The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co...The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.展开更多
Aiming to address the Unmanned Aerial Vehicle(UAV) formation collision avoidance problem in Three-Dimensional(3-D) low-altitude environments where dense various obstacles exist, a fluid-based path planning framework n...Aiming to address the Unmanned Aerial Vehicle(UAV) formation collision avoidance problem in Three-Dimensional(3-D) low-altitude environments where dense various obstacles exist, a fluid-based path planning framework named the Formation Interfered Fluid Dynamical System(FIFDS) with Moderate Evasive Maneuver Strategy(MEMS) is proposed in this study.First, the UAV formation collision avoidance problem including quantifiable performance indexes is formulated. Second, inspired by the phenomenon of fluids continuously flowing while bypassing objects, the FIFDS for multiple UAVs is presented, which contains a Parallel Streamline Tracking(PST) method for formation keeping and the traditional IFDS for collision avoidance. Third, to rationally balance flight safety and collision avoidance cost, MEMS is proposed to generate moderate evasive maneuvers that match up with collision risks. Comprehensively containing the time and distance safety information, the 3-D dynamic collision regions are modeled for collision prediction. Then, the moderate evasive maneuver principle is refined, which provides criterions of the maneuver amplitude and direction. On this basis, an analytical parameter mapping mechanism is designed to online optimize IFDS parameters. Finally, the performance of the proposed method is validated by comparative simulation results and real flight experiments using fixed-wing UAVs.展开更多
Advertising avoidance is resistance to advertising intrusion.This issue has been the subject of much academic research in recent years.To guide scholars to better carry out relevant research and promote enterprises to...Advertising avoidance is resistance to advertising intrusion.This issue has been the subject of much academic research in recent years.To guide scholars to better carry out relevant research and promote enterprises to better implement advertising activities,this study intends to summarize the relevant research on advertising avoidance in recent years.The specific method is to use the core literature meta-analysis method to identify,filter,and screen relevant literature published in core journals from 1997 to 2020 with the keywords advertising avoidance and advertising resistance.We review the collected articles from the following perspectives:the definition and classification,external stimulating factors,internal perception factors,and moderating factors of advertising avoidance.On this basis,the SOMR model of advertising avoidance is constructed according to the SOR model.Finally,some prospects for future related research are presented.展开更多
Throughout the lifespan,an animal can encounter predators frequently,thus the ability to avoid attacks from predators is crucial for its survival.The chances of evading danger can be greatly improved if the animal can...Throughout the lifespan,an animal can encounter predators frequently,thus the ability to avoid attacks from predators is crucial for its survival.The chances of evading danger can be greatly improved if the animal can respond immediately to the threat.Therefore,when an animal detects a threat through its visual system,it must quickly direct its gaze and attention toward the source of danger,assess the threat level,and take appropriate action.展开更多
Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localizatio...Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.展开更多
In this paper, a bearing-based three-dimensional self-localization and distributed circumnavigation with connectivity preservation and collision avoidance are investigated for a group of quadrotor-type unmanned aerial...In this paper, a bearing-based three-dimensional self-localization and distributed circumnavigation with connectivity preservation and collision avoidance are investigated for a group of quadrotor-type unmanned aerial vehicles (UAVs). A leader–follower structure is adopted, wherein the leader moves with reference dynamics (a target). Different from the existing approaches that necessitate full knowledge of the time-varying reference trajectory, in this paper, it is assumed that only some vehicles (at least one) have access to the bearing relative to the target, and all other vehicles are equipped with sensors capable of measuring the bearings relative to neighboring vehicles. In this paper, a consensus estimator is proposed to estimate the global position for each vehicle using relative bearing measurements and an estimate of neighboring vehicles received from a direct communication network. Then, a continuous robust integral of the sign of the error (RISE) control approach is effectively integrated with the distributed vector field approach to ensure UAV formation orbiting around the moving target while avoiding obstacles and maintaining network links within available communication ranges. In contrast to the classical RISE control rule, a \(\tanh (\cdot )\) function is used instead of the \(\text {sgn}(\cdot )\) function to further decrease the high-gain feedback and to obtain a smoother control signal. Furthermore, by using the localized radial basis function (RBF) neural networks (NNs) in a cooperative way, deterministic learning theory is employed to accurately identify/learn model uncertainties resulting from the attitude dynamics. The convergence of the entire closed-loop system is illustrated using the Lyapunov theory and is shown to be uniformly ultimately bounded. Finally, numerical simulations show the effectiveness of the proposed approach.展开更多
