Monocular vision-based navigation is a considerable ability for a home mobile robot. However, due to diverse disturbances, helping robots avoid obstacles, especially nonManhattan obstacles, remains a big challenge. In...Monocular vision-based navigation is a considerable ability for a home mobile robot. However, due to diverse disturbances, helping robots avoid obstacles, especially nonManhattan obstacles, remains a big challenge. In indoor environments, there are many spatial right-corners that are projected into two dimensional projections with special geometric configurations. These projections, which consist of three lines,might enable us to estimate their position and orientation in 3 D scenes. In this paper, we present a method for home robots to avoid non-Manhattan obstacles in indoor environments from a monocular camera. The approach first detects non-Manhattan obstacles. Through analyzing geometric features and constraints,it is possible to estimate posture differences between orientation of the robot and non-Manhattan obstacles. Finally according to the convergence of posture differences, the robot can adjust its orientation to keep pace with the pose of detected non-Manhattan obstacles, making it possible avoid these obstacles by itself. Based on geometric inferences, the proposed approach requires no prior training or any knowledge of the camera’s internal parameters,making it practical for robots navigation. Furthermore, the method is robust to errors in calibration and image noise. We compared the errors from corners of estimated non-Manhattan obstacles against the ground truth. Furthermore, we evaluate the validity of convergence of differences between the robot orientation and the posture of non-Manhattan obstacles. The experimental results showed that our method is capable of avoiding non-Manhattan obstacles, meeting the requirements for indoor robot navigation.展开更多
This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an o...This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an optimized manner, in addition to avoid the singularity phenomenon, and without any exceeding of the physical constraints of the robot arm. A real platform (5 DOF "Degree Of Freedom" Lab Volt 5150 Robotic Arm) is used to carry this work practically, in addition to providing it by a vision sensor, where a new approach is proposed to inspect the robot work environment using a designed integrated MATLAB program having the ability to recognize the changeable locations of each of the robotic arm's end-effector, the goal, and the multi existed obstacles through a recorded film taken by a webcam, then these information will be treated using the FLC where its outputs represent the values that must be delivered to the robot to adopt them in its next steps till reaching to the goal in collision-free movements. The experimental results showed that the developed robotic ann travels successfully from Start to Goal where a high percentage of accuracy in arriving to Goal was achieved, and without colliding with any obstacle ensuring the harmonization between the theoretical part and the experimental part in achieving the best results of controlling the robotic arm's motion.展开更多
In this research work,a hierarchical controller has been designed for an autonomous navigation robot to avoid unexpected moving obstacles where the state and action spaces are continuous.The proposed scheme consists o...In this research work,a hierarchical controller has been designed for an autonomous navigation robot to avoid unexpected moving obstacles where the state and action spaces are continuous.The proposed scheme consists of two parts:1)a controller with a high-level approximate reinforcement learning(ARL)technique for choosing an optimal trajectory in autonomous navigation;and 2)a low-level,appearance-based visual servoing(ABVS)controller which controls and execute the motion of the robot.A novel approach for path planning and visual servoing has been proposed by the combined system framework.The characteristics of the on-board camera which is equipped on the robot is naturally suitable for conducting the reinforcement learning algorithm.Regarding the ARL controller,the computational overhead is quite low thanks to the fact that a knowledge of obstacle motion is not necessary.The developed scheme has been implemented and validated in a simulation system of obstacle avoidance.It is noted that findings of the proposed method are successfully verified by obtaining an optimal robotic plan motion strategy.展开更多
Placement and wiring of vast amount of sensor elements on the 3-dimensionally configured robot sur-face to form soft sensor skin is very difficult with the traditional technology. In this paper we propose a new method...Placement and wiring of vast amount of sensor elements on the 3-dimensionally configured robot sur-face to form soft sensor skin is very difficult with the traditional technology. In this paper we propose a new method to realize such a skin.By implanting infrared sensors array in an elastic body, we obtain an elastic and tough sensor skin that can be shaped freely.The developed sensor skin is a large-area, flexi-ble array of infrared sensors with data processing capabilities.Depending on the skin electronics, it en-dows its carrier with an ability to sense its surroundings.The structure, the method of infrared sensor sig-nal processing, and basic experiments of sensor skin are presented. The validity of the infrared sensor skin is investigated by preliminary obstacle avoidance trial.展开更多
