analyses based on age demographics.Results:Our findings indicate superior diagnostic performance for PCT,evidenced by a pooled sensitivity of 0.8841 and specificity of 0.8499,relative to CRP’s sensitivity of 0.8371 and specificity of 0.7185.The area under the ROC curve(AUC)for PCT was 0.992,a value significantly higher than that of CRP(0.987).Intriguingly,subgroup analyses revealed age-dependent variations:CRP demonstrated enhanced diagnostic utility in minors,while PCT proved substantially more effective in non-elderly adults.Conclusion:These results reinforce the clinical relevance of PCT as a more dependable biomarker for bacterial pneumonia,particularly in informing antibiotic treatment and mitigating misuse.This study uniquely includes age-stratified analyses based on predefined groups(minors and non-elderly adults),providing refined insights for individualized diagnostic approaches.We propose further multicenter research endeavors to confirm threshold optimization and explore combined biomarker strategies. 展开更多
关键词 PROCALCITONIN C-reactive protein bacterial pneumonia DIAGNOSIS META-ANALYSIS
暂未订购
Antibacterial effects of lidocaine and saline irrigation on Escherichia coli in superficial surgical wounds
14
作者 David Ramírez-Tapia José A.Ortega-Salgado +4 位作者 Stephania Rámirez-Guzmán Jorge Lopez-Lopez Alejandro Rodríguez-Baéz Natalia Nuno-Lámbarri Eduardo E.Montalvo-Javé 《Animal Models and Experimental Medicine》 2025年第5期939-943,共5页
This study evaluated the antibacterial effects of 2%lidocaine and its combination with 0.9%saline solution on Escherichia coli infection in superficial surgical wounds in Wistar rats.The goal was to determine if these... This study evaluated the antibacterial effects of 2%lidocaine and its combination with 0.9%saline solution on Escherichia coli infection in superficial surgical wounds in Wistar rats.The goal was to determine if these treatments could effectively reduce E.coli Colony Forming Units(CFUs)below the critical threshold of 1×105.Seventy male Wistar rats were divided into seven groups,each undergoing different interventions to assess the antibacterial efficacy of lidocaine,with outcomes measured through bacterial cultures and CFU quantification.Results demonstrated a Log10reduction of approximately 0.44 in E.coli CFUs following infiltration with 2%lidocaine.The combined use of 2%lidocaine infiltration and 0.9%saline irrigation resulted in nearly complete suppression of bacterial growth.These findings suggest that these simple interventions could be valuable in emergency surgical settings to mitigate the risk of surgical site infections and serve as effective prophylactic measures.increase in hospital stay,which represents an additional cost in terms of expenses and directly impacts the patient's outcome.11Several lines of evidence point to 104colony forming units per gram of tissue(CFUs/g)as the threshold at which healing generally begins to slow.12Knowledge of the antibacterial activity of lidocaine has been used to prevent bacterial contamination of other lipid-based anesthetics,such as propofol,with a significant decrease in bacterial development13-15and its antifungal effect.15,16Other effects attributed to lidocaine concerning systemic inflammatory response are the inhibition of granulocyte adhesion at sites of inflammation,decreased leukocyte adhesion during endotoxemia,and decreased macromolecular filtration;it is suggested that it may play a therapeutic role in endothelial damage during sepsis.17-19On the other hand,different measures have been taken to reduce the surgical wound infection rate,such as prophylactic antibiotics and local wound care,including pressure irrigation with 0.9% saline solution,with good results.20The antibacterial effect of lidocaine has been demonstrated in an animal model21;however,no model resembles surgical wound infection and the use of lidocaine to prevent infection.This study aimed to demonstrate that using 2% lidocaine(2 mL/g of tissue)will reduce the E.coli CFUs below 1×105in an infected superficial surgical wound in an experimental model. 展开更多
关键词 ANTIbacterial bacterial development immune system infection surgical infection site
暂未订购
Species Number of Invasive Plants Negatively Regulates Carbon Contents,Enzyme Activities,and Bacterial Alpha Diversity in Soil
15
作者 Qi Chen Yizhuo Du +4 位作者 Yingsheng Liu Yue Li Chuang Li Zhelun Xu Congyan Wang 《Phyton-International Journal of Experimental Botany》 2025年第9期2873-2891,共19页
The leaves of multiple invasive plants can coexist and intermingle within the same environment.As species number of invasive plants increases,variations may occur in decomposition processes of invasive plants,soil nut... The leaves of multiple invasive plants can coexist and intermingle within the same environment.As species number of invasive plants increases,variations may occur in decomposition processes of invasive plants,soil nutrient contents,soil enzyme activities,and soilmicrobial community structure.Existing progress have predominantly focused on the ecological effects of one species of invasive plant compared to native species,with limited attention paid to the ecological effects of multiple invasive plants compared to one species of invasive plant.This study aimed to determine the differences in the effects of mono-and co-decomposition of four Asteraceae invasive plants,horseweed(Erigeron