Aiming at the problem that the vehicles always turn left in advance which causes heavy conflicts in the intersection and effected traffic efficiency,the solution of the left-turn lane’s stop line backwards setting wa...Aiming at the problem that the vehicles always turn left in advance which causes heavy conflicts in the intersection and effected traffic efficiency,the solution of the left-turn lane’s stop line backwards setting was proposed,and the critical conditions on the stop line’s setting were studied.Firstly,we studied the characteristics of trajectories distribution in the release process of turning left in advance vehicles.Based on that,we proposed to move the stop line backwards to solve the problem of turning left in advance.Considering the intersection’s geometric features and the vehicle operation features,the geometric critical condition was given for setting the position of left-turn lane’s stop line.And then the model of left-turn vehicles’queuing length was established based on queuing theory and traffic wave theory.By using queuing length model,the flow restrictions of stop line backwards could be found.Assuming left-turn vehicles’arrival rate is stable in a certain period of time,the minimum green time and the maximum red time of left-turn phase were given after the stop line was set up.According to the changes of the vehicles’turning paths,the shortest yellow setting recommendation was given.Finally,the application of the critical limits used in stop line backwards setting was demonstrated.The research result could provide a theoretical basis for traffic signs and markings’setting and perfect the relevant laws and regulations.展开更多
Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of supr...Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of suprathermal hot electrons under interaction conditions envisaged for direct-drive schemes for inertial confinement fusion.Nonetheless,SSRS remains to date one of the least understood parametric instabilities.Here,we report the first angularly and spectrally resolved measurements of scattered light at laser intensities relevant for the shock ignition scheme(I×10^(16)W/cm^(2)),showing significant SSRS growth in the direction perpendicular to the laser polarization.Modification of the focal spot shape and orientation,obtained by using two different random phase plates,and of the density gradient of the plasma,by utilizing exploding foil targets of different thicknesses,clearly reveals a different dependence of backward SRS(BSRS)and SSRS on experimental parameters.While convective BSRS scales with plasma density scale length,as expected by linear theory,the growth of SSRS depends on the spot extension in the direction perpendicular to laser polarization.Our analysis therefore demonstrates that under current experimental conditions,with density scale lengths L_(n)≈60–120μm and spot sizes FWHM≈40–100μm,SSRS is limited by laser beam size rather than by the density scale length of the plasma.展开更多
Piezoelectric actuators are widely utilized in positioning systems to realize nano-scale resolution. However, the backward motion always generates for some piezoelectric actuators, which reduces the working efficiency...Piezoelectric actuators are widely utilized in positioning systems to realize nano-scale resolution. However, the backward motion always generates for some piezoelectric actuators, which reduces the working efficiency. Bionic motions have already been employed in the field of piezoelectric actuators to realize better performance. By imitating the movement form of seals, seal type piezoelectric actuator is capable to realize large operating strokes easily. Nevertheless, the conventional seal type piezoelectric actuator has a complicated structure and control system, which limits further applications. Hence, an improved bionic piezoelectric actuator is proposed to realize a long motion stroke and eliminate backward movement with a simplified structure and control method in this study. The composition and motion principle of the designed actuator are discussed, and the performance is investigated with simulations and experiments. Results confirm that the presented actuator effectively realizes the linear movement that has a large working stroke stably without backward motion. The smallest stepping displacement ΔL is 0.2 μm under 1 Hz and 50 V. The largest motion speed is 900 μm/s with 900 Hz and 120 V. The largest vertical and horizontal load are 250 g and 12 g, respectively. This work shows that the improved bionic piezoelectric actuator is feasible for eliminating backward motion and has a great working ability.展开更多
African countries can learn a lot from China in their quest for modernisation,For China,modernisation is a journey of hardship and perseverance.In modern times,the Chinese people tried to adopt modernisation formulas ...African countries can learn a lot from China in their quest for modernisation,For China,modernisation is a journey of hardship and perseverance.In modern times,the Chinese people tried to adopt modernisation formulas from the West,but none worked.Through its own efforts,China has modernised under the leadership of the Communist Party of China.It has transformed from an impoverished and backward nation into the world’s second-largest economy,the largest trader in goods,and the largest exporter.展开更多
We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon–photon interaction via the backward stimulated Brillouin scattering(BSBS)proc...We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon–photon interaction via the backward stimulated Brillouin scattering(BSBS)process.The coherent photon–phonon interaction where two optical modes couple to a Brillouin acoustic mode with a large decay rate provides an extra channel for the cooling of a Duffing mechanical oscillator.The squeezing degree and the robustness to the thermal noises of the Duffing mechanical mode can be enhanced greatly.When the Duffing nonlinearity is weak,the squeezing degree of the mechanical mode in the presence of BSBS can be improved by more than one order of magnitude compared with that in the absence of BSBS.Our scheme may be extended to other quantum systems to study novel quantum effects.展开更多