Road obstacles that unexpectedly appear due to vehicle breakdowns and accidents are major causes of fatal road accidents.Connected Autonomous Vehicles(CAVs)can be used to avoid collisions to ensure road safety through...Road obstacles that unexpectedly appear due to vehicle breakdowns and accidents are major causes of fatal road accidents.Connected Autonomous Vehicles(CAVs)can be used to avoid collisions to ensure road safety through cooperative sensing and driving.However,the collision avoidance performance of CAVs with unexpected obstacles has not been studied in the existing works.In this paper,we first design a platoon-based collision avoidance framework for CAVs.In this framework,we deploy a Digital Twin(DT)system at the head vehicle in a platoon to reduce communication overhead and decision-making delay based on a proposed trajectory planning scheme.In addition,a DT-assistant system is deployed on the assistant vehicle to monitor vehicles out of the sensing range of the head vehicle for the maintenance of the DT system.In this case,the transmission frequency of kinetic states of platoon members can be reduced to ensure low-overhead communication.Moreover,we design a variable resource reservation interval that can ensure DT synchronization between DT and the assistant system with high reliability.To further improve road safety,an urgency level-based trajectory planning algorithm is proposed to avoid unexpected obstacles considering different levels of emergency risks.Simulation results show that our DT system-based scheme can achieve significant performance gains in unexpected obstacle avoidance.Compared to the existing schemes,it can reduce collisions by 95%and is faster by about 10%passing by the unexpected obstacle.展开更多
Intelligent robots are increasingly being deployed across industries ranging from manufacturing to household applications and outdoor exploration.Their autonomous obstacle avoidance capabilities in complex environment...Intelligent robots are increasingly being deployed across industries ranging from manufacturing to household applications and outdoor exploration.Their autonomous obstacle avoidance capabilities in complex environments have become a critical factor determining operational stability.Multimodal perception technology,which integrates visual,auditory,tactile,and LiDAR data,provides robots with comprehensive environmental awareness.By establishing efficient autonomous obstacle avoidance decision-making mechanisms based on this information,the system’s adaptability to challenging scenarios can be significantly enhanced.This study investigates the integration of multimodal perception with autonomous obstacle avoidance decision-making,analyzing the acquisition and processing of perceptual information,core modules and logic of decision-making mechanisms,and proposing optimization strategies for specific scenarios.The research aims to provide theoretical references for advancing autonomous obstacle avoidance technology in intelligent robots,enabling safer and more flexible movement in diverse environments.展开更多
A robot intelligent path planning system RIPPS is developed, which can be utilized for a robot off line programming tool. The system consists of three parts: geometric modeler, kinematic modeler and path planer. The...A robot intelligent path planning system RIPPS is developed, which can be utilized for a robot off line programming tool. The system consists of three parts: geometric modeler, kinematic modeler and path planer. The geometric modeler is used to construct the robot working environment cluttered with obstacles and the robot kinematic modeler to define robot manipulators by the input parameters. Giving robot start and the goal configurations, the path planer can produce a quasi optimal path. By transforming obstacles into the C space to form C obstacles, the path searching is performed in C space. The planning simulations are performed on a SGI workstation, the future research is to implement the planer on a commercial robot manipulators.展开更多
Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented prac...Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented practically based on an improved Dijkstra algorithm.To achieve this research objectives,first,the MR obstacle-free environment is modeled as a diagraph including nodes,edges and weights.Second,Dijkstra algorithm is used offline to generate the shortest path driving the MR from a starting point to a target point.During its movement,the robot should follow the previously obtained path and stop at each node to test if there is an obstacle between the current node and the immediately following node.For this aim,the MR was equipped with an ultrasonic sensor used as obstacle detector.If an obstacle is found,the MR updates its diagraph by excluding the corresponding node.Then,Dijkstra algorithm runs on the modified diagraph.This procedure is repeated until reaching the target point.To verify the efficiency of the proposed approach,a simulation was carried out on a hand-made MR and an environment including 9 nodes,19 edges and 2 obstacles.The obtained optimal path avoiding obstacles has been transferred into motion control and implemented practically using line tracking sensors.This study has shown that the improved Dijkstra algorithm can efficiently solve optimal path planning in environments including obstacles and that STEAM-based MRs are efficient cost-effective tools to practically implement the designed algorithm.展开更多
