Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu...Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made.展开更多
In 2020,the COVID-19 pandemic spreads rapidly around the world.To accurately predict the number of daily new cases in each country,Lanzhou University has established the Global Prediction System of the COVID-19 Pandem...In 2020,the COVID-19 pandemic spreads rapidly around the world.To accurately predict the number of daily new cases in each country,Lanzhou University has established the Global Prediction System of the COVID-19 Pandemic(GPCP).In this article,the authors use the ensemble empirical mode decomposition(EEMD)model and autoregressive moving average(ARMA)model to improve the prediction results of GPCP.In addition,the authors also conduct direct predictions for those countries with a small number of confirmed cases or are in the early stage of the disease,whose development trends of the pandemic do not fully comply with the law of infectious diseases and cannot be predicted by the GPCP model.Judging from the results,the absolute values of the relative errors of predictions in countries such as Cuba have been reduced significantly and their prediction trends are closer to the real situations through the method mentioned above to revise the prediction results out of GPCP.For countries such as El Salvador with a small number of cases,the absolute values of the relative errors of prediction become smaller.Therefore,this article concludes that this method is more effective for improving prediction results and direct prediction.展开更多
The performance and price of copper-based micro linear products are determined by the diameter uniformity.How to accurately detect the wire diameter of long-length copper based micro linear products without cutting or...The performance and price of copper-based micro linear products are determined by the diameter uniformity.How to accurately detect the wire diameter of long-length copper based micro linear products without cutting or damage has always been a technical concern for production enterprises.Herein,a novel approach was developed for nondestructive detection of the average diameter at any given segment of a long copper wire by assessing the adsorption capacity of arginine on its surface.The amount of adsorbent on the surface of the copper wire exhibits a positive correlation with the area,which can be detected by extractive electrospray ionization mass spectrometry(EESI-MS)after online elution with ammonia.The experimental results demonstrated that the analysis can be completed within 15 min,with a good linear relationship between copper wires with different diameters and the adsorption capacity of arginine.The linear correlation coefficient R2was 0.995,the relative standard deviation was 1.10%-2.81%,and the detection limit reached 2.5μm(length of segment=4 cm),showing potential applications for facile measurement of the average diameter of various metal wires.展开更多
Thermal vibrational convection(TVC)refers to the time-averaged convection of a non-isothermal fluid subjected to oscillating force fields.It serves as an effective mechanism for heat transfer control,particularly unde...Thermal vibrational convection(TVC)refers to the time-averaged convection of a non-isothermal fluid subjected to oscillating force fields.It serves as an effective mechanism for heat transfer control,particularly under microgravity conditions.A key challenge in this field is understanding the effect of rotation on TVC,as fluid oscillations in rotating systems exhibit unique and specific characteristics.In this study,we examine TVC in a vertical flat layer with boundaries at different temperatures,rotating around a horizontal axis.The distinctive feature of this study is that the fluid oscillations within the cavity are not induced by vibrations of the cavity itself,but rather by the gravity field,giving them a tidal nature.Our findings reveal that inertial waves generated in the rotating layer qualitatively alter the TVC structure,producing time-averaged flows in the form of toroidal vortices.Experimental investigations of the structure of oscillatory and time-averaged flows,conducted using Particle Image Velocimetry(PIV)for flow velocity visualization,are complemented by theoretical calculations of inertial modes in a cavity with this geometry.To the best of our knowledge,this study represents the first of its kind.The agreement between experimental results and theoretical predictions confirms that the formation of convective structures in the form of toroidal vortices is driven by inertial waves induced by the gravity field.A decrease in the rotational velocity leads to a transformation of the convective structures,shifting from toroidal vortices of inertial-wave origin to classical cellular TVC.We present dimensionless parameters that define the excitation thresholds for both cellular convection and toroidal structures.展开更多
