In this paper, the smooth connection between two B-spline surfaces is discussed. First, a brief proof of some simple sufficient conditions of Go and G1 continuity is given. On this basis, a novel method for Go or G1 c...In this paper, the smooth connection between two B-spline surfaces is discussed. First, a brief proof of some simple sufficient conditions of Go and G1 continuity is given. On this basis, a novel method for Go or G1 connection between two adjacent B-spline surfaces is presented. A reparameterization step is firstly taken for one of the surfaces such that they have the same parameterization in v direction, then, adjust their boundary control vertices to make them Go or Gl connected. The GI connection parameter is determined by an optimization problem. Compared with the existed methods, our method is simple and easy to be used in practice.展开更多
According to the B-spline theory and Boehm algorithm, this paper presents several necessary and sufficient G1 continuity conditions between two adjacent B-spline surfaces. In order to meet the need of application, a k...According to the B-spline theory and Boehm algorithm, this paper presents several necessary and sufficient G1 continuity conditions between two adjacent B-spline surfaces. In order to meet the need of application, a kind of sufficient conditions of G1 continuity are developed, and a kind of sufficient conditions of G1 continuity among N(N>2) patch B-spline surfaces meeting at a common corner are given at the end.展开更多
In the process of seismic data interpretation, the extraction of a horizon or a fault is generally needed. In this paper we present a fast extraction method. First select some feature points interactively, then recons...In the process of seismic data interpretation, the extraction of a horizon or a fault is generally needed. In this paper we present a fast extraction method. First select some feature points interactively, then reconstruct the surface according to the selected feature points by using B-spline interpolation curve or surface. In order to solve the error-drawing problem appeared in the process of interactive rendering, which is caused by the change of sampling interval as the view point changes, we combine shear-warp and splatting algorithm to render the surface. The rendering of seismic data and specific surface in our work are achieved on GPU platform using CUDA programming language, which make it able to meet the requirements of real-time rendering.展开更多
Algorithms of modifying a surface to approximate some scattered points, or pass through some characteristic points/curves are presented. Similar to variational approach, the algorithms are based on optimization. For t...Algorithms of modifying a surface to approximate some scattered points, or pass through some characteristic points/curves are presented. Similar to variational approach, the algorithms are based on optimization. For the deviation between the modified surface and the original one is adopted as the objective functions, the change of the surface shape is as small as possible with the modified surface satisfying the specified requirements.展开更多
In this paper, we present an algorithm for reconstruction of B-spline surface such that it interpolates the four given bound- ary curves and simultaneously approximates some given inner points. The main idea of our me...In this paper, we present an algorithm for reconstruction of B-spline surface such that it interpolates the four given bound- ary curves and simultaneously approximates some given inner points. The main idea of our method is: first, we construct an initial surface which interpolates the four given boundary curves; then, while keeping the boundary control points of the initial surface un- changed, we reposition the inner control points of the surface with energy optimization method. Examples show that our algorithm is practicable and effective.展开更多
A new lens calibration method which is suitable for all kinds of cameras is presented. Based on the global and local adjustable feature of B-spline surface, this method does not require the determination of distortion...A new lens calibration method which is suitable for all kinds of cameras is presented. Based on the global and local adjustable feature of B-spline surface, this method does not require the determination of distortion model of the camera lens. By applying B-spline surface fitting, all kinds of lens distortion models can be simulated. The control points of B-spline surface are estimated inversly from the feature points of detected lines. Then by moving the control points, straight line features in the image can be retrieved. Compared with traditional calibration method, this method has its unique advantage that need no corresponding points between image and scene. Experimental results show the effectiveness of the method.展开更多
A surface interpolation algorithm is presented. By using a special kind of knot vector. a B-spline surface can be constructed to interpolate an array of m ×n positions, including parameter u and v tangent vectors...A surface interpolation algorithm is presented. By using a special kind of knot vector. a B-spline surface can be constructed to interpolate an array of m ×n positions, including parameter u and v tangent vectors and twist vector at each positions. Single surface interpolation approach is easier to ensure the smoothness of the interpolating surface than multi-patches method. This algorithm can be used to solve the approximating problem of B-spline approximation of general parametric surface.展开更多
