Objective:To determine the effect of steroidogenic acute regulatory protein(StAR) overexpression on the levels of adenosine triphosphate(ATP)-binding cassette transporter A1(ABCA1) and ATP-binding cassette transporter...Objective:To determine the effect of steroidogenic acute regulatory protein(StAR) overexpression on the levels of adenosine triphosphate(ATP)-binding cassette transporter A1(ABCA1) and ATP-binding cassette transporter G1(ABCG1) in an endothelial cell line(bEnd.3).Methods:The StAR gene was induced in bEnd.3 cells with adenovirus infection.The infection efficiency was detected by fluorescence activated cell sorter(FACS) and fluorescence microscopy.The expressions of StAR gene and protein levels were detected by real-time polymerase chain reaction(PCR) and Western blot.The gene and protein levels of ABCA1 and ABCG1 were detected by real-time PCR and Western blot after StAR overexpression.Results:The result shows that StAR was successfully overexpressed in bEnd.3 cells by adenovirus infection.The mRNA and protein expressions of ABCA1 and ABCG1 were greatly increased by StAR overexpression in bEnd.3 cells.Conclusion:Overexpression of StAR increases ABCA1 and ABCG1 expressions in endothelial cells.展开更多
Flexoelectricity refers to the link between electrical polarization and strain gradient fields in piezoelectric materials,particularly at the nano-scale.The present investigation aims to comprehensively focus on the s...Flexoelectricity refers to the link between electrical polarization and strain gradient fields in piezoelectric materials,particularly at the nano-scale.The present investigation aims to comprehensively focus on the static bending analysis of a piezoelectric sandwich functionally graded porous(FGP)double-curved shallow nanoshell based on the flexoelectric effect and nonlocal strain gradient theory.Two coefficients that reduce or increase the stiffness of the nanoshell,including nonlocal and length-scale parameters,are considered to change along the nanoshell thickness direction,and three different porosity rules are novel points in this study.The nanoshell structure is placed on a Pasternak elastic foundation and is made up of three separate layers of material.The outermost layers consist of piezoelectric smart material with flexoelectric effects,while the core layer is composed of FGP material.Hamilton’s principle was used in conjunction with a unique refined higher-order shear deformation theory to derive general equilibrium equations that provide more precise outcomes.The Navier and Galerkin-Vlasov methodology is used to get the static bending characteristics of nanoshells that have various boundary conditions.The program’s correctness is assessed by comparison with published dependable findings in specific instances of the model described in the article.In addition,the influence of parameters such as flexoelectric effect,nonlocal and length scale parameters,elastic foundation stiffness coefficient,porosity coefficient,and boundary conditions on the static bending response of the nanoshell is detected and comprehensively studied.The findings of this study have practical implications for the efficient design and control of comparable systems,such as micro-electromechanical and nano-electromechanical devices.展开更多
Fiber Bragg grating(FBG)sensors are extensively used in various sensing applications due to their high sensitivity.However,they are inherently sensitive to both strain and temperature,with a cross-sensitivity problem,...Fiber Bragg grating(FBG)sensors are extensively used in various sensing applications due to their high sensitivity.However,they are inherently sensitive to both strain and temperature,with a cross-sensitivity problem,making it impossible to simultaneously monitor these two parameters using the Bragg wavelength shifts of a single uniform FBG.In this study,we bend the FBG pigtail to cause bending loss.The peak power of the FBG is used as the second characterization quantity.Our experimental results show that the Bragg wavelength sensitivities to strain(K_(ε))and temperature(K_(T))are 0.17 pm/ue and 16.5 pm/℃,respectively.Additionally,the peak power sensitivities to strain(P_(ε))and temperature(P_(T))are-0.00202 dBm/μεand-0.06 dBm/℃,respectively.The linear correlation coefficients for these measurements are all above 0.996.In this way,it is possible to simultaneously measure both strain and temperature using a single uniform FBG.展开更多
