期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Weld Defect Monitoring Based on Two-Stage Convolutional Neural Network
1
作者 XIAO Wenbo XIONG Jiakai +2 位作者 YU Lesheng HE Yinshui MA Guohong 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期291-299,共9页
Zn vapour is easily generated on the surface by fusion welding galvanized steel sheet,resulting in the formation of defects.Rapidly developing computer vision sensing technology collects weld images in the welding pro... Zn vapour is easily generated on the surface by fusion welding galvanized steel sheet,resulting in the formation of defects.Rapidly developing computer vision sensing technology collects weld images in the welding process,then obtains laser fringe information through digital image processing,identifies welding defects,and finally realizes online control of weld defects.The performance of a convolutional neural network is related to its structure and the quality of the input image.The acquired original images are labeled with LabelMe,and repeated attempts are made to determine the appropriate filtering and edge detection image preprocessing methods.Two-stage convolutional neural networks with different structures are built on the Tensorflow deep learning framework,different thresholds of intersection over union are set,and deep learning methods are used to evaluate the collected original images and the preprocessed images separately.Compared with the test results,the comprehensive performance of the improved feature pyramid networks algorithm based on the basic network VGG16 is lower than that of the basic network Resnet101.Edge detection of the image will significantly improve the accuracy of the model.Adding blur will reduce the accuracy of the model slightly;however,the overall performance of the improved algorithm is still relatively good,which proves the stability of the algorithm.The self-developed software inspection system can be used for image preprocessing and defect recognition,which can be used to record the number and location of typical defects in continuous welds. 展开更多
关键词 defects monitoring image preprocessing resnet101 feature pyramid network
原文传递
小样本条件下的典型海洋承灾体识别算法研究
2
作者 文莉莉 张炜 +1 位作者 邬满 赵绪成 《应用海洋学学报》 北大核心 2025年第2期346-354,共9页
海洋承灾体的单体识别和精细化管理,对海洋灾害的精准预警和评估具有重要意义。由于海洋承灾体获取大量样本数据困难且成本高,难以满足传统深度学习模型的训练要求,因此本研究针对房屋、码头吊机、养殖网箱、养殖蚝排、危化品储存罐5种... 海洋承灾体的单体识别和精细化管理,对海洋灾害的精准预警和评估具有重要意义。由于海洋承灾体获取大量样本数据困难且成本高,难以满足传统深度学习模型的训练要求,因此本研究针对房屋、码头吊机、养殖网箱、养殖蚝排、危化品储存罐5种典型海洋承灾体,提出一种小样本条件下基于注意力机制和孪生残差网络的海洋承灾体识别方法。为增强小样本条件下模型的关键特征提取能力和泛化能力,本研究从两个方面进行了改进:①引入注意力机制SKNet对残差网络进行改进,设计了具有多尺度自适应能力的SKNet-ResNet-101网络,提高了模型的关键特征提取能力;②利用孪生网络度量学习的原理,以SKNet-ResNet-101网络为主干网络,构建基于注意力机制的双路孪生残差网络,以减少网络训练对大量样本的依赖,同时增强网络在小样本条件下的泛化能力。经过与FSOD、Meta R-CNN等算法在海洋承灾体、VOC、COCO数据集上的对比测试,改进后的双路孪生残差网络在识别准确率上均有所提高,其中,在海洋承灾体数据集上提高了0.89%,在VOC数据集上平均提高了0.97%,在COCO数据集上平均提高了0.33%。该模型增强了小样本条件下网络针对复杂场景图像特征的提取能力,为构建精细化的海洋承灾体脆弱性评价和灾变预警模型提供了技术基础。 展开更多
关键词 小样本学习 SKNet ResNet-101 孪生神经网络 海洋承灾体
在线阅读 下载PDF
基于卷积神经网络的行人检测方法 被引量:3
3
作者 叶正喆 苍岩 《应用科技》 CAS 2022年第2期55-62,共8页
针对行人检测算法未能充分利用行人的特征信息,导致对行人的检测效果不佳问题,本文对无锚框的行人检测网络模型CSP进行了相应改进,提出了一种基于卷积神经网络的行人检测算法。首先,将原主干网络由ResNet-50加深为ResNet-101,然后引入... 针对行人检测算法未能充分利用行人的特征信息,导致对行人的检测效果不佳问题,本文对无锚框的行人检测网络模型CSP进行了相应改进,提出了一种基于卷积神经网络的行人检测算法。首先,将原主干网络由ResNet-50加深为ResNet-101,然后引入卷积块注意力模块(CBAM)来提高原网络对小尺度行人中心点的特征表达,加入基于分数融合公式的分类器模块来进一步提高被遮挡行人的置信度,最终得到AS-CSP算法。该算法可以进一步提高对小尺度行人以及遮挡行人的检测效果。实验采用的数据集是CityPersons数据集,并在通用行人、小尺度行人以及遮挡行人等不同场景下进行对比实验,验证新算法的有效性。实验结果表明,本文提出的AS-CSP算法在通用行人、小尺度行人以及遮挡行人场景上的检测效果相比于原算法都得到了提升。 展开更多