Black carbon (BC) aerosols are considered key factors that contribute to rapid climate warming and ice melt in the Arctic region.However,compared with long-term observations from land-based stations,observational data...Black carbon (BC) aerosols are considered key factors that contribute to rapid climate warming and ice melt in the Arctic region.However,compared with long-term observations from land-based stations,observational data over the Arctic Ocean remain relatively scarce.Four Arctic scientific expeditions were conducted in the summer and early autumn of 2010,2012,2016,and 2018 via the Chinese research vessel Xue Long,during which the BC concentrations along the routes were measured via light absorption methods.In this work,the spatiotemporal distribution characteristics of BC over the Arctic Ocean were examined on the basis of these observations.The potential sources of BC along the various routes were analyzed via the weighted potential source contribution function and weighted concentrationweighted trajectory methods of the hybrid single-particle Lagrangian integrated trajectory model in conjunction with Arctic transport potential climate model simulations.The analysis results indicated that wildfires in the western Aleutian Islands,Siberia,and Far East regions were the primary contributors to the BC aerosol concentration observed along the Arctic expedition routes in summer,identifying these regions as major potential source areas.展开更多
This study examines the application of the Understanding by Design(UbD)approach to enhance students’cognitive,affective,and psychomotor learning domains,as well as their intercultural communication competence,in the ...This study examines the application of the Understanding by Design(UbD)approach to enhance students’cognitive,affective,and psychomotor learning domains,as well as their intercultural communication competence,in the Introduction to Chinese Culture course.UbD,a curriculum design framework emphasizing deep understanding over rote memorization,employs a“backward design”process to help students achieve a profound comprehension of Chinese culture and its modern implications.Through this approach,students also develop critical intercultural communication skills.The study offers helpful strategies for integrating English language teaching with Chinese cultural education,providing practical insights for curriculum development that bridges linguistic and cultural learning.展开更多
Data privacy leakage has always been a critical concern in cloud-based Internet of Things(IoT)systems.Dynamic Symmetric Searchable Encryption(DSSE)with forward and backward privacy aims to address this issue by enabli...Data privacy leakage has always been a critical concern in cloud-based Internet of Things(IoT)systems.Dynamic Symmetric Searchable Encryption(DSSE)with forward and backward privacy aims to address this issue by enabling updates and retrievals of ciphertext on untrusted cloud server while ensuring data privacy.However,previous research on DSSE mostly focused on single keyword search,which limits its practical application in cloud-based IoT systems.Recently,Patranabis(NDSS 2021)[1]proposed a groundbreaking DSSE scheme for conjunctive keyword search.However,this scheme fails to effectively handle deletion operations in certain circumstances,resulting in inaccurate query results.Additionally,the scheme introduces unnecessary search overhead.To overcome these problems,we present CKSE,an efficient conjunctive keyword DSSE scheme.Our scheme improves the oblivious shared computation protocol used in the scheme of Patranabis,thus enabling a more comprehensive deletion functionality.Furthermore,we introduce a state chain structure to reduce the search overhead.Through security analysis and experimental evaluation,we demonstrate that our CKSE achieves more comprehensive deletion functionality while maintaining comparable search performance and security,compared to the oblivious dynamic cross-tags protocol of Patranabis.The combination of comprehensive functionality,high efficiency,and security makes our CKSE an ideal choice for deployment in cloud-based IoT systems.展开更多
An experimental and finite element simulation investigation are conducted to study the deformation patterns of steel targets during the penetration process of tungsten alloy long rods,as well as the influence of stren...An experimental and finite element simulation investigation are conducted to study the deformation patterns of steel targets during the penetration process of tungsten alloy long rods,as well as the influence of strength of the target on the deformation patterns.The experimental results revealed slight mass loss in the first layer of the steel target during the transient entrance phase,with an extremely negligible loss in target mass during the quasi-steady penetration phase.The results of macro-analysis,micro-analysis and simulation show that the eroded target material migrated towards the periphery of the crater,causing an increase in the target's thickness,remained within the target,instead of flowing out of the crater.Therefore,the process of long rods penetrating the metal target is considered as a process of backward extrusion.By combining the backward extrusion theory with energy conservation,a penetration depth model for long rods penetrating a metal target,taking into account both the diameter of the crater and the friction coefficient between the rod and the target,has been established.Although the model is not yet perfect,it innovatively applies the principles of solid mechanics to the study of long rod penetration.Additionally,it takes into account the friction coefficient between the rod and the target during the penetration process.Therefore,this model provides a new research direction for future studies on long rod penetration.展开更多
In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured ...In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured data. Inspired by the classical Landweber iterative method and Fourier truncation technique, we develops a modified Landweber iterative regularization method to restore the continuous dependence of solution on the measurement data. Under the a-priori and a-posteriori choice rules for the regularized parameter, the convergence estimates for the regularization method are derived. Some results of numerical simulation are provided to verify the stability and feasibility of our method in dealing with the considered problem.展开更多