Hydrogen peroxide(H_(2)O_(2))oxidation and reduction reactions(HPOR/HPRR)are pivotal in various innovative electrochemical energy conversion devices.A comprehensive understanding of these mechanisms is critical for ca...Hydrogen peroxide(H_(2)O_(2))oxidation and reduction reactions(HPOR/HPRR)are pivotal in various innovative electrochemical energy conversion devices.A comprehensive understanding of these mechanisms is critical for catalyst design and performance improvement in these applications.In this work,we systematically investigate the HPOR/HPRR mechanisms on low-index Pt surfaces,specifically Pt(111),Pt(100)and Pt(110),through density functional theory(DFT)calculations combined with the computational hydrogen electrode(CHE)model.For HPOR,all the low-index Pt surfaces exhibit a unified potential-determining step(PDS)involving the electrochemical oxidation of hydroperoxyl intermediates(HOO*).The binding free energy of HOO*(Δ_(GHOO*))emerges as an activity descriptor,with Pt(110)exhibiting the highest HPOR activity.The HPRR mechanism follows a chem-electrochemical(C-EC)pathway.The rate-determining step(RDS)of HPRR is either the cleavage of the HO-OH bond(chemical)or the reduction of HO(electrochemical),depending on their respective activation energies.These activation energies are functions of the HO*binding free energy,Δ_(GHO*),establishingΔ_(GHO*)as the descriptor for HPRR activity prediction.Pt(111)and Pt(100)are identified as the most active HPRR catalysts among the studied metal surfaces,although they still experience a significant overpotential.The scaling relationship betweenΔ_(GHOO*)andΔ_(GHO*)reveals a thermodynamic coupling of HPOR and HPRR,explaining their occurrence on Pt surfaces.These findings provide important insights and activity descriptors for both HPOR and HPRR,providing valuable guidance for the design of electrocatalysts in H_(2)O_(2)-related energy applications and fuel cells.展开更多
Photodetectors can convert light energy into electrical signals,so are widely used in photovoltaics,photon counting,monitoring,and imaging.Photodetectors are easy to prepare high-resolution photochips because of their...Photodetectors can convert light energy into electrical signals,so are widely used in photovoltaics,photon counting,monitoring,and imaging.Photodetectors are easy to prepare high-resolution photochips because of their small size unit integration.However,these photodetector units often exhibit poor photoelectric performance due to material defects and inadequate structures,which greatly limit the functions of devices.Designing modification strategies and micro-/nanostructures can compensate for defects,adjust the bandgap,and develop novel quantum structures,which consequently optimize photovoltaic units and revolutionize optoelectronic devices.Here,this paper aims to comprehensively elaborate on the surface/interface engineering scheme of micro-/nano-photodetectors.It starts from the fundamentals of photodetectors,such as principles,types,and parameters,and describes the influence of material selection,manufacturing techniques,and post-processing.Then,we analyse in detail the great influence of surface/interface engineering on the performance of photovoltaic devices,including surface/interface modification and micro-/nanostructural design.Finally,the applications and prospects of optoelectronic devices in various fields such as miniaturization of electronic devices,robotics,and human–computer interaction are shown.展开更多
The conditions for G1 continuity between two adjacent bicubic B-spline surfaces with double interior knots along their common boundary curve are obtained in this paper, which are directly represented by the control po...The conditions for G1 continuity between two adjacent bicubic B-spline surfaces with double interior knots along their common boundary curve are obtained in this paper, which are directly represented by the control points of the two B-spline surfaces. As stated by Shi Xi-quan and Zhao Yan, a local scheme of constructing G1 continuous B-spline surface models with single interior knots does not exist; we may achieve a local scheme of (true) G1 continuity over an arbitrary B-spline surface network using these conditions.展开更多
In this study,polyacrylic acid(PAA)films were employed as a model system,and a series of PAA films with tunable water wettability was systematically prepared by varying molecular weight and curing temperature.Using at...In this study,polyacrylic acid(PAA)films were employed as a model system,and a series of PAA films with tunable water wettability was systematically prepared by varying molecular weight and curing temperature.Using attenuated total reflectance Fourier-transform infrared spectroscopy(ATR-FTIR),the molecular configurations of surface carboxyl groups(COOH),free carboxyl(COOH_(f))and hydrogen-bonded carboxyl(COOH_(HB),were directly correlated with the polar component of surface energy(γ^(s,p)).By decomposing theγ^(s,p)values of the PAA thin films as a sum of the contributions of COOH_(f)and COOH_(H B),the intrinsic polar component of surface energy of COOH_(H B)(γ_(H B)^(s,p*))was quantified for the first time as 8.34 mN/m,significantly lower than that of COOH_(f)(γ_(f)^(s,p*)=34 mN/m).This result highlights that hydrogen bonding markedly reduces theγ^(s,p),providing a rational explanation for the relatively large water contact angle observed on PAA thin films.Furthermore,it establishes a thermodynamic basis for estimating the fraction of surface COOH_(H B)groups(f H B)from wettability measurements.Further extension of the model to carboxyl-terminated self-assembled monolayers(COOH-SAMs)revealed that surface COOH density(ΣCOOH)critically regulates wetting behavior:whenΣCOOH ranges from 4.30 to 5.25 nm^(-2),COOH groups predominantly exist in a free state and facilitate effective hydration layers,thereby promoting superhydrophilicity.Overall,this study not only establishes a unified thermodynamic framework linking surface COOH configurations to macroscopic wettability,but also validates its universality by extending it to COOH-SAMs systems,thereby providing a unified theoretical framework for the controllable design of hydrophilicity in various COOH-functionalized surfaces.展开更多
BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly...BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly impact the quality of life of patients.AIM To explore the correlations between ocular surface function,sleep quality,and anxiety/depression in patients with DED.METHODS This was a cross-sectional investigative study that included 358 patients with DED between January 2022 and January 2025.Ocular surface was assessed using the ocular surface disease index(OSDI),tear film break-up time,fluorescein staining score,and Schirmer I test.The Pittsburgh Sleep Quality Index(PSQI),Self-Rating Anxiety Scale(SAS),and Self-Rating Depression Scale(SDS)were used to evaluate sleep quality and anxiety/depression levels.Correlation and linear regression analyses were used to explore the relationships.RESULTS The mean PSQI score of the patients was 9.94±2.18;the mean SAS score was 47.30±4.90,and the mean SDS score was 50.08±5.52.These suggested a prevalence of sleep and psychological abnormalities.There was a significant correlation between the indicators of ocular surface function(OSDI,tear film break-up time,fluorescein staining,and Schirmer I test)and PSQI,SAS,and SDS scores(P<0.05).Moreover,multiple regression revealed that age≥50 years(β=1.55,P=0.029),PSQI scores(β=0.58,P<0.001),SAS scores(β=0.17,P=0.017),and SDS scores(β=0.15,P=0.019)were independent predictors of the OSDI scores.CONCLUSION Ocular surface function in patients with DED is closely related to sleep quality and anxiety/depression,emphasizing the need for holistic clinical management.展开更多
