A non-depletion floating layer silicon-on-insulator (NFL SOI) lateral double-diffused metal–oxide–semiconductor (LDMOS) is proposed and the NFL-assisted modulated field (NFLAMF) principle is investigated in th...A non-depletion floating layer silicon-on-insulator (NFL SOI) lateral double-diffused metal–oxide–semiconductor (LDMOS) is proposed and the NFL-assisted modulated field (NFLAMF) principle is investigated in this paper. Based on this principle, the floating layer can pin the potential for modulating bulk field. In particular, the accumulated high concentration of holes at the bottom of the NFL can efficiently shield the electric field of the SOI layer and enhance the dielectric field in the buried oxide layer (BOX). At variation of back-gate bias, the shielding charges of NFL can also eliminate back-gate effects. The simulated results indicate that the breakdown voltage (BV) is increased from 315 V to 558 V compared to the conventional reduced surface field (RESURF) SOI (CSOI) LDMOS, yielding a 77% improvement. Furthermore, due to the field shielding effect of the NFL, the device can maintain the same breakdown voltage of 558 V with a thinner BOX to resolve the thermal problem in an SOI device.展开更多
A uniform doping ultra-thin silicon-on-insulator(SOI) lateral-double-diffused metal-oxide-semiconductor(LDMOS)with low specific on-resistance(R_on,sp) and high breakdown voltage(BV) is proposed and its mechani...A uniform doping ultra-thin silicon-on-insulator(SOI) lateral-double-diffused metal-oxide-semiconductor(LDMOS)with low specific on-resistance(R_on,sp) and high breakdown voltage(BV) is proposed and its mechanism is investigated.The proposed LDMOS features an accumulation-mode extended gate(AG) and back-side etching(BE). The extended gate consists of a P– region and two diodes in series. In the on-state with VGD〉 0, an electron accumulation layer is formed along the drift region surface under the AG. It provides an ultra-low resistance current path along the whole drift region surface and thus the novel device obtains a low temperature distribution. The R_on,sp is nearly independent of the doping concentration of the drift region. In the off-state, the AG not only modulates the surface electric field distribution and improves the BV, but also brings in a charge compensation effect to further reduce the R_on,sp. Moreover, the BE avoids vertical premature breakdown to obtain high BV and allows a uniform doping in the drift region, which avoids the variable lateral doping(VLD) and the "hot-spot" caused by the VLD. Compared with the VLD SOI LDMOS, the proposed device simultaneously reduces the R_on,sp by 70.2% and increases the BV from 776 V to 818 V.展开更多
This paper discusses the breakdown mechanism and proposes a new simulation and test method of breakdown voltage (BV) for an ultra-high-voltage (UHV) high-side thin layer silicon-on-insulator (SOI) p-channel low-...This paper discusses the breakdown mechanism and proposes a new simulation and test method of breakdown voltage (BV) for an ultra-high-voltage (UHV) high-side thin layer silicon-on-insulator (SOI) p-channel low-density metal- oxide semiconductor (LDMOS). Compared with the conventional simulation method, the new one is more accordant with the actual conditions of a device that can be used in the high voltage circuit. The BV of the SOI p-channel LDMOS can be properly represented and the effect of reduced bulk field can be revealed by employing the new simulation method. Simulation results show that the off-state (on-state) BV of the SOI p-channel LDMOS can reach 741 (620) V in the 3μm-thick buried oxide layer, 50μm-length drift region, and at -400 V back-gate voltage, enabling the device to be used in a 400 V UHV integrated circuit.展开更多
A high-side thin-layer silicon-on-insulator (SOI) pLDMOS is proposed, adopting field implant (FI) and multiple field plate (MFP) technologies. The breakdown mechanisms of back gate (BG) turn-on, surface channe...A high-side thin-layer silicon-on-insulator (SOI) pLDMOS is proposed, adopting field implant (FI) and multiple field plate (MFP) technologies. The breakdown mechanisms of back gate (BG) turn-on, surface channel punch-through, and vertical and lateral avalanche breakdown are investigated by setting up analytical models, simulating related parameters and verifying experimentally. The device structure is optimized based on the above research. The shallow junction achieved through FI technology attenuates the BG effect, the optimized channel length eliminates the surface channel punch-through, the advised thickness of the buried oxide dispels the vertical avalanche breakdown, and the MFP technology avoids premature lateral avalanche breakdown by modulating the electric field distribution. Finally, for the first time, a 300 V high-side pLDMOS is experimentally realized on a 1.5 μm thick thin-layer SOI.展开更多
The leakage current and breakdown voltage of AlGaN/GaN/AlGaN high electron mobility transistors on silicon with different GaN channel thicknesses were investigated.The results showed that a thin GaN channel was benefi...The leakage current and breakdown voltage of AlGaN/GaN/AlGaN high electron mobility transistors on silicon with different GaN channel thicknesses were investigated.The results showed that a thin GaN channel was beneficial for obtaining a high breakdown voltage,based on the leakage current path and the acceptor traps in the AlGaN back-barrier.The breakdown voltage of the device with an 800 nm-thick GaN channel was 926 V@1 m A/mm,and the leakage current increased slowly between 300 and 800 V.Besides,the raising conduction band edge of the GaN channel by the AlGaN back-barrier lead to little degradation for sheet 2-D electron gas density,especially,in the thin GaN channel.The transfer and output characteristics were not obviously deteriorated for the samples with different GaN channel thickness.Through optimizing the GaN channel thickness and designing the Al GaN back-barrier,the lower leakage current and higher breakdown voltage would be possible.展开更多