Objective To study the key technologies in the field of ginsenosides and to offer a guide for the future development ginsenosides through the main path identification method based on genetic knowledge persistence algo...Objective To study the key technologies in the field of ginsenosides and to offer a guide for the future development ginsenosides through the main path identification method based on genetic knowledge persistence algorithm(GKPA).Methods The global ginsenoside invention authorized patents were used as the data source to construct a ginsenoside patent self-citation network,and to identify high knowledge persistent patents(HKPP)of ginsenoside technology based on the GKPA,and extract its high knowledge persistence main path(HKPMP).Finally,the genetic forward and backward path(GFBP)was used to search the nodes on the main path,and draw the genetic forward and backward main path(GFBMP)of ginsenoside technology.Results and Conclusion The algorithm was applied to the field of ginsenosides.The research results show the milestone patents in ginsenosides technology and the main evolution process of three key technologies,which points out the future direction for the technological development of ginsenosides.The results obtained by this algorithm are more interpretable,comprehensive and scientific.展开更多
Eels can perform both forward and backward undulatory swimming but few studies are seen on how eels propel themselves backward. A computational study on the unsteady hydrodynamicsoof the backward swimming in the eel a...Eels can perform both forward and backward undulatory swimming but few studies are seen on how eels propel themselves backward. A computational study on the unsteady hydrodynamicsoof the backward swimming in the eel anguilla anguilla is carried out and presented. A two-dimensional geometric model of the European eel body in its middle horizontal section is appropriately approximated by a NACA0005 airfoil. Kinematic data of the backward and forward swimming eel used in the computational modeling are based on the experimental results of the European eel. Present study provided the different flow field characteristics of three typical cases in the backward swimming, and confirmed the guess of Wu: When the eel swims steadily, the vortex centers of the reversed von Kármán vortex street are aligned approximately. An extensive comparison between the backward and forward swimming further reveals that the controllable parameters, such as frequency, amplitude and wavelength of the traveling wave, have a similar influence on the propulsion performance as in forward swimming. But it is shown that the backward swimming does not be a "reversed" forward swimming one. The backward swimming does show significant discrepancy in the propulsion performance: utilization of a constant-amplitude wave profile enables larger force generation for maneuverability but with much lower propulsive efficiency instead of the linear-increasing amplitude wave profile in the forward swimming. The actual swimming modes eels choose is the best choice associated with their propulsive requirement, as well as their physiological and ecological adaptation.展开更多
Using the observation data in Yongxing Island,South China Sea(SCS)from December 2013 to November 2018,the multiple time scales variation of atmospheric CO_(2)and CH_(4)were analyzed to understand their temporal variat...Using the observation data in Yongxing Island,South China Sea(SCS)from December 2013 to November 2018,the multiple time scales variation of atmospheric CO_(2)and CH_(4)were analyzed to understand their temporal variation characteristics and controlling factors.The regional-averaged background mole fractions of CO_(2)and CH_(4)both show a single-period sinusoidal variation with a lower value at noon and a higher value in the wee hours.In the seasonal scale,they exhibited a significant seasonal difference with higher values in winter and lower values in summer.In the annual scale,CO_(2)and CH_(4)both show an increasing trend,with an annual growth rate of approximately 3.2 ppm and 12 ppb,respectively.The annual growth rate at this site was higher than the global average.The change in atmospheric CO_(2)and CH_(4)in Yongxing Island was probably caused by the higher emission of the surrounding areas and the airflows driven by monsoon.Hopefully,the long-term and high-resolution greenhouse gases(GHGs)dataset will aid relevent researchers and decision-makers in performing more in-depth studies for GHG sources in order to derive effective strategies.展开更多
The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometer...The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers.Protons with energies of tens of MeV can be accelerated using,for instance,target normal sheath acceleration and focused on secondary targets.Under such conditions,nuclear reactions can occur,with the production of radioisotopes suitable for medical application.The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators.In this paper,we study the production of^(67)Cu,^(63)Zn,^(18)F,and^(11)C,which are currently used in positron emission tomography and other applications.At the same time,we study the reactions^(10)B(p,α)^(7)Be and^(70)Zn(p,4n)^(67)Ga to put further constraints on the proton distributions at different angles,as well as the reaction^(11)B(p,α)^(8)Be relevant for energy production.The experiment was performed at the 1 PW laser facility at VegaⅢin Salamanca,Spain.Angular distributions of radioisotopes in the forward(with respect to the laser direction)and backward directions were measured using a high purity germanium detector.Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera[Nucl.Instrum.Methods Phys.Res.,Sect.A 637,164–170(2011)].展开更多
Dear Editor,This letter investigates a partially-observed optimal control problem for backward stochastic differential delay equations(BSDDEs).By utilizing Girsanov’s theory and convex variational method,we obtain a ...Dear Editor,This letter investigates a partially-observed optimal control problem for backward stochastic differential delay equations(BSDDEs).By utilizing Girsanov’s theory and convex variational method,we obtain a maximum principle on the assumption that the state equation contains time delay and the control domain is convex.The adjoint processes can be represented as the solutions of certain time-advanced stochastic differential equations in finite-dimensional spaces.Linear backward stochastic differential equation(BSDE)was first introduced by Bismut in[1],while general BSDE was given by Pardoux and Peng[2].Since then,the theory of BSDEs developed rapidly.The corresponding optimal control problems,whose states are driven by BSDEs,have also been widely studied by some authors,see[3]-[5].展开更多