The atmospheric surface layer of the tropical coastal ocean is commonly very unstable and experiences weakwind conditions.How the latent(LE)and sensible(H)heat fluxes behave under such conditions are unclear because o...The atmospheric surface layer of the tropical coastal ocean is commonly very unstable and experiences weakwind conditions.How the latent(LE)and sensible(H)heat fluxes behave under such conditions are unclear because of the lack of observation stations in the tropics.Thus,this study aims to analyze LE and H and the microclimate parameters influencing them.The authors deployed an eddy covariance system in a tropical coastal region for seven months.The microclimate parameters investigated were wind speed(U),vapor pressure deficit(Δe),temperature difference(ΔT),wind-vapor pressure deficit(UΔe),wind-temperature difference(UΔT),and atmospheric stability(z/L),where z is height and L is the Monin–Obukhov length.On the daily time scale,the results show that LE was more associated with U thanΔe,while H was more related toΔT than U.Cross-wavelet analysis revealed the strong coherence in the LE-U relationship for periods between one and two days,and for H–ΔT,0.5 to 1 day.Correlation and regression analyses confirmed the time series analyses results,where strong positive correlation coefficients(r)were obtained between LE and U(r=0.494)and H andΔT(r=0.365).Compared to other water bodies,the transfer coefficient of moisture(CE N)was found to be small(=0.40×10^(-3))and independent of stability;conversely,the transfer coefficient of heat(CH N)was closer to literature values(=1.00×10^(-3))and a function of stability.展开更多
Undesired ice accumulation on infrastructure and transportation systems leads to catastrophic events and significant economic losses.Although various anti-icing surfaces with photothermal effects can initially prevent...Undesired ice accumulation on infrastructure and transportation systems leads to catastrophic events and significant economic losses.Although various anti-icing surfaces with photothermal effects can initially prevent icing,any thawy droplets remaining on the horizontal surface can quickly re-freezing once the light diminishes.To address these challenges,we have developed a self-draining slippery surface(SDSS)that enables the thawy droplets to self-remove on the horizontal surface,thereby facilitating real-time anti-icing with the aid of sunlight(100 m W cm^(-2)).This is achieved by sandwiching a thin pyroelectric layer between slippery surface and photothermal film.Due to the synergy between the photothermal and pyroelectric layers,the SDSS not only maintains a high surface temperature of 19.8±2.2℃at the low temperature(-20.0±1.0℃),but also generates amount of charge through thermoelectric coupling.Thus,as cold droplets dropped on the SDSS,electrostatic force pushes the droplets off the charged surface because of the charge transfer mechanism.Even if the surface freezes overnight,the ice can melt and drain off the SDSS within 10 min of exposure to sunlight at-20.0±1.0℃,leaving a clean surface.This work provides a new perspective on the anti-icing system in the real-world environments.展开更多
The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-bas...The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-based observations remain insufficient to clearly reflect the characteristics of the region’s lithospheric magnetism.In this study,we evaluate the lithospheric magnetism of the Tibetan Plateau by using a 3D surface spline model based on observations from>200 newly constructed repeat stations(portable stations)to determine the spatial distribution of plateau geomagnetism,as well as its correlation with the tectonic features of the region.We analyze the relationships between M≥5 earthquakes and lithospheric magnetic field variations on the Tibetan Plateau and identify regions susceptible to strong earthquakes.We compare the geomagnetic results with those from an enhanced magnetic model(EMM2015)developed by the NGDC and provide insights into improving lithospheric magnetic field calculations in the Tibetan Plateau region.Further research reveals that these magnetic anomalies exhibit distinct differences from the magnetic-seismic correlation mechanisms observed in other tectonic settings;here,they are governed primarily by the combined effects of compressional magnetism,thermal magnetism,and deep thermal stress.This study provides new evidence of geomagnetic anomalies on the Tibetan Plateau,interprets them physically,and demonstrates their potential for identifying seismic hazard zones on the Plateau.展开更多
The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative conti...The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative continuous modification strategy combining non-thermal plasma(NTP)etching with fluorocarbon passivation.Characterization and kinetic analysis revealed that reactive plasma species—including atomic hydrogen(H),electronically excited molecular hydrogen(H_(2)^(*)),vibrationally excited molecular hydrogen(H_(2)v),and hydrogen ions(H^(+))—dominate the reduction of B_(2)O_(3)through lowering the transition energy barrier and shifting the reaction spontaneity.Subsequent argon plasma fragmentation of C_(8)F_(18)generates fluorocarbon radicals that form conformal passivation coatings(thickness:7 nm)on purified boron surfaces.The modified boron particles exhibit 37.5℃lower exothermic peak temperature and 27.2%higher heat release(14.8 kJ/g vs.11.6 kJ/g)compared to untreated counterparts.Combustion diagnostics reveal 194%increase in maximum flame height(135.10 mm vs.46.03 mm)and 134%enhancement in flame propagation rate(4.44 cm/s vs.1.90 cm/s).This NTP-based surface engineering approach establishes a scalable pathway for developing highperformance boron-based energetic composites.展开更多