Objectives:Positive family functioning(FF)is critical for adolescent development,yet only a few studies have examined this developmental trajectory pathway.This study aimed to identify different types of FF developmen...Objectives:Positive family functioning(FF)is critical for adolescent development,yet only a few studies have examined this developmental trajectory pathway.This study aimed to identify different types of FF development trajectories during junior high school students,investigate their influence on social avoidance(SA),and further examine the mediating role of preference for solitude(PS)between them.Methods:A three-wave longitudinal study was used with six-month intervals.Questionnaire data were collected from 436 junior high school students in Jiangxi Province,China.Participants ranged in age from 11 to 14 years old(Mean=12.89 years,SD=1.08;50.2%male).Results:Four heterogeneous types of FF trajectories were identified:(1)a high and increasing group(14.7%);(2)a consistently high group(36.24%);(3)a consistently moderate group(45.86%);and(4)a rapid growth group(3.2%).The developmental trajectories of FF among junior high students significantly varied in their levels of SA(F(3,432)=32.03,p<0.001).Compared to the high and increasing groups,the consistently high,consistently medium,and rapid growth groups exhibited higher levels of SA.PS mediated the association between the developmental trajectory of FF and SA.Conclusion:There was a close relationship between the developmental trajectory of FF and SA.Interventions focusing on family system optimization and solitary preference management could effectively mitigate SA behaviors.These findings are important for promoting healthy socialization in adolescents.展开更多
This paper deeply explores the autonomous collision avoidance algorithm for intelligent ships,aiming to enhance the intelligence level and safety of ship collision avoidance by integrating navigation experience.An aut...This paper deeply explores the autonomous collision avoidance algorithm for intelligent ships,aiming to enhance the intelligence level and safety of ship collision avoidance by integrating navigation experience.An autonomous collision avoidance algorithm based on navigation experience is designed,a collision avoidance experience database is constructed,a quantitative model is established,and specific algorithm steps are implemented.The algorithm is verified and analyzed through simulation tests.The results show that the algorithm can effectively achieve autonomous ship collision avoidance in different scenarios,providing new ideas and methods for the development of intelligent ship collision avoidance technology.展开更多
In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of un...In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.展开更多
In the realm of missile defense systems,the self-sufficient maneuver capacity of missile swarms is pivotal for their survival.Through the analysis of the missile dynamics model,a time-efficient cooperative attack stra...In the realm of missile defense systems,the self-sufficient maneuver capacity of missile swarms is pivotal for their survival.Through the analysis of the missile dynamics model,a time-efficient cooperative attack strategy for missile swarm is proposed.Based on the distribution of the attackers and defenders,the collision avoidance against the defenders is considered during the attack process.By analyzing the geometric relationship between the relative velocity vector and relative position vector of the attackers and defenders,the collision avoidance constrains of attacking swarm are redefined.The key point is on adjusting the relative velocity vectors to fall outside the collision cone.This work facilitates high-precision attack toward the target while keeping safe missing distance between other attackers during collision avoidance process.By leveraging an innovative repulsion artificial function,a time-efficient cooperative attack strategy for missile swarm is obtained.Through rigorous simulation,the effectiveness of this cooperative attack strategy is substantiated.Furthermore,by employing Monte Carlo simulation,the success rate of the cooperative attack strategy is assessesed and the optimal configuration for the missile swarm is deduced.展开更多