The dissemination of information across various locations is an ubiquitous occurrence,however,prevalent methodologies for multi-source identification frequently overlook the fact that sources may initiate disseminatio...The dissemination of information across various locations is an ubiquitous occurrence,however,prevalent methodologies for multi-source identification frequently overlook the fact that sources may initiate dissemination at distinct initial moments.Although there are many research results of multi-source identification,the challenge of locating sources with varying initiation times using a limited subset of observational nodes remains unresolved.In this study,we provide the backward spread tree theorem and source centrality theorem,and develop a backward spread centrality algorithm to identify all the information sources that trigger the spread at different start times.The proposed algorithm does not require prior knowledge of the number of sources,however,it can estimate both the initial spread moment and the spread duration.The core concept of this algorithm involves inferring suspected sources through source centrality theorem and locating the source from the suspected sources with linear programming.Extensive experiments from synthetic and real network simulation corroborate the superiority of our method in terms of both efficacy and efficiency.Furthermore,we find that our method maintains robustness irrespective of the number of sources and the average degree of network.Compared with classical and state-of-the art source identification methods,our method generally improves the AUROC value by 0.1 to 0.2.展开更多
Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish ...Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish to swim autonomously in a confined area as a real fish.Here,we develop an untethered robotic manta as an experimental platform,which consists of two flexible pectoral fins and a tail fin,with three infrared sensors installed on the front,left,and right sides of the head to sense the surrounding obstacles.To generate multiple swimming modes of the robotic manta and online switching of different modes,we design a closed-loop Central Pattern Generator(CPG)controller based on distance information and use a combination of phase difference and amplitude of the CPG model to achieve stable and rapid adjustment of yaw angle.To verify the autonomous swimming ability of the robotic manta in complex scenes,we design an experimental scenario with a concave obstacle.The experimental results show that the robotic manta can achieve forward swimming,backward swimming,in situ turning within the concave obstacle,and finally exit from the area safely while relying on the perception of external obstacles,which can provide insight into the autonomous exploration of complex scenes by the biomimetic robotic fish.Finally,the swimming ability of the robotic manta is verified by field tests.展开更多
Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic ...Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic diffusivity.For(1+1)-dimensional problems,analytical solutions that satisfy the boundary requirements are derived.Such solutions are numerically calculated using the trigonometric basis approximation for(2+1)-dimensional problems.With the aid of these analytical or numerical approximations,the original problems can be converted into the fractional ordinary differential equations,and solutions to the fractional ordinary differential equations are approximated by modified radial basis functions with time-dependent coefficients.An efficient backward substitution strategy that was previously provided for a single fractional ordinary differential equation is then used to solve the corresponding systems.The straightforward quasilinearization technique is applied to handle nonlinear issues.Numerical experiments demonstrate the suggested algorithm’s superior accuracy and efficiency.展开更多
Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we invest...Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we investigated and realized the first X-band backward traveling-wave(BTW)accelerating structure as the buncher for a VHEE facility.A method for calculating the parameters of single cell from the field distribution was introduced to simplify the design of the BTW structure.Time-domain circuit equations were applied to calculate the transient beam parameters of the buncher in the unsteady state.A prototype of the BTW structure with a thermionic cathode-diode electron gun was designed,fabricated,and tested at high power at the Tsinghua X-band high-power test stand.The structure successfully operated with 5-MW microwave pulses from the pulse compressor and outputted electron bunches with an energy of 8 MeV and a pulsed current of 108 mA.展开更多
基金the National Natural Science Foundation of China(Nos.51108208,512782520 and 51278220)
文摘Aiming at the problem that the vehicles always turn left in advance which causes heavy conflicts in the intersection and effected traffic efficiency,the solution of the left-turn lane’s stop line backwards setting was proposed,and the critical conditions on the stop line’s setting were studied.Firstly,we studied the characteristics of trajectories distribution in the release process of turning left in advance vehicles.Based on that,we proposed to move the stop line backwards to solve the problem of turning left in advance.Considering the intersection’s geometric features and the vehicle operation features,the geometric critical condition was given for setting the position of left-turn lane’s stop line.And then the model of left-turn vehicles’queuing length was established based on queuing theory and traffic wave theory.By using queuing length model,the flow restrictions of stop line backwards could be found.Assuming left-turn vehicles’arrival rate is stable in a certain period of time,the minimum green time and the maximum red time of left-turn phase were given after the stop line was set up.According to the changes of the vehicles’turning paths,the shortest yellow setting recommendation was given.Finally,the application of the critical limits used in stop line backwards setting was demonstrated.The research result could provide a theoretical basis for traffic signs and markings’setting and perfect the relevant laws and regulations.