In this paper,a bio-inspired path planning algorithm in 3 D space is proposed.The algorithm imitates the basic mechanisms of plant growth,including phototropism,negative geotropism and branching.The algorithm proposed...In this paper,a bio-inspired path planning algorithm in 3 D space is proposed.The algorithm imitates the basic mechanisms of plant growth,including phototropism,negative geotropism and branching.The algorithm proposed in this paper solves the dynamic obstacle avoidance path planning problem of Unmanned Aerial Vehicle(UAV)in the case of unknown environment maps.Compared with other path planning algorithms,the algorithm has the advantages of fast path planning speed and fewer route points,and can achieve the effect of low delay real-time path planning.The feasibility of the algorithm is verified in the Gazebo simulator based on the Robot Operating System(ROS)platform.Finally,an actual UAV autonomous obstacle avoidance path planning experimental platform is built,and a UAV obstacle avoidance path planning flight test is carried out based on this actual environment.展开更多
A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a...A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a simple form that consists of three individual components for tar- get capture, time coordination and obstacle avoidance. The distributed coordination algorithm enables a group of interceptor missiles to reach the target simultaneously, even if some member in the multi-missile network can only collect the information from nearest neighbors. The simula- tion results show that the guidance strategy provides a feasible tool to implement obstacle avoid- ance for the multi-missile network with satisfactory accuracy of target capture. The effects of the gain parameters are also discussed to evaluate the proposed approach.展开更多
The flapping-wing air vehicle(FWAV)is a kind of bio-inspired robot whose wings can flap up and down like bird and insect wings.A vision-based obstacle avoidance method for FWAVs is proposed in this paper.First,the Far...The flapping-wing air vehicle(FWAV)is a kind of bio-inspired robot whose wings can flap up and down like bird and insect wings.A vision-based obstacle avoidance method for FWAVs is proposed in this paper.First,the Farneback algorithm is used to calculate the optical flow field of the first-view video frames taken by the on-board image transmission camera.Based on the optical flow information,a fuzzy obstacle avoidance controller is then designed to generate the FWAV steering commands.Experimental results show that the proposed obstacle avoidance method can accurately identify obstacles and achieve obstacle avoidance for FWAVs.展开更多
Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus...Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.展开更多
This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems(MVSs)in complex obstacle-laden environments.The MVS under consideration consists of a leader v...This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems(MVSs)in complex obstacle-laden environments.The MVS under consideration consists of a leader vehicle with an unknown control input and a group of follower vehicles,connected via a directed interaction topology,subject to simultaneous unknown heterogeneous nonlinearities and external disturbances.The central aim is to achieve effective and collisionfree formation tracking control for the nonlinear and uncertain MVS with obstacles encountered in formation maneuvering,while not demanding global information of the interaction topology.Toward this goal,a radial basis function neural network is used to model the unknown nonlinearity of vehicle dynamics in each vehicle and repulsive potentials are employed for obstacle avoidance.Furthermore,a scalable distributed adaptive formation tracking control protocol with a built-in obstacle avoidance mechanism is developed.It is proved that,with the proposed protocol,the resulting formation tracking errors are uniformly ultimately bounded and obstacle collision avoidance is guaranteed.Comprehensive simulation results are elaborated to substantiate the effectiveness and the promising collision avoidance performance of the proposed scalable adaptive formation control approach.展开更多
Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Fir...Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.展开更多
A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form ...A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form different lengths of robot arms for different application sites.The increase in degrees of freedom causes the inverse kinematics of redundant manipulator to be typical and immensely increases the calculation load in the joint space.This paper presents an integrated optimization method to solve the path planning for obstacle avoidance and discrete trajectory tracking of a super redundant manipulator.In this integrated optimization,path planning is established on a Bezier curve,and particle swarm optimization is adopted to adjust the control points of the Bezier curve with the kinematic constraints of manipulator.A feasible obstacle avoidance path is obtained along with a discrete trajectory tracking by using a follow-the-leader strategy.The relative distance between each two discrete path points is limited to reduce the fitting error of the connecting rigid links to the smooth curve.Simulation results show that this integrated optimization method can rapidly search for the appropriate trajectory to guide the manipulator in obtaining the target while achieving obstacle avoidance and meeting joint constraints.The proposed algorithm is suitable for 3D space obstacle avoidance and multitarget path tracking.展开更多