The dynamic average consensus(DAC)algorithm is to enable a group of networked agents to track the average of their time-varying reference signals.For most existing DAC algorithms,a necessary assumption is that the upp...The dynamic average consensus(DAC)algorithm is to enable a group of networked agents to track the average of their time-varying reference signals.For most existing DAC algorithms,a necessary assumption is that the upper bounds of the reference signals and their derivatives are known in advance,thereby posing significant challenges in practical scenarios.Introducing adaptive gains in DAC algorithms provides a remedy by relaxing this assumption.However,the current adaptive gains used in this type of DAC algorithms are non-decreasing and may increase to infinity if persist disturbance exists.In order to overcome this defect,this paper presents a novel DAC algorithm with modified adaptive gains.This approach obviates the necessity for prior knowledge concerning the upper bounds of the reference signals and their derivatives.Moreover,the adaptive gains are able to remain bounded even in the presence of external disturbances.Furthermore,the proposed adaptive DAC algorithm is employed to address the distributed secondary control problem of DC microgrids.Comparative case studies are provided to verify the superiority of the proposed DAC algorithm.展开更多
We conduct optical-tweezers experiments to investigate the average potential energies of passive plates harmonically trapped in bacterial suspensions.Our results show that the mean potential energies along both the ma...We conduct optical-tweezers experiments to investigate the average potential energies of passive plates harmonically trapped in bacterial suspensions.Our results show that the mean potential energies along both the major and minor axes increase with bacterial concentration but decrease with trap stiffness.Notably,the average potential energy along the major axis consistently exceeds that along the minor axis.This discrepancy from equilibrium systems is primarily attributed to the distinct bacterial flow fields and direct bacterium–plate collisions near the major and minor axes,as evidenced by the higher orientational order around the plate along the major compared to the minor axis,despite identical bacterial densities in these regions.Our findings highlight the critical role of hydrodynamic interactions in determining the potential energy of passive objects immersed in an active bath.展开更多
With the continuous advancement of the internationalization of higher education in China,the Grade Point Average(GPA)has become a primary indicator for evaluating academic performance in universities,playing a positiv...With the continuous advancement of the internationalization of higher education in China,the Grade Point Average(GPA)has become a primary indicator for evaluating academic performance in universities,playing a positive role in educational management.However,as it is closely tied to students’immediate interests,such as awards,exemptions from entrance exams for postgraduate recommendations,and domestic or international further education,certain new issues have emerged in its practical application.These problems have hindered the effective functioning of the GPA system,attracting widespread attention.This paper examines the origin,connotation,and theoretical assumptions of the GPA system,discusses its positive functions and existing challenges,and proposes recommendations for further improving academic evaluation.展开更多
This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise co...This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.展开更多
Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+...Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+n),n≥1}under some proper conditions,where{Yi,-∞<i<∞}is a doubly infinite sequence of negatively dependent random variables under sub-linear expectations.These results extend and complement the relevant results in probability space.展开更多
Si,as the most promising anode with high theoretical capacity for next-generation lithium-ion batteries(LIBs),is hampered in commercial application by its poor electrical conductivity and significant volume expansion....Si,as the most promising anode with high theoretical capacity for next-generation lithium-ion batteries(LIBs),is hampered in commercial application by its poor electrical conductivity and significant volume expansion.Herein,the core-shell Si@SiO_(x)/C@C-Ar(SSC-A)or Si@SiO_(x)/C@C-H_(2)/Ar(SSC-H)composites are purposefully designed by in situ introduction of inorganic SiO_(x)in pure Ar or H_(2)/Ar atmosphere to realize a Si-based anode for LIBs.By introducing different atmospheres,the valence states of SiO_(x)are regulated.The inorganic transition layer formed by the combination of SiO_(x)with higher average valence and asphalt-derived carbon demonstrates better performance in both stabilizing the core-shell structure and inhibiting the agglomeration of Si particles.Given these advantages,the SSC-A electrode exhibits excellent electrochemical performance(1163 mAh g^(-1)after 400 cycles at 1 A g^(-1)),and the commercial blended graphite-SSC-A electrode reaches a specific capacity of 442 mAh g^(-1)with 74.8%capacity retention under the same conditions.Even the SSC-A electrode without Super P maintains an ultrahigh discharge specific capacity of 803 mAh g^(-1)with 60.6%after cycling.Importantly,the full batteries based on SSC-A without Super P achieve a discharge specific capacity of 126 mAh g^(-1)with 28.2%capacity decay after 200 cycles,demonstrating the superior commercial application potential.展开更多
基金The project is partly supported by the National Science Council, Contract Nos. NSC-89-261 l-E-019-024 (JZY), and NSC-89-2611-E-019-027 (CRC).