基金financial support from the LASERLAB-EUROPE Access to Research Infrastructure Activity (Application No. 23068)carried out within the framework of EUROfusion Enabling Research Projects AWP21-ENR-01-CEA02 and AWP24-ENR-IFE-02-CEA-02+3 种基金received funding from Euratom Research and Training Programme 2021–2025 under Grant No. 633053supported by the Ministry of Youth and Sports of the Czech Republic [Project No. LM2023068 (PALS RI)]by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25030200 and XDA25010100)supported by COST (European Cooperation in Science and Technology) through Action CA21128 PROBONO (PROton BOron Nuclear Fusion: from energy production to medical applicatiOns)
文摘Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of suprathermal hot electrons under interaction conditions envisaged for direct-drive schemes for inertial confinement fusion.Nonetheless,SSRS remains to date one of the least understood parametric instabilities.Here,we report the first angularly and spectrally resolved measurements of scattered light at laser intensities relevant for the shock ignition scheme(I×10^(16)W/cm^(2)),showing significant SSRS growth in the direction perpendicular to the laser polarization.Modification of the focal spot shape and orientation,obtained by using two different random phase plates,and of the density gradient of the plasma,by utilizing exploding foil targets of different thicknesses,clearly reveals a different dependence of backward SRS(BSRS)and SSRS on experimental parameters.While convective BSRS scales with plasma density scale length,as expected by linear theory,the growth of SSRS depends on the spot extension in the direction perpendicular to laser polarization.Our analysis therefore demonstrates that under current experimental conditions,with density scale lengths L_(n)≈60–120μm and spot sizes FWHM≈40–100μm,SSRS is limited by laser beam size rather than by the density scale length of the plasma.
基金supported by National Natural Science Foundation of China(Grant No.11301191)supported by Science and Technology Development Fund(Macao S.A.R.)FDCT/016/2013/A1
文摘In this paper, we show a backwards uniqueness theorem of the mean curvature flow with bounded second fundamental forms in arbitrary codimension.
基金supported by The Key Science and Technology Plan Project of Jinhua City,China:2023-3-084,2023-2-011Zhejiang Provincial"Revealing the list and taking command"Project of China KYH06Y22349Open Fund Project of Key Laboratory of CNC Equipment reliability,Ministry of Education JLU-cncr-202407.
文摘Piezoelectric actuators are widely utilized in positioning systems to realize nano-scale resolution. However, the backward motion always generates for some piezoelectric actuators, which reduces the working efficiency. Bionic motions have already been employed in the field of piezoelectric actuators to realize better performance. By imitating the movement form of seals, seal type piezoelectric actuator is capable to realize large operating strokes easily. Nevertheless, the conventional seal type piezoelectric actuator has a complicated structure and control system, which limits further applications. Hence, an improved bionic piezoelectric actuator is proposed to realize a long motion stroke and eliminate backward movement with a simplified structure and control method in this study. The composition and motion principle of the designed actuator are discussed, and the performance is investigated with simulations and experiments. Results confirm that the presented actuator effectively realizes the linear movement that has a large working stroke stably without backward motion. The smallest stepping displacement ΔL is 0.2 μm under 1 Hz and 50 V. The largest motion speed is 900 μm/s with 900 Hz and 120 V. The largest vertical and horizontal load are 250 g and 12 g, respectively. This work shows that the improved bionic piezoelectric actuator is feasible for eliminating backward motion and has a great working ability.
文摘African countries can learn a lot from China in their quest for modernisation,For China,modernisation is a journey of hardship and perseverance.In modern times,the Chinese people tried to adopt modernisation formulas from the West,but none worked.Through its own efforts,China has modernised under the leadership of the Communist Party of China.It has transformed from an impoverished and backward nation into the world’s second-largest economy,the largest trader in goods,and the largest exporter.
基金Project supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202400624)the Natural Science Foundation of Chongqing CSTC(Grant No.CSTB2022NSCQBHX0020)+3 种基金the China Electronics Technology Group Corporation 44th Research Institute(Grant No.6310001-2)the Project Grant“Noninvasive Sensing Measurement based on Terahertz Technology”from Province and MOE Collaborative Innovation Centre for New Generation Information Networking and Terminalsthe Key Research Program of CQUPT on Interdisciplinary and Emerging Field(A2018-01)the Venture&Innovation Support program for Chongqing Overseas Returnees Year 2022。
文摘We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon–photon interaction via the backward stimulated Brillouin scattering(BSBS)process.The coherent photon–phonon interaction where two optical modes couple to a Brillouin acoustic mode with a large decay rate provides an extra channel for the cooling of a Duffing mechanical oscillator.The squeezing degree and the robustness to the thermal noises of the Duffing mechanical mode can be enhanced greatly.When the Duffing nonlinearity is weak,the squeezing degree of the mechanical mode in the presence of BSBS can be improved by more than one order of magnitude compared with that in the absence of BSBS.Our scheme may be extended to other quantum systems to study novel quantum effects.