A new and improved RRT∗algorithm has been developed to address the low efficiency of obstacle avoidance planning and long path distances in the electric vehicle automatic charging robot arm.This algorithm enables the ...A new and improved RRT∗algorithm has been developed to address the low efficiency of obstacle avoidance planning and long path distances in the electric vehicle automatic charging robot arm.This algorithm enables the robot to avoid obstacles,find the optimal path,and complete automatic charging docking.It maintains the global completeness and path optimality of the RRT algorithmwhile also improving the iteration speed and quality of generated paths in both 2D and 3D path planning.After finding the optimal path,the B-sample curve is used to optimize the rough path to create a smoother and more optimal path.In comparison experiments,the new algorithmyielded reductions of 35.5%,29.2%,and 11.7%in search time and 22.8%,19.2%,and 9%in path length for the 3D environment.Finally,experimental validation of the automatic charging of electric vehicles was conducted to further verify the effectiveness of the algorithm.The simulation experimental validation was carried out by kinematic modeling and building an experimental platform.The error between the experimental results and the simulation results is within 10%.The experimental results show the effectiveness and practicality of the algorithm.展开更多
In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and lea...In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and leader-follower strategy(IAPF-LF). Firstly, the proposed fixed-time control can achieve the desired multi-AUV formation within a fixed settling time in any initial system state. Secondly, an event-triggered communication strategy is developed to govern the communication among AUVs, and the communication energy consumption can be decremented. The time-varying formation obstacle avoidance control algorithm based on IAPF-LF is designed to avoid static and dynamic obstacles, the desired formation is maintained in the presence of external disturbances, and there is no Zeno behavior under the fixed-time event-triggered consensus control strategy.The stability of the system is proved by the Lyapunov function and inequality scaling. Finally, simulation examples and water pool experiments are reported to verify the performance of the proposed theoretical algorithms.展开更多
This paper presents a study on bioinspired closed-loop Central Pattern Generator(CPG)based control of a robot fish for obstacle avoidance and direction tracking.The biomimetic robot fish is made of a rigid head with a...This paper presents a study on bioinspired closed-loop Central Pattern Generator(CPG)based control of a robot fish for obstacle avoidance and direction tracking.The biomimetic robot fish is made of a rigid head with a pair of pectoral fins,a wire-driven active body covered with soft skin,and a compliant tail.The CPG model consists of four input parameters:the flapping amplitude,the flapping angular velocity,the flapping offset,and the time ratio between the beat phase and the restore phase in flapping.The robot fish is equipped with three infrared sensors mounted on the left,front and right of the robot fish,as well as an inertial measurement unit,from which the surrounding obstacles and moving direction can be sensed.Based on these sensor signals,the closed-loop CPG-based control can drive the robot fish to avoid obstacles and to track designated directions.Four sets of experiments are presented,including avoiding a static obstacle,avoiding a moving obstacle,tracking a designated direction and tracking a designated direction with an obstacle in the path.The experiment results indicated that the presented control strategy worked well and the robot fish can accomplish the obstacle avoidance and direction tracking effectively.展开更多
Based on the double integrator mathematic model, a new kind of potential function is presented in this paper by referring to the concepts of the electric field; then a new formation control method is proposed, in whic...Based on the double integrator mathematic model, a new kind of potential function is presented in this paper by referring to the concepts of the electric field; then a new formation control method is proposed, in which the potential functions are used between agent-agent and between agent-obstacle, while state feedback control is applied for the agent and its goal. This strategy makes the whole potential field simpler and helps avoid some local minima. The stability of this combination of potential functions and state feedback control is proven. Some simulations are presented to show the rationality of this control method.展开更多
This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic env...This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic environment, a novel control algorithm based on potential function and behavior rules is proposed. Meanwhile, the interactions among agents are also considered. According to the state whether an agent is within the area of its neighbors' influence, two kinds of potential functions are presented. Meanwhile, the distributed control input of each agent is determined by relative velocities as well as relative positions among agents, target and obstacle. The maximum linear speed of the agents is also discussed. Finally, simulation studies are given to demonstrate the performance of the proposed algorithm.展开更多