Global warming induced by increased CO_(2) has caused marked changes in the ocean.Previous estimates of ocean salinity change in response to global warming have considerable ambiguity,largely attributable to the diver...Global warming induced by increased CO_(2) has caused marked changes in the ocean.Previous estimates of ocean salinity change in response to global warming have considerable ambiguity,largely attributable to the diverse sensitivities of surface fluxes.This study utilizes data from the Flux-Anomaly-Forced Model Intercomparison Project to investigate how ocean salinity responds to perturbations of surface fluxes.The findings indicate the emergence of a sea surface salinity(SSS)dipole pattern predominantly in the North Atlantic and Pacific fresh pools,driven by surface flux perturbations.This results in an intensification of the“salty gets saltier and fresh gets fresher”SSS pattern across the global ocean.The spatial pattern amplification(PA)of SSS under global warming is estimated to be approximately 11.5%,with surface water flux perturbations being the most significant contributor to salinity PA,accounting for 8.1% of the change after 70 years in experiments since pre-industrial control(piControl).Notably,the zonal-depth distribution of salinity in the upper ocean exhibits lighter seawater above the denser water,with bowed isopycnals in the upper 400 m.This stable stratification inhibits vertical mixing of salinity and temperature.In response to the flux perturbations,there is a strong positive feedback due to consequent freshening.It is hypothesized that under global warming,an SSS amplification of 7.2%/℃ and a mixed-layer depth amplification of 12.5%/℃ will occur in the global ocean.It suggests that the salinity effect can exert a more stable ocean to hinder the downward transfer of heat,which provides positive feedback to future global warming.展开更多
Human activities have significantly impacted the land surface temperature(LST),endangering human health;however,the relationship between these two factors has not been adequately quantified.This study comprehensively ...Human activities have significantly impacted the land surface temperature(LST),endangering human health;however,the relationship between these two factors has not been adequately quantified.This study comprehensively constructs a Human Activity Intensity(HAI)index and employs the Maximal Information Coefficient,four-quadrant model,and XGBoostSHAP model to investigate the spatiotemporal relationship and influencing factors of HAI-LST in the Yellow River Basin(YRB)from 2000 to 2020.The results indicated that from 2000 to 2020,as HAI and LST increased,the static HAI-LST relationship in the YRB showed a positive correlation that continued to strengthen.This dynamic relationship exhibited conflicting development,with the proportion of coordinated to conflicting regions shifting from 1:4 to 1:2,indicating a reduction in conflict intensity.Notably,only the degree of conflict in the source area decreased significantly,whereas it intensified in the upper and lower reaches.The key factors influencing the HAI-LST relationship include fractional vegetation cover,slope,precipitation,and evapotranspiration,along with region-specific factors such as PM_(2.5),biodiversity,and elevation.Based on these findings,region-specific ecological management strategies have been proposed to mitigate conflict-prone areas and alleviate thermal stress,thereby providing important guidance for promoting harmonious development between humans and nature.展开更多
The Arno River Basin(Central Italy)is affected by a considerable anthropogenic pressure due to the presence of large cities and widespread industrial and agricultural practices.In this work,26 water samples from the A...The Arno River Basin(Central Italy)is affected by a considerable anthropogenic pressure due to the presence of large cities and widespread industrial and agricultural practices.In this work,26 water samples from the Arno River and its main tributaries were analyzed to assess the water pollution status.The geochemical composition of the Arno River changes from the source(dominated by a Ca-HCO_(3) facies)to the mouth(where a Na-Cl(SO4)chemistry prevails)with an increasing quality deterioration,as suggested by the Chemical Water Quality Index,due to anthropogenic contributions and seawater intrusion before flowing into the Ligurian Sea.The Ombrone and Usciana tributaries introduce anthropogenic pollutants into the Arno River,whilst Elsa tributary supplies significant contents of geogenic sulfate.The concentrations of dissolved nitrate and nitrite(up to 63 and 9 mg/L,respectively)and the respective isotopic values of𝛿15N and𝛿18O were also determined to understand origin and fate of the N-species in the Arno River Basin surface waters.The combined application of𝛿15N-NO_(3) and𝛿18O-NO_(3) and N-source apportionment modelling allowed the identification of soil organic nitrogen and sewage and domestic wastes as primary sources for dissolved NO_(3)-.The𝛿15N-NO_(2) and𝛿18O-NO_(2) values suggest that the nitrification process affects the ARB waters,thus controlling the abundances and proportion of the N-species.Our work indicates that additional efforts are needed to improve management strategies to reduce the release of nitrogenated species to the surface waters of the Arno River Basin,since little progress has been made from the early 2000s.展开更多
基金Supported by the Natural Science Foundation of Hebei Province(No.F2012202041)Youth Research Foundation of Science and Technology of Hebei Education Departmen(No.Q2012022)
文摘In this paper, the smooth connection between two B-spline surfaces is discussed. First, a brief proof of some simple sufficient conditions of Go and G1 continuity is given. On this basis, a novel method for Go or G1 connection between two adjacent B-spline surfaces is presented. A reparameterization step is firstly taken for one of the surfaces such that they have the same parameterization in v direction, then, adjust their boundary control vertices to make them Go or Gl connected. The GI connection parameter is determined by an optimization problem. Compared with the existed methods, our method is simple and easy to be used in practice.