文摘Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made.
基金This work was jointly supported by the National Natural Science Foundation of China[grant numbers 41521004 and 41875083]the Gansu Provincial Special Fund Project for Guiding Scientific and Technological Innovation and Development[grant number 2019ZX-06].
文摘In 2020,the COVID-19 pandemic spreads rapidly around the world.To accurately predict the number of daily new cases in each country,Lanzhou University has established the Global Prediction System of the COVID-19 Pandemic(GPCP).In this article,the authors use the ensemble empirical mode decomposition(EEMD)model and autoregressive moving average(ARMA)model to improve the prediction results of GPCP.In addition,the authors also conduct direct predictions for those countries with a small number of confirmed cases or are in the early stage of the disease,whose development trends of the pandemic do not fully comply with the law of infectious diseases and cannot be predicted by the GPCP model.Judging from the results,the absolute values of the relative errors of predictions in countries such as Cuba have been reduced significantly and their prediction trends are closer to the real situations through the method mentioned above to revise the prediction results out of GPCP.For countries such as El Salvador with a small number of cases,the absolute values of the relative errors of prediction become smaller.Therefore,this article concludes that this method is more effective for improving prediction results and direct prediction.
基金supported by the National Natural Science Foundation of China(No.22422402)National Key Research and Development Program of China(No.2022YFF0705300)Key Research and Development Program of Jiangxi Province(No.20232BBG70004)。
文摘The performance and price of copper-based micro linear products are determined by the diameter uniformity.How to accurately detect the wire diameter of long-length copper based micro linear products without cutting or damage has always been a technical concern for production enterprises.Herein,a novel approach was developed for nondestructive detection of the average diameter at any given segment of a long copper wire by assessing the adsorption capacity of arginine on its surface.The amount of adsorbent on the surface of the copper wire exhibits a positive correlation with the area,which can be detected by extractive electrospray ionization mass spectrometry(EESI-MS)after online elution with ammonia.The experimental results demonstrated that the analysis can be completed within 15 min,with a good linear relationship between copper wires with different diameters and the adsorption capacity of arginine.The linear correlation coefficient R2was 0.995,the relative standard deviation was 1.10%-2.81%,and the detection limit reached 2.5μm(length of segment=4 cm),showing potential applications for facile measurement of the average diameter of various metal wires.
基金funded by the Ministry of Education of the Russian Federation within the framework of a state assignment,number 1023032300071-6-2.3.1.
文摘Thermal vibrational convection(TVC)refers to the time-averaged convection of a non-isothermal fluid subjected to oscillating force fields.It serves as an effective mechanism for heat transfer control,particularly under microgravity conditions.A key challenge in this field is understanding the effect of rotation on TVC,as fluid oscillations in rotating systems exhibit unique and specific characteristics.In this study,we examine TVC in a vertical flat layer with boundaries at different temperatures,rotating around a horizontal axis.The distinctive feature of this study is that the fluid oscillations within the cavity are not induced by vibrations of the cavity itself,but rather by the gravity field,giving them a tidal nature.Our findings reveal that inertial waves generated in the rotating layer qualitatively alter the TVC structure,producing time-averaged flows in the form of toroidal vortices.Experimental investigations of the structure of oscillatory and time-averaged flows,conducted using Particle Image Velocimetry(PIV)for flow velocity visualization,are complemented by theoretical calculations of inertial modes in a cavity with this geometry.To the best of our knowledge,this study represents the first of its kind.The agreement between experimental results and theoretical predictions confirms that the formation of convective structures in the form of toroidal vortices is driven by inertial waves induced by the gravity field.A decrease in the rotational velocity leads to a transformation of the convective structures,shifting from toroidal vortices of inertial-wave origin to classical cellular TVC.We present dimensionless parameters that define the excitation thresholds for both cellular convection and toroidal structures.
基金supported in part by the National Natural Science Foundation of China(20221017-10,62573258,62188101)the National Natural Science Foundation of Shandong Province(ZR2024 JQ018,ZR2022MF227).