文摘A non-depletion floating layer silicon-on-insulator (NFL SOI) lateral double-diffused metal–oxide–semiconductor (LDMOS) is proposed and the NFL-assisted modulated field (NFLAMF) principle is investigated in this paper. Based on this principle, the floating layer can pin the potential for modulating bulk field. In particular, the accumulated high concentration of holes at the bottom of the NFL can efficiently shield the electric field of the SOI layer and enhance the dielectric field in the buried oxide layer (BOX). At variation of back-gate bias, the shielding charges of NFL can also eliminate back-gate effects. The simulated results indicate that the breakdown voltage (BV) is increased from 315 V to 558 V compared to the conventional reduced surface field (RESURF) SOI (CSOI) LDMOS, yielding a 77% improvement. Furthermore, due to the field shielding effect of the NFL, the device can maintain the same breakdown voltage of 558 V with a thinner BOX to resolve the thermal problem in an SOI device.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176069 and 61376079)
文摘A uniform doping ultra-thin silicon-on-insulator(SOI) lateral-double-diffused metal-oxide-semiconductor(LDMOS)with low specific on-resistance(R_on,sp) and high breakdown voltage(BV) is proposed and its mechanism is investigated.The proposed LDMOS features an accumulation-mode extended gate(AG) and back-side etching(BE). The extended gate consists of a P– region and two diodes in series. In the on-state with VGD〉 0, an electron accumulation layer is formed along the drift region surface under the AG. It provides an ultra-low resistance current path along the whole drift region surface and thus the novel device obtains a low temperature distribution. The R_on,sp is nearly independent of the doping concentration of the drift region. In the off-state, the AG not only modulates the surface electric field distribution and improves the BV, but also brings in a charge compensation effect to further reduce the R_on,sp. Moreover, the BE avoids vertical premature breakdown to obtain high BV and allows a uniform doping in the drift region, which avoids the variable lateral doping(VLD) and the "hot-spot" caused by the VLD. Compared with the VLD SOI LDMOS, the proposed device simultaneously reduces the R_on,sp by 70.2% and increases the BV from 776 V to 818 V.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60906038)
文摘This paper discusses the breakdown mechanism and proposes a new simulation and test method of breakdown voltage (BV) for an ultra-high-voltage (UHV) high-side thin layer silicon-on-insulator (SOI) p-channel low-density metal- oxide semiconductor (LDMOS). Compared with the conventional simulation method, the new one is more accordant with the actual conditions of a device that can be used in the high voltage circuit. The BV of the SOI p-channel LDMOS can be properly represented and the effect of reduced bulk field can be revealed by employing the new simulation method. Simulation results show that the off-state (on-state) BV of the SOI p-channel LDMOS can reach 741 (620) V in the 3μm-thick buried oxide layer, 50μm-length drift region, and at -400 V back-gate voltage, enabling the device to be used in a 400 V UHV integrated circuit.
基金Project supported by National Natural Science Foundation of China(Grant No.60906038)
文摘A high-side thin-layer silicon-on-insulator (SOI) pLDMOS is proposed, adopting field implant (FI) and multiple field plate (MFP) technologies. The breakdown mechanisms of back gate (BG) turn-on, surface channel punch-through, and vertical and lateral avalanche breakdown are investigated by setting up analytical models, simulating related parameters and verifying experimentally. The device structure is optimized based on the above research. The shallow junction achieved through FI technology attenuates the BG effect, the optimized channel length eliminates the surface channel punch-through, the advised thickness of the buried oxide dispels the vertical avalanche breakdown, and the MFP technology avoids premature lateral avalanche breakdown by modulating the electric field distribution. Finally, for the first time, a 300 V high-side pLDMOS is experimentally realized on a 1.5 μm thick thin-layer SOI.
基金supported by the Key Research and Development Program of Jiangsu Province(No.BE2016084)the National Natural Science Foundation of China(Nos.11404372,6157401,61704185)+3 种基金the Natural Science Foundation of Beijing,China(No.4182015)the Scientific Research Fund Project of Municipal Education Commission of Beijing(No.PXM2017_014204_500034)the National Key Scientific Instrument and Equipment Development Projects of China(No.2013YQ470767)the National Key Research and Development Program of China(No.2016YFC0801203)
文摘The leakage current and breakdown voltage of AlGaN/GaN/AlGaN high electron mobility transistors on silicon with different GaN channel thicknesses were investigated.The results showed that a thin GaN channel was beneficial for obtaining a high breakdown voltage,based on the leakage current path and the acceptor traps in the AlGaN back-barrier.The breakdown voltage of the device with an 800 nm-thick GaN channel was 926 V@1 m A/mm,and the leakage current increased slowly between 300 and 800 V.Besides,the raising conduction band edge of the GaN channel by the AlGaN back-barrier lead to little degradation for sheet 2-D electron gas density,especially,in the thin GaN channel.The transfer and output characteristics were not obviously deteriorated for the samples with different GaN channel thickness.Through optimizing the GaN channel thickness and designing the Al GaN back-barrier,the lower leakage current and higher breakdown voltage would be possible.