This study aims to systematically review the various factors influencing corporate tax avoidance.Tax avoidance refers to legal strategies used to minimize tax liabilities and has become a critical issue in accounting ...This study aims to systematically review the various factors influencing corporate tax avoidance.Tax avoidance refers to legal strategies used to minimize tax liabilities and has become a critical issue in accounting and corporate governance.The study examines key determinants of tax avoidance,including firm characteristics(such as size,leverage,and multinational scale),managerial attributes,executive compensation,ownership structure,corporate social responsibility(CSR)performance,as well as the impact of regulations and legal reforms.The review findings highlight that the motivations behind tax avoidance are multifaceted,driven by the interaction of economic incentives,organizational ethics,external pressures,and public policies.Moreover,strict regulatory environments and strong CSR practices can mitigate tax avoidance behaviors,although their effectiveness is often contingent upon a firm’s cultural and political context.This study offers a comprehensive mapping of the current literature and recommends future research that integrates additional variables and broader time spans to enhance the understanding of tax avoidance behavior across different national contexts.展开更多
In this paper,a novel cooperative collision avoidance control strategy with relative velocity information for redundant robotic manipulators is derived to guarantee the behavioral safety of robots in the cooperative o...In this paper,a novel cooperative collision avoidance control strategy with relative velocity information for redundant robotic manipulators is derived to guarantee the behavioral safety of robots in the cooperative operational task.This strategy can generate the collision-free trajectory of the robotic links in real-time,which is to realize that the robot can avoid moving obstacles less conservatively and ensure tracking accuracy of terminal end-effector tasks in performing cooperative tasks.For the case where there is interference between the moving obstacle and the desired path of the robotic end-effector,the method inherits the null-space-based self-motion characteristics of the redundant manipulator,integrates the relative motion information,and uses the improved artificial potential field method to design the control items,which are used to generate the collision avoidance motion and carry out moving obstacles smoothly and less conservatively.At the same time,the strategy maintains the kinematic constraint relationship of dual-arm cooperatives,to meet the real-time collision avoidance task under collaborative tasks.Finally,the algorithm simulation indicates that the method can better ensure the tracking accuracy of the end-effector task and carry out moving obstacles smoothly.The experimental results show that the method can generate the real-time collision-free trajectory of the robot in the cooperative handling task,and the joint movement is continuous and stable.展开更多
An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and coll...An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.展开更多
In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenge...In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenges for UAV autonomous navigation and collision avoidance.In this paper,an improved deep-reinforcement-learning algorithm,Deep Q-Network with a Faster R-CNN model and a Data Deposit Mechanism(FRDDM-DQN),is proposed.A Faster R-CNN model(FR)is introduced and optimized to obtain the ability to extract obstacle information from images,and a new replay memory Data Deposit Mechanism(DDM)is designed to train an agent with a better performance.During training,a two-part training approach is used to reduce the time spent on training as well as retraining when the scenario changes.In order to verify the performance of the proposed method,a series of experiments,including training experiments,test experiments,and typical episodes experiments,is conducted in a 3D simulation environment.Experimental results show that the agent trained by the proposed FRDDM-DQN has the ability to navigate autonomously and avoid collisions,and performs better compared to the FRDQN,FR-DDQN,FR-Dueling DQN,YOLO-based YDDM-DQN,and original FR outputbased FR-ODQN.展开更多
The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajecto...The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios.展开更多