基金supported by the National Natural Science Foundation of China(61771146,61375122)the National Thirteen 5-Year Plan for Science and Technology(2017YFC1703303)in part by Shanghai Science and Technology Development Funds(13dz2260200,13511504300)。
文摘Monocular vision-based navigation is a considerable ability for a home mobile robot. However, due to diverse disturbances, helping robots avoid obstacles, especially nonManhattan obstacles, remains a big challenge. In indoor environments, there are many spatial right-corners that are projected into two dimensional projections with special geometric configurations. These projections, which consist of three lines,might enable us to estimate their position and orientation in 3 D scenes. In this paper, we present a method for home robots to avoid non-Manhattan obstacles in indoor environments from a monocular camera. The approach first detects non-Manhattan obstacles. Through analyzing geometric features and constraints,it is possible to estimate posture differences between orientation of the robot and non-Manhattan obstacles. Finally according to the convergence of posture differences, the robot can adjust its orientation to keep pace with the pose of detected non-Manhattan obstacles, making it possible avoid these obstacles by itself. Based on geometric inferences, the proposed approach requires no prior training or any knowledge of the camera’s internal parameters,making it practical for robots navigation. Furthermore, the method is robust to errors in calibration and image noise. We compared the errors from corners of estimated non-Manhattan obstacles against the ground truth. Furthermore, we evaluate the validity of convergence of differences between the robot orientation and the posture of non-Manhattan obstacles. The experimental results showed that our method is capable of avoiding non-Manhattan obstacles, meeting the requirements for indoor robot navigation.
文摘This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an optimized manner, in addition to avoid the singularity phenomenon, and without any exceeding of the physical constraints of the robot arm. A real platform (5 DOF "Degree Of Freedom" Lab Volt 5150 Robotic Arm) is used to carry this work practically, in addition to providing it by a vision sensor, where a new approach is proposed to inspect the robot work environment using a designed integrated MATLAB program having the ability to recognize the changeable locations of each of the robotic arm's end-effector, the goal, and the multi existed obstacles through a recorded film taken by a webcam, then these information will be treated using the FLC where its outputs represent the values that must be delivered to the robot to adopt them in its next steps till reaching to the goal in collision-free movements. The experimental results showed that the developed robotic ann travels successfully from Start to Goal where a high percentage of accuracy in arriving to Goal was achieved, and without colliding with any obstacle ensuring the harmonization between the theoretical part and the experimental part in achieving the best results of controlling the robotic arm's motion.
基金supported by research grants from the Natural Sciences and Engineering Research Council(NSERC)of Canadathe British Columbia Knowledge Development Fund(BCKDF)+1 种基金the Canada Foundation for Innovation(CFI)the Canada Research Chair in Mechatronics and Industrial Automation held by C.W.de Silva
文摘In this research work,a hierarchical controller has been designed for an autonomous navigation robot to avoid unexpected moving obstacles where the state and action spaces are continuous.The proposed scheme consists of two parts:1)a controller with a high-level approximate reinforcement learning(ARL)technique for choosing an optimal trajectory in autonomous navigation;and 2)a low-level,appearance-based visual servoing(ABVS)controller which controls and execute the motion of the robot.A novel approach for path planning and visual servoing has been proposed by the combined system framework.The characteristics of the on-board camera which is equipped on the robot is naturally suitable for conducting the reinforcement learning algorithm.Regarding the ARL controller,the computational overhead is quite low thanks to the fact that a knowledge of obstacle motion is not necessary.The developed scheme has been implemented and validated in a simulation system of obstacle avoidance.It is noted that findings of the proposed method are successfully verified by obtaining an optimal robotic plan motion strategy.
基金Supported by the National Natural Science Foundation of China (No.50105002).
文摘Placement and wiring of vast amount of sensor elements on the 3-dimensionally configured robot sur-face to form soft sensor skin is very difficult with the traditional technology. In this paper we propose a new method to realize such a skin.By implanting infrared sensors array in an elastic body, we obtain an elastic and tough sensor skin that can be shaped freely.The developed sensor skin is a large-area, flexi-ble array of infrared sensors with data processing capabilities.Depending on the skin electronics, it en-dows its carrier with an ability to sense its surroundings.The structure, the method of infrared sensor sig-nal processing, and basic experiments of sensor skin are presented. The validity of the infrared sensor skin is investigated by preliminary obstacle avoidance trial.
