Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). T...Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backbone-k-coloring. In this paper, we prove that if G is either a connected triangle-free planar graph or a connected graph with mad(G) 〈 3, then there exists a spanning tree T of G such that Xb(G, T) ≤ 4.展开更多
基金supported partially by the National Natural Science Foundation of China(11271334)
文摘Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backbone-k-coloring. In this paper, we prove that if G is either a connected triangle-free planar graph or a connected graph with mad(G) 〈 3, then there exists a spanning tree T of G such that Xb(G, T) ≤ 4.