This paper presents that a serpentine curve-based controller can solve locomotion control problems for articulated space robots with extensive flight phases,such as obstacle avoidance during free floating or attitude ...This paper presents that a serpentine curve-based controller can solve locomotion control problems for articulated space robots with extensive flight phases,such as obstacle avoidance during free floating or attitude adjustment before landing.The proposed algorithm achieves articulated robots to use closed paths in the joint space to accomplish the above tasks.Flying snakes,which can shuttle through gaps and adjust their landing posture by swinging their body during gliding in jungle environments,inspired the design of two maneuvers.The first maneuver generates a rotation of the system by varying the moment of inertia between the joints of the robot,with the magnitude of the net rotation depending on the controller parameters.This maneuver can be repeated to allow the robot to reach arbitrary reorientation.The second maneuver involves periodic undulations,allowing the robot to avoid collisions when the trajectory of the global Center of Mass(CM)passes through the obstacle.Both maneuvers are based on the improved serpenoid curve,which can adapt to redundant systems consisting of different numbers of modules.Finally,the simulation illustrates that combining the two maneuvers can help a free-floating chain-type robot traverse complex environments.Our proposed algorithm can be used with similar articulated robot models.展开更多
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in...This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.展开更多
In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone ...In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account.展开更多
The importance of unmanned aerial vehicle(UAV)obstacle avoidance algorithms lies in their ability to ensure flight safety and collision avoidance,thereby protecting people and property.We propose UAD-YOLOv8,a lightwei...The importance of unmanned aerial vehicle(UAV)obstacle avoidance algorithms lies in their ability to ensure flight safety and collision avoidance,thereby protecting people and property.We propose UAD-YOLOv8,a lightweight YOLOv8-based obstacle detection algorithm optimized for UAV obstacle avoidance.The algorithm enhances the detection capability for small and irregular obstacles by removing the P5 feature layer and introducing deformable convolution v2(DCNv2)to optimize the cross stage partial bottleneck with 2 convolutions and fusion(C2f)module.Additionally,it reduces the model’s parameter count and computational load by constructing the unite ghost and depth-wise separable convolution(UGDConv)series of lightweight convolutions and a lightweight detection head.Based on this,we designed a visual obstacle avoidance algorithm that can improve the obstacle avoidance performance of UAVs in different environments.In particular,we propose an adaptive distance detection algorithm based on obstacle attributes to solve the ranging problem for multiple types and irregular obstacles to further enhance the UAV’s obstacle avoidance capability.To verify the effectiveness of the algorithm,the UAV obstacle detection(UAD)dataset was created.The experimental results show that UAD-YOLOv8 improves mAP50 by 3.4%and reduces GFLOPs by 34.5%compared to YOLOv8n while reducing the number of parameters by 77.4%and the model size by 73%.These improvements significantly enhance the UAV’s obstacle avoidance performance in complex environments,demonstrating its wide range of applications.展开更多
A differential game guidance scheme with obstacle avoidance,based on the formulation of a combined linear quadratic and norm-bounded differential game,is designed for a three-player engagement scenario,which includes ...A differential game guidance scheme with obstacle avoidance,based on the formulation of a combined linear quadratic and norm-bounded differential game,is designed for a three-player engagement scenario,which includes a pursuer,an interceptor,and an evader.The confrontation between the players is divided into four phases(P1-P4)by introducing the switching time,and proposing different guidance strategies according to the phase where the static obstacle is located:the linear quadratic game method is employed to devise the guidance scheme for the energy optimization when the obstacle is located in the P1 and P3 stages;the norm-bounded differential game guidance strategy is presented to satisfy the acceleration constraint under the circumstance that the obstacle is located in the P2 and P4 phases.Furthermore,the radii of the static obstacle and the interceptor are taken as the design parameters to derive the combined guidance strategy through the dead-zone function,which guarantees that the pursuer avoids the static obstacle,and the interceptor,and attacks the evader.Finally,the nonlinear numerical simulations verify the performance of the game guidance strategy.展开更多
基金co-supported by the Foundation of Shanghai Astronautics Science and Technology Innovation,China(No.SAST2022-114)the National Natural Science Foundation of China(No.62303378),the National Natural Science Foundation of China(Nos.124B2031,12202281)the Foundation of China National Key Laboratory of Science and Technology on Test Physics&Numerical Mathematics,China(No.08-YY-2023-R11)。
文摘The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.
基金supported in part by the National Natural Science Foundations of China(Nos.61175084,61673042 and 62203046)the China Postdoctoral Science Foundation(No.2022M713006).