基金partly supported by National Key R&D Program of China(No.2018YFE0117500)National Natural Science Foundation of China(No.62171104)+2 种基金EU Horizon2020(824019),EU Horizon2020(101022280)Horizon Europe(101086228)the UK EPSRC(EP/Y027787/1)。
文摘Road obstacles that unexpectedly appear due to vehicle breakdowns and accidents are major causes of fatal road accidents.Connected Autonomous Vehicles(CAVs)can be used to avoid collisions to ensure road safety through cooperative sensing and driving.However,the collision avoidance performance of CAVs with unexpected obstacles has not been studied in the existing works.In this paper,we first design a platoon-based collision avoidance framework for CAVs.In this framework,we deploy a Digital Twin(DT)system at the head vehicle in a platoon to reduce communication overhead and decision-making delay based on a proposed trajectory planning scheme.In addition,a DT-assistant system is deployed on the assistant vehicle to monitor vehicles out of the sensing range of the head vehicle for the maintenance of the DT system.In this case,the transmission frequency of kinetic states of platoon members can be reduced to ensure low-overhead communication.Moreover,we design a variable resource reservation interval that can ensure DT synchronization between DT and the assistant system with high reliability.To further improve road safety,an urgency level-based trajectory planning algorithm is proposed to avoid unexpected obstacles considering different levels of emergency risks.Simulation results show that our DT system-based scheme can achieve significant performance gains in unexpected obstacle avoidance.Compared to the existing schemes,it can reduce collisions by 95%and is faster by about 10%passing by the unexpected obstacle.
文摘Intelligent robots are increasingly being deployed across industries ranging from manufacturing to household applications and outdoor exploration.Their autonomous obstacle avoidance capabilities in complex environments have become a critical factor determining operational stability.Multimodal perception technology,which integrates visual,auditory,tactile,and LiDAR data,provides robots with comprehensive environmental awareness.By establishing efficient autonomous obstacle avoidance decision-making mechanisms based on this information,the system’s adaptability to challenging scenarios can be significantly enhanced.This study investigates the integration of multimodal perception with autonomous obstacle avoidance decision-making,analyzing the acquisition and processing of perceptual information,core modules and logic of decision-making mechanisms,and proposing optimization strategies for specific scenarios.The research aims to provide theoretical references for advancing autonomous obstacle avoidance technology in intelligent robots,enabling safer and more flexible movement in diverse environments.
文摘A robot intelligent path planning system RIPPS is developed, which can be utilized for a robot off line programming tool. The system consists of three parts: geometric modeler, kinematic modeler and path planer. The geometric modeler is used to construct the robot working environment cluttered with obstacles and the robot kinematic modeler to define robot manipulators by the input parameters. Giving robot start and the goal configurations, the path planer can produce a quasi optimal path. By transforming obstacles into the C space to form C obstacles, the path searching is performed in C space. The planning simulations are performed on a SGI workstation, the future research is to implement the planer on a commercial robot manipulators.
基金This research has been funded by Scientific Research Deanship at University of Ha’il–Saudi Arabia through Project Number BA-2107.
文摘Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented practically based on an improved Dijkstra algorithm.To achieve this research objectives,first,the MR obstacle-free environment is modeled as a diagraph including nodes,edges and weights.Second,Dijkstra algorithm is used offline to generate the shortest path driving the MR from a starting point to a target point.During its movement,the robot should follow the previously obtained path and stop at each node to test if there is an obstacle between the current node and the immediately following node.For this aim,the MR was equipped with an ultrasonic sensor used as obstacle detector.If an obstacle is found,the MR updates its diagraph by excluding the corresponding node.Then,Dijkstra algorithm runs on the modified diagraph.This procedure is repeated until reaching the target point.To verify the efficiency of the proposed approach,a simulation was carried out on a hand-made MR and an environment including 9 nodes,19 edges and 2 obstacles.The obtained optimal path avoiding obstacles has been transferred into motion control and implemented practically using line tracking sensors.This study has shown that the improved Dijkstra algorithm can efficiently solve optimal path planning in environments including obstacles and that STEAM-based MRs are efficient cost-effective tools to practically implement the designed algorithm.
