The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction di...The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction discretization. In order to accelerate our simulation, the split-step technique is used. The numerical experiments show that the non-splitting scheme and splitting scheme are both effective, and have excellent long time numerical behavior. The comparisons show that the splitting scheme is faster than the non-splitting scheme, but it is not as good as the non-splitting scheme in preserving the invariants.展开更多
We propose a novel energy dissipative method for the Allen–Cahn equation on nonuniform grids.For spatial discretization,the classical central difference method is utilized,while the average vector field method is app...We propose a novel energy dissipative method for the Allen–Cahn equation on nonuniform grids.For spatial discretization,the classical central difference method is utilized,while the average vector field method is applied for time discretization.Compared with the average vector field method on the uniform mesh,the proposed method can involve fewer grid points and achieve better numerical performance over long time simulation.This is due to the moving mesh method,which can concentrate the grid points more densely where the solution changes drastically.Numerical experiments are provided to illustrate the advantages of the proposed concrete adaptive energy dissipative scheme under large time and space steps over a long time.展开更多
A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the solito...A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the soliton evolution of the strongly coupled Schrōdinger system. Numerical results show that the high order energy preserving scheme can well simulate the soliton evolution, moreover, it preserves the discrete energy of the strongly coupled nonlinear Schrōdinger system exactly.展开更多
In this paper, we propose and analyze two kinds of novel and symmetric energy-preservmg formulae for the nonlinear oscillatory Hamiltonian system of second-order differential equations Aq" (t)+ Bq(t) = f(q(t)...In this paper, we propose and analyze two kinds of novel and symmetric energy-preservmg formulae for the nonlinear oscillatory Hamiltonian system of second-order differential equations Aq" (t)+ Bq(t) = f(q(t)), where A ∈ R^m×m is a symmetric positive definite matrix, B ∈ R^m×m is a symmetric positive semi-definite matrix that implicitly contains the main frequencies of the problem and f(q) = -VqV(q) for a real-valued function V(q). The energy-preserving formulae can exactly preserve the Hamiltonian H(q',q) = 1/2q'^TAq'+ 1/2q^TBq - V(q). We analyze the properties of energy-preserving and convergence of the derived energy-preserving formula and obtain new efficient energy-preserving integrators for practical computation. Numerical experiments are carried out to show the efficiency of the new methods by the nonlinear Hamiltonian systems.展开更多
An energy-preserving scheme is proposed for the coupled Gross-Pitaevskii equations.The scheme is constructed by high order compact method in the spatial direction and average vector field method in the temporal direct...An energy-preserving scheme is proposed for the coupled Gross-Pitaevskii equations.The scheme is constructed by high order compact method in the spatial direction and average vector field method in the temporal direction,respectively.The scheme is energy-preserving,stable,and of sixth order in space and of second order in time.Numerical experiments verify the theoretical results.The dynamic behavior modeled by the coupled Gross-Pitaevskii equations is also numerically investigated.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.91130013)the Open Foundation of State Key Laboratory of HighPerformance Computing of China
文摘The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction discretization. In order to accelerate our simulation, the split-step technique is used. The numerical experiments show that the non-splitting scheme and splitting scheme are both effective, and have excellent long time numerical behavior. The comparisons show that the splitting scheme is faster than the non-splitting scheme, but it is not as good as the non-splitting scheme in preserving the invariants.
基金the National Key R&D Program of China(Grant No.2020YFA0709800)the National Natural Science Foundation of China(Grant Nos.11901577,11971481,12071481,and 12001539)+3 种基金the Natural Science Foundation of Hunan,China(Grant Nos.S2017JJQNJJ0764 and 2020JJ5652)the fund from Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering(Grant No.2018MMAEZD004)the Basic Research Foundation of National Numerical Wind Tunnel Project,China(Grant No.NNW2018-ZT4A08)the Research Fund of National University of Defense Technology(Grant No.ZK19-37)。
文摘We propose a novel energy dissipative method for the Allen–Cahn equation on nonuniform grids.For spatial discretization,the classical central difference method is utilized,while the average vector field method is applied for time discretization.Compared with the average vector field method on the uniform mesh,the proposed method can involve fewer grid points and achieve better numerical performance over long time simulation.This is due to the moving mesh method,which can concentrate the grid points more densely where the solution changes drastically.Numerical experiments are provided to illustrate the advantages of the proposed concrete adaptive energy dissipative scheme under large time and space steps over a long time.
基金Project supported by the National Natural Science Foundation of China(Grant No.11161017)the National Science Foundation of Hainan Province,China(Grant No.113001)
文摘A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the soliton evolution of the strongly coupled Schrōdinger system. Numerical results show that the high order energy preserving scheme can well simulate the soliton evolution, moreover, it preserves the discrete energy of the strongly coupled nonlinear Schrōdinger system exactly.
基金Supported by NSFC(Grant No.11571302)NSF of Shandong Province(Grant No.ZR2018MA024)the foundation of Scientific Project of Shandong Universities(Grant Nos.J17KA190 and KJ2018BAI031)
文摘In this paper, we propose and analyze two kinds of novel and symmetric energy-preservmg formulae for the nonlinear oscillatory Hamiltonian system of second-order differential equations Aq" (t)+ Bq(t) = f(q(t)), where A ∈ R^m×m is a symmetric positive definite matrix, B ∈ R^m×m is a symmetric positive semi-definite matrix that implicitly contains the main frequencies of the problem and f(q) = -VqV(q) for a real-valued function V(q). The energy-preserving formulae can exactly preserve the Hamiltonian H(q',q) = 1/2q'^TAq'+ 1/2q^TBq - V(q). We analyze the properties of energy-preserving and convergence of the derived energy-preserving formula and obtain new efficient energy-preserving integrators for practical computation. Numerical experiments are carried out to show the efficiency of the new methods by the nonlinear Hamiltonian systems.
基金supported by the National Natural Science Foundation of China(Nos.11771213,and 11961036)the Natural Science Foundation of Jiangxi Province(Nos.20161ACB20006,20142BCB23009,and 20181BAB201008).
文摘An energy-preserving scheme is proposed for the coupled Gross-Pitaevskii equations.The scheme is constructed by high order compact method in the spatial direction and average vector field method in the temporal direction,respectively.The scheme is energy-preserving,stable,and of sixth order in space and of second order in time.Numerical experiments verify the theoretical results.The dynamic behavior modeled by the coupled Gross-Pitaevskii equations is also numerically investigated.