文摘Aiming to address the Unmanned Aerial Vehicle(UAV) formation collision avoidance problem in Three-Dimensional(3-D) low-altitude environments where dense various obstacles exist, a fluid-based path planning framework named the Formation Interfered Fluid Dynamical System(FIFDS) with Moderate Evasive Maneuver Strategy(MEMS) is proposed in this study.First, the UAV formation collision avoidance problem including quantifiable performance indexes is formulated. Second, inspired by the phenomenon of fluids continuously flowing while bypassing objects, the FIFDS for multiple UAVs is presented, which contains a Parallel Streamline Tracking(PST) method for formation keeping and the traditional IFDS for collision avoidance. Third, to rationally balance flight safety and collision avoidance cost, MEMS is proposed to generate moderate evasive maneuvers that match up with collision risks. Comprehensively containing the time and distance safety information, the 3-D dynamic collision regions are modeled for collision prediction. Then, the moderate evasive maneuver principle is refined, which provides criterions of the maneuver amplitude and direction. On this basis, an analytical parameter mapping mechanism is designed to online optimize IFDS parameters. Finally, the performance of the proposed method is validated by comparative simulation results and real flight experiments using fixed-wing UAVs.
文摘Advertising avoidance is resistance to advertising intrusion.This issue has been the subject of much academic research in recent years.To guide scholars to better carry out relevant research and promote enterprises to better implement advertising activities,this study intends to summarize the relevant research on advertising avoidance in recent years.The specific method is to use the core literature meta-analysis method to identify,filter,and screen relevant literature published in core journals from 1997 to 2020 with the keywords advertising avoidance and advertising resistance.We review the collected articles from the following perspectives:the definition and classification,external stimulating factors,internal perception factors,and moderating factors of advertising avoidance.On this basis,the SOMR model of advertising avoidance is constructed according to the SOR model.Finally,some prospects for future related research are presented.
基金supported by the National Natural Science Foundation of China(32471055 and 82171090)Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)ZJLab,Shanghai Center for Brain Science and Brain-Inspired Technology,the Lingang Laboratory(LG-QS-202203-12).
文摘Throughout the lifespan,an animal can encounter predators frequently,thus the ability to avoid attacks from predators is crucial for its survival.The chances of evading danger can be greatly improved if the animal can respond immediately to the threat.Therefore,when an animal detects a threat through its visual system,it must quickly direct its gaze and attention toward the source of danger,assess the threat level,and take appropriate action.
基金the National Natural Science Foundation of China(Grant Nos.62303348 and 62173242)the Aeronautical Science Foundation of China(Grant No.2024M071048002)the National Science Fund for Distinguished Young Scholars(Grant No.62225308)to provide fund for conducting experiments.
文摘Multiple quadrotors target encirclement is widely used in the intelligent field,as it can effectively monitor and control target behavior.However,it faces the danger of collision,as well as difficulties in localization and tracking.Therefore,we propose a complete target encirclement method.Firstly,based on Hooke's law,a collision avoidance controller is designed to maintain a safe flying distance among quadrotors.Then,based on the consensus theory,a formation tracking controller is designed to meet the requirements of formation transformation and encirclement tasks,and a stability proof based on Lyapunov was provided.Besides,the target detection is designed based on YOLOv5s,and the target location model is constructed based on the principle of pinhole projection and triangle similarity.Finally,we conducted experiments on the built platform,with 3 reconnaissance quadrotors detecting and localization 3 target vehicles and 7 hunter quadrotors tracking them.The results show that the minimum average error for localization targets with reconnaissance quadrotors can reach 0.1354 m,while the minimum average error for tracking with hunter quadrotors is only 0.2960 m.No quadrotors collision occurred in the whole formation transformation and tracking experiment.In addition,compared with the advanced methods,the proposed method has better performance.