基金the support of the Zhejiang Lab(No.2019NB0AB04)National Natural Science Foundation of China(No.61903014)+1 种基金Aeronautical Science Foundation of China(No.20181751010)Fundamental Research Funds for the Central Universities,China。
文摘In this paper,a bio-inspired path planning algorithm in 3 D space is proposed.The algorithm imitates the basic mechanisms of plant growth,including phototropism,negative geotropism and branching.The algorithm proposed in this paper solves the dynamic obstacle avoidance path planning problem of Unmanned Aerial Vehicle(UAV)in the case of unknown environment maps.Compared with other path planning algorithms,the algorithm has the advantages of fast path planning speed and fewer route points,and can achieve the effect of low delay real-time path planning.The feasibility of the algorithm is verified in the Gazebo simulator based on the Robot Operating System(ROS)platform.Finally,an actual UAV autonomous obstacle avoidance path planning experimental platform is built,and a UAV obstacle avoidance path planning flight test is carried out based on this actual environment.
基金co-supported by the National Natural Science Foundation of China(Nos.61273349 and 61175109)the Aeronautical Science Foundation of China(Nos.2014ZA18004 and 2013ZA18001)
文摘A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a simple form that consists of three individual components for tar- get capture, time coordination and obstacle avoidance. The distributed coordination algorithm enables a group of interceptor missiles to reach the target simultaneously, even if some member in the multi-missile network can only collect the information from nearest neighbors. The simula- tion results show that the guidance strategy provides a feasible tool to implement obstacle avoid- ance for the multi-missile network with satisfactory accuracy of target capture. The effects of the gain parameters are also discussed to evaluate the proposed approach.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.61803025,62073031)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(No.FRF-IDRY-19010)the Beijing Top Discipline for Artificial Intelligent Science and Engineering,University of Science and Technology Beijing.
文摘The flapping-wing air vehicle(FWAV)is a kind of bio-inspired robot whose wings can flap up and down like bird and insect wings.A vision-based obstacle avoidance method for FWAVs is proposed in this paper.First,the Farneback algorithm is used to calculate the optical flow field of the first-view video frames taken by the on-board image transmission camera.Based on the optical flow information,a fuzzy obstacle avoidance controller is then designed to generate the FWAV steering commands.Experimental results show that the proposed obstacle avoidance method can accurately identify obstacles and achieve obstacle avoidance for FWAVs.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA040103)the Research Foundationof Shanghai Institute of Technology,China(Grant No.B504)
文摘Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.
文摘This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems(MVSs)in complex obstacle-laden environments.The MVS under consideration consists of a leader vehicle with an unknown control input and a group of follower vehicles,connected via a directed interaction topology,subject to simultaneous unknown heterogeneous nonlinearities and external disturbances.The central aim is to achieve effective and collisionfree formation tracking control for the nonlinear and uncertain MVS with obstacles encountered in formation maneuvering,while not demanding global information of the interaction topology.Toward this goal,a radial basis function neural network is used to model the unknown nonlinearity of vehicle dynamics in each vehicle and repulsive potentials are employed for obstacle avoidance.Furthermore,a scalable distributed adaptive formation tracking control protocol with a built-in obstacle avoidance mechanism is developed.It is proved that,with the proposed protocol,the resulting formation tracking errors are uniformly ultimately bounded and obstacle collision avoidance is guaranteed.Comprehensive simulation results are elaborated to substantiate the effectiveness and the promising collision avoidance performance of the proposed scalable adaptive formation control approach.
文摘Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.
基金Supported by National Natural Science Foundation of China(Grant No.61733017)Foundation of State Key Laboratory of Robotics of China(Grant No.2018O13)Shanghai Pujiang Program of China(Grant No.18PJD018).
文摘A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form different lengths of robot arms for different application sites.The increase in degrees of freedom causes the inverse kinematics of redundant manipulator to be typical and immensely increases the calculation load in the joint space.This paper presents an integrated optimization method to solve the path planning for obstacle avoidance and discrete trajectory tracking of a super redundant manipulator.In this integrated optimization,path planning is established on a Bezier curve,and particle swarm optimization is adopted to adjust the control points of the Bezier curve with the kinematic constraints of manipulator.A feasible obstacle avoidance path is obtained along with a discrete trajectory tracking by using a follow-the-leader strategy.The relative distance between each two discrete path points is limited to reduce the fitting error of the connecting rigid links to the smooth curve.Simulation results show that this integrated optimization method can rapidly search for the appropriate trajectory to guide the manipulator in obtaining the target while achieving obstacle avoidance and meeting joint constraints.The proposed algorithm is suitable for 3D space obstacle avoidance and multitarget path tracking.