文摘According to the B-spline theory and Boehm algorithm, this paper presents several necessary and sufficient G1 continuity conditions between two adjacent B-spline surfaces. In order to meet the need of application, a kind of sufficient conditions of G1 continuity are developed, and a kind of sufficient conditions of G1 continuity among N(N>2) patch B-spline surfaces meeting at a common corner are given at the end.
文摘In the process of seismic data interpretation, the extraction of a horizon or a fault is generally needed. In this paper we present a fast extraction method. First select some feature points interactively, then reconstruct the surface according to the selected feature points by using B-spline interpolation curve or surface. In order to solve the error-drawing problem appeared in the process of interactive rendering, which is caused by the change of sampling interval as the view point changes, we combine shear-warp and splatting algorithm to render the surface. The rendering of seismic data and specific surface in our work are achieved on GPU platform using CUDA programming language, which make it able to meet the requirements of real-time rendering.
文摘Algorithms of modifying a surface to approximate some scattered points, or pass through some characteristic points/curves are presented. Similar to variational approach, the algorithms are based on optimization. For the deviation between the modified surface and the original one is adopted as the objective functions, the change of the surface shape is as small as possible with the modified surface satisfying the specified requirements.
基金Supported by the Natural Science Foundation of Hebei Province
文摘In this paper, we present an algorithm for reconstruction of B-spline surface such that it interpolates the four given bound- ary curves and simultaneously approximates some given inner points. The main idea of our method is: first, we construct an initial surface which interpolates the four given boundary curves; then, while keeping the boundary control points of the initial surface un- changed, we reposition the inner control points of the surface with energy optimization method. Examples show that our algorithm is practicable and effective.
文摘A new lens calibration method which is suitable for all kinds of cameras is presented. Based on the global and local adjustable feature of B-spline surface, this method does not require the determination of distortion model of the camera lens. By applying B-spline surface fitting, all kinds of lens distortion models can be simulated. The control points of B-spline surface are estimated inversly from the feature points of detected lines. Then by moving the control points, straight line features in the image can be retrieved. Compared with traditional calibration method, this method has its unique advantage that need no corresponding points between image and scene. Experimental results show the effectiveness of the method.
基金This project is supported by the National Natural Science Foundation of China (No. 50775044, 50805025) and Provincial Natural Science Foundation of Guangdong (No. 8151009001000040).
文摘A surface interpolation algorithm is presented. By using a special kind of knot vector. a B-spline surface can be constructed to interpolate an array of m ×n positions, including parameter u and v tangent vectors and twist vector at each positions. Single surface interpolation approach is easier to ensure the smoothness of the interpolating surface than multi-patches method. This algorithm can be used to solve the approximating problem of B-spline approximation of general parametric surface.
基金Supported by the Shanxi Province Grant(202203021212007,2023SHB003).
文摘Hydrogen peroxide(H_(2)O_(2))oxidation and reduction reactions(HPOR/HPRR)are pivotal in various innovative electrochemical energy conversion devices.A comprehensive understanding of these mechanisms is critical for catalyst design and performance improvement in these applications.In this work,we systematically investigate the HPOR/HPRR mechanisms on low-index Pt surfaces,specifically Pt(111),Pt(100)and Pt(110),through density functional theory(DFT)calculations combined with the computational hydrogen electrode(CHE)model.For HPOR,all the low-index Pt surfaces exhibit a unified potential-determining step(PDS)involving the electrochemical oxidation of hydroperoxyl intermediates(HOO*).The binding free energy of HOO*(Δ_(GHOO*))emerges as an activity descriptor,with Pt(110)exhibiting the highest HPOR activity.The HPRR mechanism follows a chem-electrochemical(C-EC)pathway.The rate-determining step(RDS)of HPRR is either the cleavage of the HO-OH bond(chemical)or the reduction of HO(electrochemical),depending on their respective activation energies.These activation energies are functions of the HO*binding free energy,Δ_(GHO*),establishingΔ_(GHO*)as the descriptor for HPRR activity prediction.Pt(111)and Pt(100)are identified as the most active HPRR catalysts among the studied metal surfaces,although they still experience a significant overpotential.The scaling relationship betweenΔ_(GHOO*)andΔ_(GHO*)reveals a thermodynamic coupling of HPOR and HPRR,explaining their occurrence on Pt surfaces.These findings provide important insights and activity descriptors for both HPOR and HPRR,providing valuable guidance for the design of electrocatalysts in H_(2)O_(2)-related energy applications and fuel cells.
