期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Backbone Coloring for Triangle-free Planar Graphs 被引量:1
1
作者 Yue-hua BU Shui-ming ZHANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2017年第3期819-824,共6页
Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). T... Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1,2,…,k} such that If(u)- f(v)| ≥ 2 if uv ∈ E(H) and |f(u)- f(v) | ≥ 1 if uv ∈ E(G)/E(H). The backbone chromatic number of (G, H) denoted by Xb(G, H) is the smallest integer k such that (G, H) has a backbone-k-coloring. In this paper, we prove that if G is either a connected triangle-free planar graph or a connected graph with mad(G) 〈 3, then there exists a spanning tree T of G such that Xb(G, T) ≤ 4. 展开更多
关键词 backbone coloring spanning tree GIRTH maximum average degree
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部