Cloud computing plays a significant role in Information Technology(IT)industry to deliver scalable resources as a service.One of the most important factor to increase the performance of the cloud server is maximizing t...Cloud computing plays a significant role in Information Technology(IT)industry to deliver scalable resources as a service.One of the most important factor to increase the performance of the cloud server is maximizing the resource utilization in task scheduling.The main advantage of this scheduling is to max-imize the performance and minimize the time loss.Various researchers examined numerous scheduling methods to achieve Quality of Service(QoS)and to reduce execution time.However,it had disadvantages in terms of low throughput and high response time.Hence,this study aimed to schedule the task efficiently and to eliminate the faults in scheduling the tasks to the Virtual Machines(VMs).For this purpose,the research proposed novel Particle Swarm Optimization-Bandwidth Aware divisible Task(PSO-BATS)scheduling with Multi-Layered Regression Host Employment(MLRHE)to sort out the issues of task scheduling and ease the scheduling operation by load balancing.The proposed efficient sche-duling provides benefits to both cloud users and servers.The performance evalua-tion is undertaken with respect to cost,Performance Improvement Rate(PIR)and makespan which revealed the efficiency of the proposed method.Additionally,comparative analysis is undertaken which confirmed the performance of the intro-duced system than conventional system for scheduling tasks with highflexibility.展开更多
The allocation of bandwidth to unlicensed users, without significantly increasing the interference on the existing licensed users, is a challenge for Ultra Wideband (UWB) networks. Our research work presents a novel...The allocation of bandwidth to unlicensed users, without significantly increasing the interference on the existing licensed users, is a challenge for Ultra Wideband (UWB) networks. Our research work presents a novel Rake Optimization and Power Aware Scheduling (ROPAS) architecture for UWB networks. Since UWB communication is rich in multipath effects, a Rake receiver is used for path diversity. Our idea of developing an optimized Rake receiver in our ROPAS architecture stems from the intention of reducing the computation complexity in terms of the number of multiplications and additions needed for the weight derivation attached to each finger of the Rake receiver. Our proposed work uses the Cognitive Radio (CR) for dynamic channel allocation among the requesting users while limiting the average power transmitted in each sub-band. In our proposed novel ROPAS architecture, dynamic channel allocation is achieved by a CR-based cross-layer design between the PHY and Medium Access Control (MAC) layers. Additionally, the maximum number of parallel transmissions within a frame interval is formulated as an optimization problem. This optimal decision is based on the distance parameter between a transmitter-receiver pair, bit error rate and frequency of request by a particular application. Moreover, the optimization problem improvises a differentiation technique among the requesting applications by incorporating priority levels among user applications. This provides fairness and higher throughput among services with varying power constraint and data rates required for a UWB network.展开更多
文摘Cloud computing plays a significant role in Information Technology(IT)industry to deliver scalable resources as a service.One of the most important factor to increase the performance of the cloud server is maximizing the resource utilization in task scheduling.The main advantage of this scheduling is to max-imize the performance and minimize the time loss.Various researchers examined numerous scheduling methods to achieve Quality of Service(QoS)and to reduce execution time.However,it had disadvantages in terms of low throughput and high response time.Hence,this study aimed to schedule the task efficiently and to eliminate the faults in scheduling the tasks to the Virtual Machines(VMs).For this purpose,the research proposed novel Particle Swarm Optimization-Bandwidth Aware divisible Task(PSO-BATS)scheduling with Multi-Layered Regression Host Employment(MLRHE)to sort out the issues of task scheduling and ease the scheduling operation by load balancing.The proposed efficient sche-duling provides benefits to both cloud users and servers.The performance evalua-tion is undertaken with respect to cost,Performance Improvement Rate(PIR)and makespan which revealed the efficiency of the proposed method.Additionally,comparative analysis is undertaken which confirmed the performance of the intro-duced system than conventional system for scheduling tasks with highflexibility.
基金the National Science Foundation(NSF)of USA under Grant No.NeTS-WN0721641.
文摘The allocation of bandwidth to unlicensed users, without significantly increasing the interference on the existing licensed users, is a challenge for Ultra Wideband (UWB) networks. Our research work presents a novel Rake Optimization and Power Aware Scheduling (ROPAS) architecture for UWB networks. Since UWB communication is rich in multipath effects, a Rake receiver is used for path diversity. Our idea of developing an optimized Rake receiver in our ROPAS architecture stems from the intention of reducing the computation complexity in terms of the number of multiplications and additions needed for the weight derivation attached to each finger of the Rake receiver. Our proposed work uses the Cognitive Radio (CR) for dynamic channel allocation among the requesting users while limiting the average power transmitted in each sub-band. In our proposed novel ROPAS architecture, dynamic channel allocation is achieved by a CR-based cross-layer design between the PHY and Medium Access Control (MAC) layers. Additionally, the maximum number of parallel transmissions within a frame interval is formulated as an optimization problem. This optimal decision is based on the distance parameter between a transmitter-receiver pair, bit error rate and frequency of request by a particular application. Moreover, the optimization problem improvises a differentiation technique among the requesting applications by incorporating priority levels among user applications. This provides fairness and higher throughput among services with varying power constraint and data rates required for a UWB network.