基金This work was supported by National Natural Science Foundation of China(52175236).
文摘A new and improved RRT∗algorithm has been developed to address the low efficiency of obstacle avoidance planning and long path distances in the electric vehicle automatic charging robot arm.This algorithm enables the robot to avoid obstacles,find the optimal path,and complete automatic charging docking.It maintains the global completeness and path optimality of the RRT algorithmwhile also improving the iteration speed and quality of generated paths in both 2D and 3D path planning.After finding the optimal path,the B-sample curve is used to optimize the rough path to create a smoother and more optimal path.In comparison experiments,the new algorithmyielded reductions of 35.5%,29.2%,and 11.7%in search time and 22.8%,19.2%,and 9%in path length for the 3D environment.Finally,experimental validation of the automatic charging of electric vehicles was conducted to further verify the effectiveness of the algorithm.The simulation experimental validation was carried out by kinematic modeling and building an experimental platform.The error between the experimental results and the simulation results is within 10%.The experimental results show the effectiveness and practicality of the algorithm.
基金supported in part by the National Natural Science Foundation of China (62033009)the Creative Activity Plan for Science and Technology Commission of Shanghai (20510712300,21DZ2293500)the Supported by Science Foundation of Donghai Laboratory。
文摘In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and leader-follower strategy(IAPF-LF). Firstly, the proposed fixed-time control can achieve the desired multi-AUV formation within a fixed settling time in any initial system state. Secondly, an event-triggered communication strategy is developed to govern the communication among AUVs, and the communication energy consumption can be decremented. The time-varying formation obstacle avoidance control algorithm based on IAPF-LF is designed to avoid static and dynamic obstacles, the desired formation is maintained in the presence of external disturbances, and there is no Zeno behavior under the fixed-time event-triggered consensus control strategy.The stability of the system is proved by the Lyapunov function and inequality scaling. Finally, simulation examples and water pool experiments are reported to verify the performance of the proposed theoretical algorithms.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(class A)(Grant No.XDA22040203)the Fundamental Research Funds for the Central Universities(Grant No.2019XX01)+1 种基金GDNRC[2020]031the Natural Science Foundation of Guangdong Province(Grant No.2020A1515010621).
文摘This paper presents a study on bioinspired closed-loop Central Pattern Generator(CPG)based control of a robot fish for obstacle avoidance and direction tracking.The biomimetic robot fish is made of a rigid head with a pair of pectoral fins,a wire-driven active body covered with soft skin,and a compliant tail.The CPG model consists of four input parameters:the flapping amplitude,the flapping angular velocity,the flapping offset,and the time ratio between the beat phase and the restore phase in flapping.The robot fish is equipped with three infrared sensors mounted on the left,front and right of the robot fish,as well as an inertial measurement unit,from which the surrounding obstacles and moving direction can be sensed.Based on these sensor signals,the closed-loop CPG-based control can drive the robot fish to avoid obstacles and to track designated directions.Four sets of experiments are presented,including avoiding a static obstacle,avoiding a moving obstacle,tracking a designated direction and tracking a designated direction with an obstacle in the path.The experiment results indicated that the presented control strategy worked well and the robot fish can accomplish the obstacle avoidance and direction tracking effectively.
基金the Jiangsu Province Fundamental Research Plan (Natural Science Foundation) (No.BK2006202).
文摘Based on the double integrator mathematic model, a new kind of potential function is presented in this paper by referring to the concepts of the electric field; then a new formation control method is proposed, in which the potential functions are used between agent-agent and between agent-obstacle, while state feedback control is applied for the agent and its goal. This strategy makes the whole potential field simpler and helps avoid some local minima. The stability of this combination of potential functions and state feedback control is proven. Some simulations are presented to show the rationality of this control method.
基金supported by National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Program of National Natural Science Foundation of China (No. 60934003)Key Project for Natural Science Research of Hebei Education Department(No. ZD200908)
文摘This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic environment, a novel control algorithm based on potential function and behavior rules is proposed. Meanwhile, the interactions among agents are also considered. According to the state whether an agent is within the area of its neighbors' influence, two kinds of potential functions are presented. Meanwhile, the distributed control input of each agent is determined by relative velocities as well as relative positions among agents, target and obstacle. The maximum linear speed of the agents is also discussed. Finally, simulation studies are given to demonstrate the performance of the proposed algorithm.