基金supported by the National Natural Science Foundation of China (No.42201151)the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Nos.2023Z004 and 2024Z007)。
文摘Black carbon (BC) aerosols are considered key factors that contribute to rapid climate warming and ice melt in the Arctic region.However,compared with long-term observations from land-based stations,observational data over the Arctic Ocean remain relatively scarce.Four Arctic scientific expeditions were conducted in the summer and early autumn of 2010,2012,2016,and 2018 via the Chinese research vessel Xue Long,during which the BC concentrations along the routes were measured via light absorption methods.In this work,the spatiotemporal distribution characteristics of BC over the Arctic Ocean were examined on the basis of these observations.The potential sources of BC along the various routes were analyzed via the weighted potential source contribution function and weighted concentrationweighted trajectory methods of the hybrid single-particle Lagrangian integrated trajectory model in conjunction with Arctic transport potential climate model simulations.The analysis results indicated that wildfires in the western Aleutian Islands,Siberia,and Far East regions were the primary contributors to the BC aerosol concentration observed along the Arctic expedition routes in summer,identifying these regions as major potential source areas.
基金The 2022 Guangdong Provincial Higher Education Teaching Quality and Reform Project“Research and Practice of English Teaching Integrating Ideological and Political Education into the Introduction to Chinese Culture Course Based on UbD Theory”。
文摘This study examines the application of the Understanding by Design(UbD)approach to enhance students’cognitive,affective,and psychomotor learning domains,as well as their intercultural communication competence,in the Introduction to Chinese Culture course.UbD,a curriculum design framework emphasizing deep understanding over rote memorization,employs a“backward design”process to help students achieve a profound comprehension of Chinese culture and its modern implications.Through this approach,students also develop critical intercultural communication skills.The study offers helpful strategies for integrating English language teaching with Chinese cultural education,providing practical insights for curriculum development that bridges linguistic and cultural learning.
基金supported in part by the Major Science and Technology Projects in Yunnan Province(202202AD080013)King Khalid University for funding this work through Large Group Project under grant number RGP.2/373/45.
文摘Data privacy leakage has always been a critical concern in cloud-based Internet of Things(IoT)systems.Dynamic Symmetric Searchable Encryption(DSSE)with forward and backward privacy aims to address this issue by enabling updates and retrievals of ciphertext on untrusted cloud server while ensuring data privacy.However,previous research on DSSE mostly focused on single keyword search,which limits its practical application in cloud-based IoT systems.Recently,Patranabis(NDSS 2021)[1]proposed a groundbreaking DSSE scheme for conjunctive keyword search.However,this scheme fails to effectively handle deletion operations in certain circumstances,resulting in inaccurate query results.Additionally,the scheme introduces unnecessary search overhead.To overcome these problems,we present CKSE,an efficient conjunctive keyword DSSE scheme.Our scheme improves the oblivious shared computation protocol used in the scheme of Patranabis,thus enabling a more comprehensive deletion functionality.Furthermore,we introduce a state chain structure to reduce the search overhead.Through security analysis and experimental evaluation,we demonstrate that our CKSE achieves more comprehensive deletion functionality while maintaining comparable search performance and security,compared to the oblivious dynamic cross-tags protocol of Patranabis.The combination of comprehensive functionality,high efficiency,and security makes our CKSE an ideal choice for deployment in cloud-based IoT systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102201,U2341244).
文摘An experimental and finite element simulation investigation are conducted to study the deformation patterns of steel targets during the penetration process of tungsten alloy long rods,as well as the influence of strength of the target on the deformation patterns.The experimental results revealed slight mass loss in the first layer of the steel target during the transient entrance phase,with an extremely negligible loss in target mass during the quasi-steady penetration phase.The results of macro-analysis,micro-analysis and simulation show that the eroded target material migrated towards the periphery of the crater,causing an increase in the target's thickness,remained within the target,instead of flowing out of the crater.Therefore,the process of long rods penetrating the metal target is considered as a process of backward extrusion.By combining the backward extrusion theory with energy conservation,a penetration depth model for long rods penetrating a metal target,taking into account both the diameter of the crater and the friction coefficient between the rod and the target,has been established.Although the model is not yet perfect,it innovatively applies the principles of solid mechanics to the study of long rod penetration.Additionally,it takes into account the friction coefficient between the rod and the target during the penetration process.Therefore,this model provides a new research direction for future studies on long rod penetration.
