This letter addresses the study titled“Red cell distribution width:A predictor of the severity of hypertriglyceridemia-induced acute pancreatitis”by Lv et al published in the World Journal of Experimental Medicine.T...This letter addresses the study titled“Red cell distribution width:A predictor of the severity of hypertriglyceridemia-induced acute pancreatitis”by Lv et al published in the World Journal of Experimental Medicine.The study offers a valuable analysis of red cell distribution width(RDW)as a predictive marker for persistent organ failure in patients with hypertriglyceridemia-induced acute pancreatitis.The study results suggest that RDW,combined with the Bedside Index for Severity in Acute Pancreatitis score,could enhance the predictive accuracy for severe outcomes.Further investigation into the role of RDW in different severities of acute pancreatitis is recommended.Additionally,the need for large-scale and multicenter prospective studies to validate these findings is emphasized.展开更多
Aiming at the problems of low accuracy and poor robustness that existed in the current hot rolling strip width spread model,an improved strip spread prediction model based on a material forming mechanism and Bayesian ...Aiming at the problems of low accuracy and poor robustness that existed in the current hot rolling strip width spread model,an improved strip spread prediction model based on a material forming mechanism and Bayesian optimized adaptive differential evolution algorithm(BADE)was proposed.At first,we improved the original spread mechanism model by adding the weight and bias term to enhance the model robustness based on rolling temperature.Then,the BADE algorithm was proposed to optimize the improved spread mechanism model.The optimization algorithm is based on a novel adaptive differential evolution algorithm,which can effectively achieve the global optimal solution.Finally,the prediction performances of five machine learning algorithms were compared in experiments.The results show that the prediction accuracy of the improved spread model is obviously better than that of the machine learning algorithms,which proves the effectiveness of the proposed method.展开更多
文摘This letter addresses the study titled“Red cell distribution width:A predictor of the severity of hypertriglyceridemia-induced acute pancreatitis”by Lv et al published in the World Journal of Experimental Medicine.The study offers a valuable analysis of red cell distribution width(RDW)as a predictive marker for persistent organ failure in patients with hypertriglyceridemia-induced acute pancreatitis.The study results suggest that RDW,combined with the Bedside Index for Severity in Acute Pancreatitis score,could enhance the predictive accuracy for severe outcomes.Further investigation into the role of RDW in different severities of acute pancreatitis is recommended.Additionally,the need for large-scale and multicenter prospective studies to validate these findings is emphasized.
基金support from National Natural Science Foundation of China(Grant Nos.61633019,61533013 and 62273234).
文摘Aiming at the problems of low accuracy and poor robustness that existed in the current hot rolling strip width spread model,an improved strip spread prediction model based on a material forming mechanism and Bayesian optimized adaptive differential evolution algorithm(BADE)was proposed.At first,we improved the original spread mechanism model by adding the weight and bias term to enhance the model robustness based on rolling temperature.Then,the BADE algorithm was proposed to optimize the improved spread mechanism model.The optimization algorithm is based on a novel adaptive differential evolution algorithm,which can effectively achieve the global optimal solution.Finally,the prediction performances of five machine learning algorithms were compared in experiments.The results show that the prediction accuracy of the improved spread model is obviously better than that of the machine learning algorithms,which proves the effectiveness of the proposed method.