文摘In this paper, a bearing-based three-dimensional self-localization and distributed circumnavigation with connectivity preservation and collision avoidance are investigated for a group of quadrotor-type unmanned aerial vehicles (UAVs). A leader–follower structure is adopted, wherein the leader moves with reference dynamics (a target). Different from the existing approaches that necessitate full knowledge of the time-varying reference trajectory, in this paper, it is assumed that only some vehicles (at least one) have access to the bearing relative to the target, and all other vehicles are equipped with sensors capable of measuring the bearings relative to neighboring vehicles. In this paper, a consensus estimator is proposed to estimate the global position for each vehicle using relative bearing measurements and an estimate of neighboring vehicles received from a direct communication network. Then, a continuous robust integral of the sign of the error (RISE) control approach is effectively integrated with the distributed vector field approach to ensure UAV formation orbiting around the moving target while avoiding obstacles and maintaining network links within available communication ranges. In contrast to the classical RISE control rule, a \(\tanh (\cdot )\) function is used instead of the \(\text {sgn}(\cdot )\) function to further decrease the high-gain feedback and to obtain a smoother control signal. Furthermore, by using the localized radial basis function (RBF) neural networks (NNs) in a cooperative way, deterministic learning theory is employed to accurately identify/learn model uncertainties resulting from the attitude dynamics. The convergence of the entire closed-loop system is illustrated using the Lyapunov theory and is shown to be uniformly ultimately bounded. Finally, numerical simulations show the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(72164018)National Social Science Fund Project(BFA200065)Jiangxi Social Science Foundation Project(21JY13).
文摘Objectives:Positive family functioning(FF)is critical for adolescent development,yet only a few studies have examined this developmental trajectory pathway.This study aimed to identify different types of FF development trajectories during junior high school students,investigate their influence on social avoidance(SA),and further examine the mediating role of preference for solitude(PS)between them.Methods:A three-wave longitudinal study was used with six-month intervals.Questionnaire data were collected from 436 junior high school students in Jiangxi Province,China.Participants ranged in age from 11 to 14 years old(Mean=12.89 years,SD=1.08;50.2%male).Results:Four heterogeneous types of FF trajectories were identified:(1)a high and increasing group(14.7%);(2)a consistently high group(36.24%);(3)a consistently moderate group(45.86%);and(4)a rapid growth group(3.2%).The developmental trajectories of FF among junior high students significantly varied in their levels of SA(F(3,432)=32.03,p<0.001).Compared to the high and increasing groups,the consistently high,consistently medium,and rapid growth groups exhibited higher levels of SA.PS mediated the association between the developmental trajectory of FF and SA.Conclusion:There was a close relationship between the developmental trajectory of FF and SA.Interventions focusing on family system optimization and solitary preference management could effectively mitigate SA behaviors.These findings are important for promoting healthy socialization in adolescents.
基金Research and Development of Unmanned Vessel System Based on Intelligent Ship-Shore Collaborative Technology,Hainan University of Science and Technology Science Research(HKKY2024-79)。
文摘This paper deeply explores the autonomous collision avoidance algorithm for intelligent ships,aiming to enhance the intelligence level and safety of ship collision avoidance by integrating navigation experience.An autonomous collision avoidance algorithm based on navigation experience is designed,a collision avoidance experience database is constructed,a quantitative model is established,and specific algorithm steps are implemented.The algorithm is verified and analyzed through simulation tests.The results show that the algorithm can effectively achieve autonomous ship collision avoidance in different scenarios,providing new ideas and methods for the development of intelligent ship collision avoidance technology.
基金supported in part by the National Key R&D Program of China(No.2023YFB4704400)in part by the National Natural Science Foundation of China(Nos.U23B2036,U2013201).
文摘In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.
基金supported by the Intelligent Aerospace System Leading Innovation Team Program of Zhejiang(2022R01003).
文摘In the realm of missile defense systems,the self-sufficient maneuver capacity of missile swarms is pivotal for their survival.Through the analysis of the missile dynamics model,a time-efficient cooperative attack strategy for missile swarm is proposed.Based on the distribution of the attackers and defenders,the collision avoidance against the defenders is considered during the attack process.By analyzing the geometric relationship between the relative velocity vector and relative position vector of the attackers and defenders,the collision avoidance constrains of attacking swarm are redefined.The key point is on adjusting the relative velocity vectors to fall outside the collision cone.This work facilitates high-precision attack toward the target while keeping safe missing distance between other attackers during collision avoidance process.By leveraging an innovative repulsion artificial function,a time-efficient cooperative attack strategy for missile swarm is obtained.Through rigorous simulation,the effectiveness of this cooperative attack strategy is substantiated.Furthermore,by employing Monte Carlo simulation,the success rate of the cooperative attack strategy is assessesed and the optimal configuration for the missile swarm is deduced.