基金supported by the NSF of Ningxia(2022AAC03234)the NSF of China(11761004),the Construction Project of First-Class Disciplines in Ningxia Higher Education(NXYLXK2017B09)the Postgraduate Innovation Project of North Minzu University(YCX23074).
文摘In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured data. Inspired by the classical Landweber iterative method and Fourier truncation technique, we develops a modified Landweber iterative regularization method to restore the continuous dependence of solution on the measurement data. Under the a-priori and a-posteriori choice rules for the regularized parameter, the convergence estimates for the regularization method are derived. Some results of numerical simulation are provided to verify the stability and feasibility of our method in dealing with the considered problem.
文摘Objective To study the key technologies in the field of ginsenosides and to offer a guide for the future development ginsenosides through the main path identification method based on genetic knowledge persistence algorithm(GKPA).Methods The global ginsenoside invention authorized patents were used as the data source to construct a ginsenoside patent self-citation network,and to identify high knowledge persistent patents(HKPP)of ginsenoside technology based on the GKPA,and extract its high knowledge persistence main path(HKPMP).Finally,the genetic forward and backward path(GFBP)was used to search the nodes on the main path,and draw the genetic forward and backward main path(GFBMP)of ginsenoside technology.Results and Conclusion The algorithm was applied to the field of ginsenosides.The research results show the milestone patents in ginsenosides technology and the main evolution process of three key technologies,which points out the future direction for the technological development of ginsenosides.The results obtained by this algorithm are more interpretable,comprehensive and scientific.
基金Project supported by the National Natural Science Foundation of China (Grant No :10332040) and the Chinese Acade-my of Sciences Project (Grant No : KJCX-SW-L04) .
文摘Eels can perform both forward and backward undulatory swimming but few studies are seen on how eels propel themselves backward. A computational study on the unsteady hydrodynamicsoof the backward swimming in the eel anguilla anguilla is carried out and presented. A two-dimensional geometric model of the European eel body in its middle horizontal section is appropriately approximated by a NACA0005 airfoil. Kinematic data of the backward and forward swimming eel used in the computational modeling are based on the experimental results of the European eel. Present study provided the different flow field characteristics of three typical cases in the backward swimming, and confirmed the guess of Wu: When the eel swims steadily, the vortex centers of the reversed von Kármán vortex street are aligned approximately. An extensive comparison between the backward and forward swimming further reveals that the controllable parameters, such as frequency, amplitude and wavelength of the traveling wave, have a similar influence on the propulsion performance as in forward swimming. But it is shown that the backward swimming does not be a "reversed" forward swimming one. The backward swimming does show significant discrepancy in the propulsion performance: utilization of a constant-amplitude wave profile enables larger force generation for maneuverability but with much lower propulsive efficiency instead of the linear-increasing amplitude wave profile in the forward swimming. The actual swimming modes eels choose is the best choice associated with their propulsive requirement, as well as their physiological and ecological adaptation.
基金supported by the National Natural Science Foundation of China(No.41907180).
文摘Using the observation data in Yongxing Island,South China Sea(SCS)from December 2013 to November 2018,the multiple time scales variation of atmospheric CO_(2)and CH_(4)were analyzed to understand their temporal variation characteristics and controlling factors.The regional-averaged background mole fractions of CO_(2)and CH_(4)both show a single-period sinusoidal variation with a lower value at noon and a higher value in the wee hours.In the seasonal scale,they exhibited a significant seasonal difference with higher values in winter and lower values in summer.In the annual scale,CO_(2)and CH_(4)both show an increasing trend,with an annual growth rate of approximately 3.2 ppm and 12 ppb,respectively.The annual growth rate at this site was higher than the global average.The change in atmospheric CO_(2)and CH_(4)in Yongxing Island was probably caused by the higher emission of the surrounding areas and the airflows driven by monsoon.Hopefully,the long-term and high-resolution greenhouse gases(GHGs)dataset will aid relevent researchers and decision-makers in performing more in-depth studies for GHG sources in order to derive effective strategies.
文摘The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers.Protons with energies of tens of MeV can be accelerated using,for instance,target normal sheath acceleration and focused on secondary targets.Under such conditions,nuclear reactions can occur,with the production of radioisotopes suitable for medical application.The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators.In this paper,we study the production of^(67)Cu,^(63)Zn,^(18)F,and^(11)C,which are currently used in positron emission tomography and other applications.At the same time,we study the reactions^(10)B(p,α)^(7)Be and^(70)Zn(p,4n)^(67)Ga to put further constraints on the proton distributions at different angles,as well as the reaction^(11)B(p,α)^(8)Be relevant for energy production.The experiment was performed at the 1 PW laser facility at VegaⅢin Salamanca,Spain.Angular distributions of radioisotopes in the forward(with respect to the laser direction)and backward directions were measured using a high purity germanium detector.Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera[Nucl.Instrum.Methods Phys.Res.,Sect.A 637,164–170(2011)].