文摘Photodetectors can convert light energy into electrical signals,so are widely used in photovoltaics,photon counting,monitoring,and imaging.Photodetectors are easy to prepare high-resolution photochips because of their small size unit integration.However,these photodetector units often exhibit poor photoelectric performance due to material defects and inadequate structures,which greatly limit the functions of devices.Designing modification strategies and micro-/nanostructures can compensate for defects,adjust the bandgap,and develop novel quantum structures,which consequently optimize photovoltaic units and revolutionize optoelectronic devices.Here,this paper aims to comprehensively elaborate on the surface/interface engineering scheme of micro-/nano-photodetectors.It starts from the fundamentals of photodetectors,such as principles,types,and parameters,and describes the influence of material selection,manufacturing techniques,and post-processing.Then,we analyse in detail the great influence of surface/interface engineering on the performance of photovoltaic devices,including surface/interface modification and micro-/nanostructural design.Finally,the applications and prospects of optoelectronic devices in various fields such as miniaturization of electronic devices,robotics,and human–computer interaction are shown.
基金973 Foundation of China (G19980306007) National Natural Science Foundation of China (G1999014115, 60473108) Outstanding Young Teacher Foundation of Educational Department of China (60073038) Doctoral Program Foundation of Educational Department of China.
文摘The conditions for G1 continuity between two adjacent bicubic B-spline surfaces with double interior knots along their common boundary curve are obtained in this paper, which are directly represented by the control points of the two B-spline surfaces. As stated by Shi Xi-quan and Zhao Yan, a local scheme of constructing G1 continuous B-spline surface models with single interior knots does not exist; we may achieve a local scheme of (true) G1 continuity over an arbitrary B-spline surface network using these conditions.
文摘In this study,polyacrylic acid(PAA)films were employed as a model system,and a series of PAA films with tunable water wettability was systematically prepared by varying molecular weight and curing temperature.Using attenuated total reflectance Fourier-transform infrared spectroscopy(ATR-FTIR),the molecular configurations of surface carboxyl groups(COOH),free carboxyl(COOH_(f))and hydrogen-bonded carboxyl(COOH_(HB),were directly correlated with the polar component of surface energy(γ^(s,p)).By decomposing theγ^(s,p)values of the PAA thin films as a sum of the contributions of COOH_(f)and COOH_(H B),the intrinsic polar component of surface energy of COOH_(H B)(γ_(H B)^(s,p*))was quantified for the first time as 8.34 mN/m,significantly lower than that of COOH_(f)(γ_(f)^(s,p*)=34 mN/m).This result highlights that hydrogen bonding markedly reduces theγ^(s,p),providing a rational explanation for the relatively large water contact angle observed on PAA thin films.Furthermore,it establishes a thermodynamic basis for estimating the fraction of surface COOH_(H B)groups(f H B)from wettability measurements.Further extension of the model to carboxyl-terminated self-assembled monolayers(COOH-SAMs)revealed that surface COOH density(ΣCOOH)critically regulates wetting behavior:whenΣCOOH ranges from 4.30 to 5.25 nm^(-2),COOH groups predominantly exist in a free state and facilitate effective hydration layers,thereby promoting superhydrophilicity.Overall,this study not only establishes a unified thermodynamic framework linking surface COOH configurations to macroscopic wettability,but also validates its universality by extending it to COOH-SAMs systems,thereby providing a unified theoretical framework for the controllable design of hydrophilicity in various COOH-functionalized surfaces.
文摘BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly impact the quality of life of patients.AIM To explore the correlations between ocular surface function,sleep quality,and anxiety/depression in patients with DED.METHODS This was a cross-sectional investigative study that included 358 patients with DED between January 2022 and January 2025.Ocular surface was assessed using the ocular surface disease index(OSDI),tear film break-up time,fluorescein staining score,and Schirmer I test.The Pittsburgh Sleep Quality Index(PSQI),Self-Rating Anxiety Scale(SAS),and Self-Rating Depression Scale(SDS)were used to evaluate sleep quality and anxiety/depression levels.Correlation and linear regression analyses were used to explore the relationships.RESULTS The mean PSQI score of the patients was 9.94±2.18;the mean SAS score was 47.30±4.90,and the mean SDS score was 50.08±5.52.These suggested a prevalence of sleep and psychological abnormalities.There was a significant correlation between the indicators of ocular surface function(OSDI,tear film break-up time,fluorescein staining,and Schirmer I test)and PSQI,SAS,and SDS scores(P<0.05).Moreover,multiple regression revealed that age≥50 years(β=1.55,P=0.029),PSQI scores(β=0.58,P<0.001),SAS scores(β=0.17,P=0.017),and SDS scores(β=0.15,P=0.019)were independent predictors of the OSDI scores.CONCLUSION Ocular surface function in patients with DED is closely related to sleep quality and anxiety/depression,emphasizing the need for holistic clinical management.