canadensis(L.)Cronq.),Guernsey fleabane(E.sumatrensis Retz.),daisy fleabane(E.annuus(L.)Pers.),and Canada goldenrod(Solidago canadensis L.),on litter decomposition responses,soil carbon contents,soil enzyme activities,and soil bacterial community structure.Species number of invasive plants did not significantly affect on the decomposition rate of mixed leaves or mixed-effect intensity of co-decomposition.Soil pH and electrical conductivity enhanced as species number of invasive plants increased.Soil carbon contents(including soluble organic carbon content and microbial carbon content),soil enzyme(including polyphenol oxidase,FDA hydrolase,and sucrase)activities,soil bacterial alpha diversity(including the OTU species,Chao1 richness,ACE richness,and Phylogenetic diversity indexes),and the number of pathways of most functional genes of soil bacterial communities closely related to decomposition processes declined as species number of invasive plants increased.Hence,soil pH and electrical conductivity significantly increased with increasing species number of invasive plants,but soil carbon contents,soil enzyme activities,soil bacterial alpha diversity,and the number of pathways of most functional genes of soil bacterial communities closely related to decomposition processes significantly reduced with growing species number of invasive plants. 展开更多
关键词 Co-decomposition co-invasion decomposition processes functional gene soil bacterial community
在线阅读 下载PDF
Genetic relationship between bacterial wilt resistance and yield components in peanut
16
作者 Jianbin Guo Nian Liu +7 位作者 Huaiyong Luo Li Huang Xiaojing Zhou Weigang Chen Bolun Yu Huifang Jiang Yong Lei Boshou Liao 《Oil Crop Science》 2025年第1期64-69,共6页
Bacterial wilt(BW)caused by Ralstonia solanacearum is a wide-spread and serious disease in peanut.To date,this soilborne disease could only be effectively controlled by planting resistant peanut cultivars.However,the ... Bacterial wilt(BW)caused by Ralstonia solanacearum is a wide-spread and serious disease in peanut.To date,this soilborne disease could only be effectively controlled by planting resistant peanut cultivars.However,the relatively lower yield potential of the available BW-resistant peanut cultivars is a key reason restricting productivity in most epidemic regions naturally infested with the pathogen.Even small pods or seeds and low number per plant has been regarded as the key factor for the low yield potential both in BW-resistant peanut germplasm lines and available released cultivars,whether the resistance is closely linked with key yield components remains unclear.In this study,the relationship between pod weight and BW resistance was analyzed by using a recombinant inbred lines(RIL)population derived from a crossing combination between a high yielding cultivar Xuhua 13 and a BW-resistant cultivar Zhonghua 6.From the experiments,it was found that the BW resistance was not significantly correlated with pod number per plant(PNP),hundred pod weight(HPW)and pod weight per plant(PWP)in the RIL population.Based on linkage analysis,the quantitative trait locus(QTL)s related to PNP were identified on A06,A07,A08 and B03.The QTLs for HPW were detected on A05 and A07,and the QTLs for PWP were on A06,A07 and B03.However,the QTL for BW resistance identified on B02.These results indicated that the BW resistance and the pod number per plant as well as pod weight were inherited independently.Two recombined lines(QT0944 and QT1028)with high level BW resistance and large pods(hundred pod weight over 185g)were identified from the RILs,and they possessed the favored alleles of identified QTLs from both parents,which could be used in peanut breeding for high yield and high level disease resistance. 展开更多
关键词 PEANUT bacterial wilt resistance QTL Pod weight Yield potential
在线阅读 下载PDF
Facile fabrication of densely packed ammoniated alumina/MXene/bacterial cellulose composite films for enhancing thermal conductivity and photothermal conversion performance
17
作者 Chouxuan Wang Zhongguo Zhao +3 位作者 Shengtai Zhou Lei Wang Xinyue Liu Rong Xue 《Journal of Materials Science & Technology》 2025年第10期162-173,共12页
The full arrival of 5 G and advances in electronic integration make efficient heat dissipation crucial for stable operation and longer product lifespan. In this study, a vacuum-assisted filtration process was employed... The full arrival of 5 G and advances in electronic integration make efficient heat dissipation crucial for stable operation and longer product lifespan. In this study, a vacuum-assisted filtration process was employed to fabricate ammoniated alumina/MXene/bacterial cellulose (Al_(2)O_(3)-NH_(2)/MXene/BC) composite films that display a unique integration of properties, encompassing ultra-high thermal conductivity (λ), mechanical flexibility, and high photothermal conversion performance. By leveraging the bridging effect among spherical Al_(2)O_(3)-NH_(2) and MXene nanosheets, a densely packed “point-surface” structure was constructed in BC by using a one-step preparation process. When the mass fraction of Al_(2)O_(3)-NH_(2)/MXene (1:3, w/w) is 40 wt%, the O-BAl1M3 exhibited an in-plane λ of 20.02 W m^(-1) K^(-1), which was 436 % and 94 % higher than that of pure BC and T-BAl1M3 (prepared by a two-step method), respectively. Furthermore, constructing an intact thermal conductive network within BC notably promoted photothermal and photoelectric conversion performance. The maximum surface temperature and voltage of the O-BAl1M3 film reached 106.9 ℃ and 48.34 mV when a sample with an area of 1.56 cm^(2) was exposed under a light intensity of 200 mW cm^(-2). By applying O-BAl1M3 film, the temperature inside a self-built greenhouse model reached up to 64.8 ℃ within 1200 s under a light intensity of 100 mW cm^(-2), which validated the practical application of the composite films and offered a novel approach for creating flexible films with superior photothermal conversion capability. This work provided insights into preparing functional composite films for efficient thermal management and photothermal conversion applications. 展开更多