文摘Dear Editor,This letter investigates a partially-observed optimal control problem for backward stochastic differential delay equations(BSDDEs).By utilizing Girsanov’s theory and convex variational method,we obtain a maximum principle on the assumption that the state equation contains time delay and the control domain is convex.The adjoint processes can be represented as the solutions of certain time-advanced stochastic differential equations in finite-dimensional spaces.Linear backward stochastic differential equation(BSDE)was first introduced by Bismut in[1],while general BSDE was given by Pardoux and Peng[2].Since then,the theory of BSDEs developed rapidly.The corresponding optimal control problems,whose states are driven by BSDEs,have also been widely studied by some authors,see[3]-[5].
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62103375,62006106,61877055,and 62171413)the Philosophy and Social Science Planning Project of Zhejinag Province,China(Grant No.22NDJC009Z)+1 种基金the Education Ministry Humanities and Social Science Foundation of China(Grant No.19YJCZH056)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY23F030003,LY22F030006,and LQ21F020005).
文摘The dissemination of information across various locations is an ubiquitous occurrence,however,prevalent methodologies for multi-source identification frequently overlook the fact that sources may initiate dissemination at distinct initial moments.Although there are many research results of multi-source identification,the challenge of locating sources with varying initiation times using a limited subset of observational nodes remains unresolved.In this study,we provide the backward spread tree theorem and source centrality theorem,and develop a backward spread centrality algorithm to identify all the information sources that trigger the spread at different start times.The proposed algorithm does not require prior knowledge of the number of sources,however,it can estimate both the initial spread moment and the spread duration.The core concept of this algorithm involves inferring suspected sources through source centrality theorem and locating the source from the suspected sources with linear programming.Extensive experiments from synthetic and real network simulation corroborate the superiority of our method in terms of both efficacy and efficiency.Furthermore,we find that our method maintains robustness irrespective of the number of sources and the average degree of network.Compared with classical and state-of-the art source identification methods,our method generally improves the AUROC value by 0.1 to 0.2.
基金supported by the National Key Research and Development Program(Grant No.2020YFB1313200,2022YFC2805200)the National Natural Science Foundation of China(Grant No.52001260,52201381)Ningbo Natural Science Foundation(Grant No.2022J062).
文摘Fish in nature exhibit a variety of swimming modes such as forward swimming,backward swimming,turning,pitching,etc.,enabling them to swim in complex scenes such as coral reefs.It is still difficult for a robotic fish to swim autonomously in a confined area as a real fish.Here,we develop an untethered robotic manta as an experimental platform,which consists of two flexible pectoral fins and a tail fin,with three infrared sensors installed on the front,left,and right sides of the head to sense the surrounding obstacles.To generate multiple swimming modes of the robotic manta and online switching of different modes,we design a closed-loop Central Pattern Generator(CPG)controller based on distance information and use a combination of phase difference and amplitude of the CPG model to achieve stable and rapid adjustment of yaw angle.To verify the autonomous swimming ability of the robotic manta in complex scenes,we design an experimental scenario with a concave obstacle.The experimental results show that the robotic manta can achieve forward swimming,backward swimming,in situ turning within the concave obstacle,and finally exit from the area safely while relying on the perception of external obstacles,which can provide insight into the autonomous exploration of complex scenes by the biomimetic robotic fish.Finally,the swimming ability of the robotic manta is verified by field tests.
基金the National Key Research and Development Program of China(No.2021YFB2600704)the National Natural Science Foundation of China(No.52171272)the Significant Science and Technology Project of the Ministry of Water Resources of China(No.SKS-2022112).
文摘Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic diffusivity.For(1+1)-dimensional problems,analytical solutions that satisfy the boundary requirements are derived.Such solutions are numerically calculated using the trigonometric basis approximation for(2+1)-dimensional problems.With the aid of these analytical or numerical approximations,the original problems can be converted into the fractional ordinary differential equations,and solutions to the fractional ordinary differential equations are approximated by modified radial basis functions with time-dependent coefficients.An efficient backward substitution strategy that was previously provided for a single fractional ordinary differential equation is then used to solve the corresponding systems.The straightforward quasilinearization technique is applied to handle nonlinear issues.Numerical experiments demonstrate the suggested algorithm’s superior accuracy and efficiency.
基金supported by the National Natural Science Foundation of China(No.11922504).
文摘Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we investigated and realized the first X-band backward traveling-wave(BTW)accelerating structure as the buncher for a VHEE facility.A method for calculating the parameters of single cell from the field distribution was introduced to simplify the design of the BTW structure.Time-domain circuit equations were applied to calculate the transient beam parameters of the buncher in the unsteady state.A prototype of the BTW structure with a thermionic cathode-diode electron gun was designed,fabricated,and tested at high power at the Tsinghua X-band high-power test stand.The structure successfully operated with 5-MW microwave pulses from the pulse compressor and outputted electron bunches with an energy of 8 MeV and a pulsed current of 108 mA.