文摘目的构建组织蛋白酶B(Cathepsin B,CTSB)小RNA(siRNA)慢病毒载体,并探讨其对小鼠脑微血管内皮细胞(bEND.3)的影响。方法设计并合成含有干扰Cathesin B基因的19 nt的双链寡DNA片段,将此片段克隆到携有绿色荧光蛋白(GFP)的慢病毒表达载体质粒pGCSIL-GFP上,经测序正确后,命名为pGCSIL-GFP-CTSB,将慢病毒表达载体pGCSIL-GFP-CTSB、慢病毒包装载体pHelper1.0和pHelper2.0 3质粒共同转染于293T细胞,获得携带Cathepsin B基因的RNAi慢病毒(Cathesin B-RNAi-Lentivirus,即CTSB-RNAi-LV),通过Real time-PCR和Western blotting方法观察CTSB-RNAi-LV对bEND.3的影响。结果 1.pGCSIL-GFP-CTSB中携带有正确的Cathesin B siRNA基因;2.目的基因Cathepsin B siRNA被RNAi慢病毒高效地转导入靶细胞bEND.3内,并达到稳定的表达;3.CTSB-RNAi-LV能有效降低bEND.3中Cathepsin B mRNA和蛋白表达。结论成功构建了RNAi慢病毒载体pGCSIL-GFP-CTSB;并成功包装了RNAi慢病毒CTSB-RNAi-LV;CTSB-RNAi-LV能有效地抑制bEND.3中Cathepsin B mRNA和蛋白表达水平下调。
基金Project (Nos 30871021 and 30900716) supported by the National Natural Science Foundation of China
文摘Objective:To determine the effect of steroidogenic acute regulatory protein(StAR) overexpression on the levels of adenosine triphosphate(ATP)-binding cassette transporter A1(ABCA1) and ATP-binding cassette transporter G1(ABCG1) in an endothelial cell line(bEnd.3).Methods:The StAR gene was induced in bEnd.3 cells with adenovirus infection.The infection efficiency was detected by fluorescence activated cell sorter(FACS) and fluorescence microscopy.The expressions of StAR gene and protein levels were detected by real-time polymerase chain reaction(PCR) and Western blot.The gene and protein levels of ABCA1 and ABCG1 were detected by real-time PCR and Western blot after StAR overexpression.Results:The result shows that StAR was successfully overexpressed in bEnd.3 cells by adenovirus infection.The mRNA and protein expressions of ABCA1 and ABCG1 were greatly increased by StAR overexpression in bEnd.3 cells.Conclusion:Overexpression of StAR increases ABCA1 and ABCG1 expressions in endothelial cells.
基金This work was supported by the Le Quy Don Technical University Research Fund(Grant No.23.1.11).
文摘Flexoelectricity refers to the link between electrical polarization and strain gradient fields in piezoelectric materials,particularly at the nano-scale.The present investigation aims to comprehensively focus on the static bending analysis of a piezoelectric sandwich functionally graded porous(FGP)double-curved shallow nanoshell based on the flexoelectric effect and nonlocal strain gradient theory.Two coefficients that reduce or increase the stiffness of the nanoshell,including nonlocal and length-scale parameters,are considered to change along the nanoshell thickness direction,and three different porosity rules are novel points in this study.The nanoshell structure is placed on a Pasternak elastic foundation and is made up of three separate layers of material.The outermost layers consist of piezoelectric smart material with flexoelectric effects,while the core layer is composed of FGP material.Hamilton’s principle was used in conjunction with a unique refined higher-order shear deformation theory to derive general equilibrium equations that provide more precise outcomes.The Navier and Galerkin-Vlasov methodology is used to get the static bending characteristics of nanoshells that have various boundary conditions.The program’s correctness is assessed by comparison with published dependable findings in specific instances of the model described in the article.In addition,the influence of parameters such as flexoelectric effect,nonlocal and length scale parameters,elastic foundation stiffness coefficient,porosity coefficient,and boundary conditions on the static bending response of the nanoshell is detected and comprehensively studied.The findings of this study have practical implications for the efficient design and control of comparable systems,such as micro-electromechanical and nano-electromechanical devices.
基金supported by the Fundamental Research Funds for the Central Universities(No.2024JBZX017)。
文摘Fiber Bragg grating(FBG)sensors are extensively used in various sensing applications due to their high sensitivity.However,they are inherently sensitive to both strain and temperature,with a cross-sensitivity problem,making it impossible to simultaneously monitor these two parameters using the Bragg wavelength shifts of a single uniform FBG.In this study,we bend the FBG pigtail to cause bending loss.The peak power of the FBG is used as the second characterization quantity.Our experimental results show that the Bragg wavelength sensitivities to strain(K_(ε))and temperature(K_(T))are 0.17 pm/ue and 16.5 pm/℃,respectively.Additionally,the peak power sensitivities to strain(P_(ε))and temperature(P_(T))are-0.00202 dBm/μεand-0.06 dBm/℃,respectively.The linear correlation coefficients for these measurements are all above 0.996.In this way,it is possible to simultaneously measure both strain and temperature using a single uniform FBG.