基金supported by a PETRONAS-Academia Collabora-tion Dialogue 2022 Grant[Grant number PACD 2022]from PETRONAS Research Sdn.Bhd。
文摘The atmospheric surface layer of the tropical coastal ocean is commonly very unstable and experiences weakwind conditions.How the latent(LE)and sensible(H)heat fluxes behave under such conditions are unclear because of the lack of observation stations in the tropics.Thus,this study aims to analyze LE and H and the microclimate parameters influencing them.The authors deployed an eddy covariance system in a tropical coastal region for seven months.The microclimate parameters investigated were wind speed(U),vapor pressure deficit(Δe),temperature difference(ΔT),wind-vapor pressure deficit(UΔe),wind-temperature difference(UΔT),and atmospheric stability(z/L),where z is height and L is the Monin–Obukhov length.On the daily time scale,the results show that LE was more associated with U thanΔe,while H was more related toΔT than U.Cross-wavelet analysis revealed the strong coherence in the LE-U relationship for periods between one and two days,and for H–ΔT,0.5 to 1 day.Correlation and regression analyses confirmed the time series analyses results,where strong positive correlation coefficients(r)were obtained between LE and U(r=0.494)and H andΔT(r=0.365).Compared to other water bodies,the transfer coefficient of moisture(CE N)was found to be small(=0.40×10^(-3))and independent of stability;conversely,the transfer coefficient of heat(CH N)was closer to literature values(=1.00×10^(-3))and a function of stability.
基金supported by the National Natural Science Foundation of China(52273101,51922018,and 21875011)the Fundamental Research Funds for the Central Universities(KG21015201 and KG21020801)China Postdoctoral Science Foundation(2025M77422)。
文摘Undesired ice accumulation on infrastructure and transportation systems leads to catastrophic events and significant economic losses.Although various anti-icing surfaces with photothermal effects can initially prevent icing,any thawy droplets remaining on the horizontal surface can quickly re-freezing once the light diminishes.To address these challenges,we have developed a self-draining slippery surface(SDSS)that enables the thawy droplets to self-remove on the horizontal surface,thereby facilitating real-time anti-icing with the aid of sunlight(100 m W cm^(-2)).This is achieved by sandwiching a thin pyroelectric layer between slippery surface and photothermal film.Due to the synergy between the photothermal and pyroelectric layers,the SDSS not only maintains a high surface temperature of 19.8±2.2℃at the low temperature(-20.0±1.0℃),but also generates amount of charge through thermoelectric coupling.Thus,as cold droplets dropped on the SDSS,electrostatic force pushes the droplets off the charged surface because of the charge transfer mechanism.Even if the surface freezes overnight,the ice can melt and drain off the SDSS within 10 min of exposure to sunlight at-20.0±1.0℃,leaving a clean surface.This work provides a new perspective on the anti-icing system in the real-world environments.
基金supported by the CAS Pioneer Hundred Talents Program and Second Tibetan Plateau Scientific Expedition Research Program(2019QZKK0708)as well as the Basic Research Program of Qinghai Province:Lithospheric Geomagnetic Field of the Qinghai‒Tibet Plateau and the Relationship with Strong Earthquakes(2021-ZJ-969Q).
文摘The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-based observations remain insufficient to clearly reflect the characteristics of the region’s lithospheric magnetism.In this study,we evaluate the lithospheric magnetism of the Tibetan Plateau by using a 3D surface spline model based on observations from>200 newly constructed repeat stations(portable stations)to determine the spatial distribution of plateau geomagnetism,as well as its correlation with the tectonic features of the region.We analyze the relationships between M≥5 earthquakes and lithospheric magnetic field variations on the Tibetan Plateau and identify regions susceptible to strong earthquakes.We compare the geomagnetic results with those from an enhanced magnetic model(EMM2015)developed by the NGDC and provide insights into improving lithospheric magnetic field calculations in the Tibetan Plateau region.Further research reveals that these magnetic anomalies exhibit distinct differences from the magnetic-seismic correlation mechanisms observed in other tectonic settings;here,they are governed primarily by the combined effects of compressional magnetism,thermal magnetism,and deep thermal stress.This study provides new evidence of geomagnetic anomalies on the Tibetan Plateau,interprets them physically,and demonstrates their potential for identifying seismic hazard zones on the Plateau.
基金supported by the National Natural Science Foundation of China(Nos.U2341249,12005076,22205112)the Fundamental Research Funds for the Central Universities(No.2025201012)。
文摘The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative continuous modification strategy combining non-thermal plasma(NTP)etching with fluorocarbon passivation.Characterization and kinetic analysis revealed that reactive plasma species—including atomic hydrogen(H),electronically excited molecular hydrogen(H_(2)^(*)),vibrationally excited molecular hydrogen(H_(2)v),and hydrogen ions(H^(+))—dominate the reduction of B_(2)O_(3)through lowering the transition energy barrier and shifting the reaction spontaneity.Subsequent argon plasma fragmentation of C_(8)F_(18)generates fluorocarbon radicals that form conformal passivation coatings(thickness:7 nm)on purified boron surfaces.The modified boron particles exhibit 37.5℃lower exothermic peak temperature and 27.2%higher heat release(14.8 kJ/g vs.11.6 kJ/g)compared to untreated counterparts.Combustion diagnostics reveal 194%increase in maximum flame height(135.10 mm vs.46.03 mm)and 134%enhancement in flame propagation rate(4.44 cm/s vs.1.90 cm/s).This NTP-based surface engineering approach establishes a scalable pathway for developing highperformance boron-based energetic composites.