关键词 MXene bacterial cellulose Composite film Thermal conductivity Photothermal conversion
原文传递
Stopping Bleeding with Bacterial Fibers
18
《Bulletin of the Chinese Academy of Sciences》 2025年第3期140-141,共2页
Burns often require surgical removal of damaged tissues-a procedure that causes significant bleeding.While traditional methods such as electrocautery can control bleeding,they carry a risk of thermal damage to surroun... Burns often require surgical removal of damaged tissues-a procedure that causes significant bleeding.While traditional methods such as electrocautery can control bleeding,they carry a risk of thermal damage to surrounding tissues and have operational limitations. 展开更多
关键词 bacterial fibers thermal damage ELECTROCAUTERY surgical removal significant bleeding traditional methods
暂未订购
Bacterial communities on microplastics in a wetland ecosystem
19
作者 Shuli LIU Junkai ZHAO +5 位作者 Long ZOU Zheng LAI Qian HU Qiwu HU Chen TU Minfei JIAN 《Journal of Oceanology and Limnology》 2025年第2期515-527,共13页
Microplastics(MPs), a new type of environmental pollutant, can serve as substrates for microbes. Wetland ecosystems support a diverse range of aquatic and terrestrial species, and their ecological functions can be dis... Microplastics(MPs), a new type of environmental pollutant, can serve as substrates for microbes. Wetland ecosystems support a diverse range of aquatic and terrestrial species, and their ecological functions can be disturbed by inputs of microplastic debris. However, limited studies have focused on the interactions between MPs and microbes in wetland ecosystems. In this study, the bacterial communities on MPs in the wetland ecosystem of Poyang Lake, China's largest freshwater lake, were investigated based on 16S rRNA sequencing. We found that the bacterial communities on MPs showed a lower richness and diversity but presented a higher number of unique OTUs than the water and sediment bacterial communities. Furthermore, the structure of the bacterial communities on MPs had a higher similarity to the bacterial compositions of the sediment than of the water, indicating that sediments are an important source of bacteria for MPs. It should be noted that the MPs could enhance the exchange of bacteria between water and sediment. The bacterial composition varied significantly among different substrates and at different sampling times;nevertheless, it showed consistency on the surface of MPs at different sampling sites. Proteobacteria dominated as the most abundant bacterial phylum across all samples. At the genus level, Pseudomonas were distinctly enriched in bacterial communities on MPs. In addition, the results of pathway prediction indicated that the pathways of “human disease” from MPs bacterial communities were higher than those from water and sediment. These results illustrate that the surfaces of MPs serve as distinct habitats for specific bacteria. Environmental factors such as nitrate nitrogen, pH, and organic matter were crucial in shaping the bacterial communities. This study provided a new insight into interactions between MPs and microbes in wetland ecosystems and into the associated potential risks to human health. 展开更多
关键词 microplastic(MP) bacterial community wetland ecosystem Poyang Lake
在线阅读 下载PDF
Alginate-based biomaterials in orthopedics:What are the prospects for bacterial alginate?
20
作者 Andrei A Dudun Garina A Bonartseva Anton P Bonartsev 《World Journal of Orthopedics》 2025年第10期30-41,共12页
The mini-review explores the potential use of alginates produced biotechnologically by bacteria for the development of various implantable biomaterials intended for bone and cartilage tissue regeneration in orthopedic... The mini-review explores the potential use of alginates produced biotechnologically by bacteria for the development of various implantable biomaterials intended for bone and cartilage tissue regeneration in orthopedics:the recent studies on the use of algal alginate-based biomaterials in the form of hydrogels,scaffolds,and microparticles for medical applications are considered as a potential opportunity to use bacterial alginate for these applications,taking into account the advantages of biotechnological production of a polymer with desired properties.The methods of producing different alginate-based biomaterials,the manufacturing of implantable medical devices using them,and the surgical techniques for bone and cartilage tissue regeneration using these materials for orthopedic purposes are discussed. 展开更多
关键词 bacterial alginate ALGINATE Tissue engineering Bone CARTILAGE Regeneration Hydrogels AZOTOBACTER PSEUDOMONAS Wound
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部