文摘This study aims to systematically review the various factors influencing corporate tax avoidance.Tax avoidance refers to legal strategies used to minimize tax liabilities and has become a critical issue in accounting and corporate governance.The study examines key determinants of tax avoidance,including firm characteristics(such as size,leverage,and multinational scale),managerial attributes,executive compensation,ownership structure,corporate social responsibility(CSR)performance,as well as the impact of regulations and legal reforms.The review findings highlight that the motivations behind tax avoidance are multifaceted,driven by the interaction of economic incentives,organizational ethics,external pressures,and public policies.Moreover,strict regulatory environments and strong CSR practices can mitigate tax avoidance behaviors,although their effectiveness is often contingent upon a firm’s cultural and political context.This study offers a comprehensive mapping of the current literature and recommends future research that integrates additional variables and broader time spans to enhance the understanding of tax avoidance behavior across different national contexts.
基金supported in part by the Advanced Equipment Manufacturing Technology Innovation Project of Hebei Province under Grant No.22311801D,23311807D,and 236Z1816Gin part by the National Natural Science Foundation of China under Grant No.U20A20283.
文摘In this paper,a novel cooperative collision avoidance control strategy with relative velocity information for redundant robotic manipulators is derived to guarantee the behavioral safety of robots in the cooperative operational task.This strategy can generate the collision-free trajectory of the robotic links in real-time,which is to realize that the robot can avoid moving obstacles less conservatively and ensure tracking accuracy of terminal end-effector tasks in performing cooperative tasks.For the case where there is interference between the moving obstacle and the desired path of the robotic end-effector,the method inherits the null-space-based self-motion characteristics of the redundant manipulator,integrates the relative motion information,and uses the improved artificial potential field method to design the control items,which are used to generate the collision avoidance motion and carry out moving obstacles smoothly and less conservatively.At the same time,the strategy maintains the kinematic constraint relationship of dual-arm cooperatives,to meet the real-time collision avoidance task under collaborative tasks.Finally,the algorithm simulation indicates that the method can better ensure the tracking accuracy of the end-effector task and carry out moving obstacles smoothly.The experimental results show that the method can generate the real-time collision-free trajectory of the robot in the cooperative handling task,and the joint movement is continuous and stable.
基金founded by the National Science and Technology Council of the Republic of China under contract NSTC113-2221-E-019-032.
文摘An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.
文摘In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenges for UAV autonomous navigation and collision avoidance.In this paper,an improved deep-reinforcement-learning algorithm,Deep Q-Network with a Faster R-CNN model and a Data Deposit Mechanism(FRDDM-DQN),is proposed.A Faster R-CNN model(FR)is introduced and optimized to obtain the ability to extract obstacle information from images,and a new replay memory Data Deposit Mechanism(DDM)is designed to train an agent with a better performance.During training,a two-part training approach is used to reduce the time spent on training as well as retraining when the scenario changes.In order to verify the performance of the proposed method,a series of experiments,including training experiments,test experiments,and typical episodes experiments,is conducted in a 3D simulation environment.Experimental results show that the agent trained by the proposed FRDDM-DQN has the ability to navigate autonomously and avoid collisions,and performs better compared to the FRDQN,FR-DDQN,FR-Dueling DQN,YOLO-based YDDM-DQN,and original FR outputbased FR-ODQN.
基金supported by the National Natural Science Foundation of China(51875302)。
文摘The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios.
基金co-supported by the National Science Fund for Distinguished Young Scholars,China(No.52025054)the National Natural Science Foundation of China(No.61961015).