关键词 行人检测 CSP网络 卷积神经网络 ResNet-101网络 ResNet-50网络 卷积块注意力模块 分数融合 置信度
在线阅读 下载PDF
基于卷积神经网络的颅内出血检测 被引量:4
4
作者 周长才 刘爽 王昕 《长春工业大学学报》 CAS 2021年第5期469-473,共5页
使用训练集的80%训练了基于ResNet-101的预测模型,剩余20%作为测试集用于评估5种出血类型的效能。实验结果表明,每一张图像的预测准确率为94.6%,每一类的平均预测准确率达98.1%。
关键词 卷积神经网络 ResNet-101 颅内出血 深度学习
在线阅读 下载PDF
基于卷积神经网络的群猪图像实例分割方法 被引量:2
5
作者 屈露 苍岩 《应用科技》 CAS 2023年第3期78-84,共7页
针对群养饲喂模式下猪群易因聚集遮挡、猪体黏连而影响图像分割的问题,本文对无锚框单阶段实例分割Blend Mask算法进行了相应的改进,提出了一种基于卷积神经网络的群猪图像实例分割算法。将原主干网络由ResNet-101升级为ResNext-101,在... 针对群养饲喂模式下猪群易因聚集遮挡、猪体黏连而影响图像分割的问题,本文对无锚框单阶段实例分割Blend Mask算法进行了相应的改进,提出了一种基于卷积神经网络的群猪图像实例分割算法。将原主干网络由ResNet-101升级为ResNext-101,在网络不加深不加宽的情况下,提升模型准确率的同时还减少超参数的数量;在检测模块中引入可变形卷积来提高原网络对猪身粘连区域的表征能力;最后对损失函数进行优化,以提升分割精度。实验数据采集自广州广垦、湖南唐人神2个猪场,在此数据集上进行模型训练和测试,对改进前后的Blend Mask算法进行测试对比,改进后的Blend Mask算法的分割准确率在同一数据集上均有所提升,由于群猪聚集遮挡问题导致的误检、漏检问题也有所改进。 展开更多
关键词 卷积神经网络 实例分割 Blend Mask网络 ResNet-101网络 ResNext-101网络 可变形卷积 特征提取 损失函数
在线阅读 下载PDF
基于深度学习水果检测的研究与改进 被引量:19
6
作者 黄豪杰 段先华 黄欣辰 《计算机工程与应用》 CSCD 北大核心 2020年第3期127-133,共7页
为实现自然环境下水果自动化采摘存在受环境和障碍物等因素造成的问题,导致目标水果检测准确率不高,泛化性不强等实际问题,以苹果、橘子、香蕉三种水果作为研究对象,提出一种基于深度学习的SSD(Single Shot Detector)改进模型。经典SSD... 为实现自然环境下水果自动化采摘存在受环境和障碍物等因素造成的问题,导致目标水果检测准确率不高,泛化性不强等实际问题,以苹果、橘子、香蕉三种水果作为研究对象,提出一种基于深度学习的SSD(Single Shot Detector)改进模型。经典SSD采用多尺度特征融合的方式,从网络不同层抽取不同尺度的特征做预测,但是没有用到足够低层的特征,使得小物体的检测效果较差。通过将经典SSD训练使用的VGG16输入模型替换为ResNet-101,利用特征金字塔网络(FPN)结构将高层特征通过上采样和低层特征做融合。实验表明,改进的SSD300和SSD512水果检测模型的平均检测精度为83.05%和84.24%,经数据增强后精度也有所提升,适合于自然环境下水果的精确检测。 展开更多
关键词 深度学习 目标检测 SSD模型 ResNet-101模型 特征金字塔网络(FPN)
在线阅读 下载PDF
Small objects detection in UAV aerial images based on improved Faster R-CNN 被引量:8
7
作者 WANG Ji-wu LUO Hai-bao +1 位作者 YU Peng-fei LI Chen-yang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期11-16,共6页
In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convo... In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convolutional neural network(Faster R-CNN)is proposed.The bird’s nest on the high-voltage tower is taken as the research object.Firstly,we use the improved convolutional neural network ResNet101 to extract object features,and then use multi-scale sliding windows to obtain the object region proposals on the convolution feature maps with different resolutions.Finally,a deconvolution operation is added to further enhance the selected feature map with higher resolution,and then it taken as a feature mapping layer of the region proposals passing to the object detection sub-network.The detection results of the bird’s nest in UAV aerial images show that the proposed method can precisely detect small objects in aerial images. 展开更多
关键词 Faster region-based convolutional neural network(Faster R-CNN) resnet101 unmanned aerial vehicle(UAV) small objects detection bird’s nest
在线阅读 下载PDF
基于特征金字塔网络的交通标志检测研究
8
作者 王兴莉 严国萍 《中国科技期刊数据库 工业C》 2018年第12期00331-00331,共1页
随着辅助驾驶与无人车驾驶技术的不断发展,对交通标志检测在精确性与实时性上具有了更大的挑战。传统的技术更多的采用颜色检测和形状检测等。近年来,深度学习在图像分割、目标识别和目标检测这些领域做出了突出的贡献。本文主要是应用F... 随着辅助驾驶与无人车驾驶技术的不断发展,对交通标志检测在精确性与实时性上具有了更大的挑战。传统的技术更多的采用颜色检测和形状检测等。近年来,深度学习在图像分割、目标识别和目标检测这些领域做出了突出的贡献。本文主要是应用Feature Pyramid Networks技术对德国的交通标志检测数据集GTSDB做深入研究。本文从两个不同的方面进行研究:1与经典的Faster R-CNN进行实验对比,并且将Faster R-CNN的网络结构换成ResNet50之后做对比。2将特征金字塔网络(FPN)的网络结构替换为ResNet101,来增加网络的特征表征能力。实验获得92.1% mAP和每幅图像0.13s的检测速度。 展开更多
关键词 交通标志 深度学习 Feature Pyramid networks GTSDB resnet101
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部