基金supported by the Laoshan Laboratory[grant number LSKJ202202403]the National Natural Science Foundation of China[grant number 42030410]+1 种基金additionally supported by the Startup Foundation for Introducing Talent of NUISTJiangsu Innovation Research Group[grant number JSSCTD202346]。
文摘Global warming induced by increased CO_(2) has caused marked changes in the ocean.Previous estimates of ocean salinity change in response to global warming have considerable ambiguity,largely attributable to the diverse sensitivities of surface fluxes.This study utilizes data from the Flux-Anomaly-Forced Model Intercomparison Project to investigate how ocean salinity responds to perturbations of surface fluxes.The findings indicate the emergence of a sea surface salinity(SSS)dipole pattern predominantly in the North Atlantic and Pacific fresh pools,driven by surface flux perturbations.This results in an intensification of the“salty gets saltier and fresh gets fresher”SSS pattern across the global ocean.The spatial pattern amplification(PA)of SSS under global warming is estimated to be approximately 11.5%,with surface water flux perturbations being the most significant contributor to salinity PA,accounting for 8.1% of the change after 70 years in experiments since pre-industrial control(piControl).Notably,the zonal-depth distribution of salinity in the upper ocean exhibits lighter seawater above the denser water,with bowed isopycnals in the upper 400 m.This stable stratification inhibits vertical mixing of salinity and temperature.In response to the flux perturbations,there is a strong positive feedback due to consequent freshening.It is hypothesized that under global warming,an SSS amplification of 7.2%/℃ and a mixed-layer depth amplification of 12.5%/℃ will occur in the global ocean.It suggests that the salinity effect can exert a more stable ocean to hinder the downward transfer of heat,which provides positive feedback to future global warming.
基金Shanxi Province Graduate Research Practice Innovation Project,No.2023KY465Project on the Reform of Graduate Education and Teaching in Shanxi Province,No.2021YJJG146+1 种基金Research Project of Shanxi Provincial Cultural Relics Bureau,No.22-8-14-1400-119National Key R&D Program of China,No.2021YFB3901300。
文摘Human activities have significantly impacted the land surface temperature(LST),endangering human health;however,the relationship between these two factors has not been adequately quantified.This study comprehensively constructs a Human Activity Intensity(HAI)index and employs the Maximal Information Coefficient,four-quadrant model,and XGBoostSHAP model to investigate the spatiotemporal relationship and influencing factors of HAI-LST in the Yellow River Basin(YRB)from 2000 to 2020.The results indicated that from 2000 to 2020,as HAI and LST increased,the static HAI-LST relationship in the YRB showed a positive correlation that continued to strengthen.This dynamic relationship exhibited conflicting development,with the proportion of coordinated to conflicting regions shifting from 1:4 to 1:2,indicating a reduction in conflict intensity.Notably,only the degree of conflict in the source area decreased significantly,whereas it intensified in the upper and lower reaches.The key factors influencing the HAI-LST relationship include fractional vegetation cover,slope,precipitation,and evapotranspiration,along with region-specific factors such as PM_(2.5),biodiversity,and elevation.Based on these findings,region-specific ecological management strategies have been proposed to mitigate conflict-prone areas and alleviate thermal stress,thereby providing important guidance for promoting harmonious development between humans and nature.
文摘The Arno River Basin(Central Italy)is affected by a considerable anthropogenic pressure due to the presence of large cities and widespread industrial and agricultural practices.In this work,26 water samples from the Arno River and its main tributaries were analyzed to assess the water pollution status.The geochemical composition of the Arno River changes from the source(dominated by a Ca-HCO_(3) facies)to the mouth(where a Na-Cl(SO4)chemistry prevails)with an increasing quality deterioration,as suggested by the Chemical Water Quality Index,due to anthropogenic contributions and seawater intrusion before flowing into the Ligurian Sea.The Ombrone and Usciana tributaries introduce anthropogenic pollutants into the Arno River,whilst Elsa tributary supplies significant contents of geogenic sulfate.The concentrations of dissolved nitrate and nitrite(up to 63 and 9 mg/L,respectively)and the respective isotopic values of𝛿15N and𝛿18O were also determined to understand origin and fate of the N-species in the Arno River Basin surface waters.The combined application of𝛿15N-NO_(3) and𝛿18O-NO_(3) and N-source apportionment modelling allowed the identification of soil organic nitrogen and sewage and domestic wastes as primary sources for dissolved NO_(3)-.The𝛿15N-NO_(2) and𝛿18O-NO_(2) values suggest that the nitrification process affects the ARB waters,thus controlling the abundances and proportion of the N-species.Our work indicates that additional efforts are needed to improve management strategies to reduce the release of nitrogenated species to the surface waters of the Arno River Basin,since little progress has been made from the early 2000s.