文摘This paper presents that a serpentine curve-based controller can solve locomotion control problems for articulated space robots with extensive flight phases,such as obstacle avoidance during free floating or attitude adjustment before landing.The proposed algorithm achieves articulated robots to use closed paths in the joint space to accomplish the above tasks.Flying snakes,which can shuttle through gaps and adjust their landing posture by swinging their body during gliding in jungle environments,inspired the design of two maneuvers.The first maneuver generates a rotation of the system by varying the moment of inertia between the joints of the robot,with the magnitude of the net rotation depending on the controller parameters.This maneuver can be repeated to allow the robot to reach arbitrary reorientation.The second maneuver involves periodic undulations,allowing the robot to avoid collisions when the trajectory of the global Center of Mass(CM)passes through the obstacle.Both maneuvers are based on the improved serpenoid curve,which can adapt to redundant systems consisting of different numbers of modules.Finally,the simulation illustrates that combining the two maneuvers can help a free-floating chain-type robot traverse complex environments.Our proposed algorithm can be used with similar articulated robot models.
基金the National Natural Science Foundation of China(51939001,52171292,51979020,61976033)Dalian Outstanding Young Talents Program(2022RJ05)+1 种基金the Topnotch Young Talents Program of China(36261402)the Liaoning Revitalization Talents Program(XLYC20-07188)。
文摘This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.
基金This work was supported by the Postdoctoral Fund of FDCT,Macao(Grant No.0003/2021/APD).Any opinions,findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsor.
文摘In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account.
基金supported by Xinjiang Uygur Autonomous Region Metrology and Testing Institute Project(Grant No.XJRIMT2022-5)Tianshan Talent Training Project-Xinjiang Science and Technology Innovation Team Program(2023TSYCTD0012).
文摘The importance of unmanned aerial vehicle(UAV)obstacle avoidance algorithms lies in their ability to ensure flight safety and collision avoidance,thereby protecting people and property.We propose UAD-YOLOv8,a lightweight YOLOv8-based obstacle detection algorithm optimized for UAV obstacle avoidance.The algorithm enhances the detection capability for small and irregular obstacles by removing the P5 feature layer and introducing deformable convolution v2(DCNv2)to optimize the cross stage partial bottleneck with 2 convolutions and fusion(C2f)module.Additionally,it reduces the model’s parameter count and computational load by constructing the unite ghost and depth-wise separable convolution(UGDConv)series of lightweight convolutions and a lightweight detection head.Based on this,we designed a visual obstacle avoidance algorithm that can improve the obstacle avoidance performance of UAVs in different environments.In particular,we propose an adaptive distance detection algorithm based on obstacle attributes to solve the ranging problem for multiple types and irregular obstacles to further enhance the UAV’s obstacle avoidance capability.To verify the effectiveness of the algorithm,the UAV obstacle detection(UAD)dataset was created.The experimental results show that UAD-YOLOv8 improves mAP50 by 3.4%and reduces GFLOPs by 34.5%compared to YOLOv8n while reducing the number of parameters by 77.4%and the model size by 73%.These improvements significantly enhance the UAV’s obstacle avoidance performance in complex environments,demonstrating its wide range of applications.
基金supported by National Natural Science Foundation(NNSF)of China under(Grant No.62273119)。
文摘A differential game guidance scheme with obstacle avoidance,based on the formulation of a combined linear quadratic and norm-bounded differential game,is designed for a three-player engagement scenario,which includes a pursuer,an interceptor,and an evader.The confrontation between the players is divided into four phases(P1-P4)by introducing the switching time,and proposing different guidance strategies according to the phase where the static obstacle is located:the linear quadratic game method is employed to devise the guidance scheme for the energy optimization when the obstacle is located in the P1 and P3 stages;the norm-bounded differential game guidance strategy is presented to satisfy the acceleration constraint under the circumstance that the obstacle is located in the P2 and P4 phases.Furthermore,the radii of the static obstacle and the interceptor are taken as the design parameters to derive the combined guidance strategy through the dead-zone function,which guarantees that the pursuer avoids the static obstacle,and the interceptor,and attacks the evader.Finally,the nonlinear numerical simulations verify the performance of the game guidance strategy.