文摘The dynamic average consensus(DAC)algorithm is to enable a group of networked agents to track the average of their time-varying reference signals.For most existing DAC algorithms,a necessary assumption is that the upper bounds of the reference signals and their derivatives are known in advance,thereby posing significant challenges in practical scenarios.Introducing adaptive gains in DAC algorithms provides a remedy by relaxing this assumption.However,the current adaptive gains used in this type of DAC algorithms are non-decreasing and may increase to infinity if persist disturbance exists.In order to overcome this defect,this paper presents a novel DAC algorithm with modified adaptive gains.This approach obviates the necessity for prior knowledge concerning the upper bounds of the reference signals and their derivatives.Moreover,the adaptive gains are able to remain bounded even in the presence of external disturbances.Furthermore,the proposed adaptive DAC algorithm is employed to address the distributed secondary control problem of DC microgrids.Comparative case studies are provided to verify the superiority of the proposed DAC algorithm.
基金supports of the National Natural Science Foundation of China(Grant Nos.12304245,12374205,12475031,and 12364029)the Science Foundation of China University of Petroleum,Beijing(Grant Nos.2462023YJRC031 and 2462024BJRC010)+4 种基金the National Key Laboratory of Petroleum Resources and Engineering(Grant No.PRE/DX-2407)the Natural Science Foundation of Shandong Province(Grant No.ZR2024YQ017)the Young Elite Scientist Sponsorship Program by BAST(Grant No.BYESS2023300)the Beijing Institute of Technology Research Fund Program for Young ScholarsThis work was also supported by Beijing National Laboratory for Condensed Matter Physics(Grant Nos.2023BNLCMPKF014 and 2024BNLCMPKF009).
文摘We conduct optical-tweezers experiments to investigate the average potential energies of passive plates harmonically trapped in bacterial suspensions.Our results show that the mean potential energies along both the major and minor axes increase with bacterial concentration but decrease with trap stiffness.Notably,the average potential energy along the major axis consistently exceeds that along the minor axis.This discrepancy from equilibrium systems is primarily attributed to the distinct bacterial flow fields and direct bacterium–plate collisions near the major and minor axes,as evidenced by the higher orientational order around the plate along the major compared to the minor axis,despite identical bacterial densities in these regions.Our findings highlight the critical role of hydrodynamic interactions in determining the potential energy of passive objects immersed in an active bath.
文摘With the continuous advancement of the internationalization of higher education in China,the Grade Point Average(GPA)has become a primary indicator for evaluating academic performance in universities,playing a positive role in educational management.However,as it is closely tied to students’immediate interests,such as awards,exemptions from entrance exams for postgraduate recommendations,and domestic or international further education,certain new issues have emerged in its practical application.These problems have hindered the effective functioning of the GPA system,attracting widespread attention.This paper examines the origin,connotation,and theoretical assumptions of the GPA system,discusses its positive functions and existing challenges,and proposes recommendations for further improving academic evaluation.
基金supported by the National Natural Science Foundation of China(61673130).
文摘This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.
基金Supported by the Academic Achievement Re-cultivation Projects of Jingdezhen Ceramic University(Grant Nos.215/20506341215/20506277)the Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)。
文摘Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+n),n≥1}under some proper conditions,where{Yi,-∞<i<∞}is a doubly infinite sequence of negatively dependent random variables under sub-linear expectations.These results extend and complement the relevant results in probability space.
基金financially supported by the National Natural Science Foundation of China(Nos.U22A20145,52072151,52171211,and 52271218)Jinan Independent Innovative Team(No.2020GXRC015)+3 种基金the Major Program of Shandong Province Natural Science Foundation(No.ZR2023ZD43)Natural Science Foumdation of Jiangsu Province(No.BK20241973)High-level Training Talents of'333'Project in Jiangsu Provincethe Science and Technology Program of University of Jinan(No.XKY2119)
文摘Si,as the most promising anode with high theoretical capacity for next-generation lithium-ion batteries(LIBs),is hampered in commercial application by its poor electrical conductivity and significant volume expansion.Herein,the core-shell Si@SiO_(x)/C@C-Ar(SSC-A)or Si@SiO_(x)/C@C-H_(2)/Ar(SSC-H)composites are purposefully designed by in situ introduction of inorganic SiO_(x)in pure Ar or H_(2)/Ar atmosphere to realize a Si-based anode for LIBs.By introducing different atmospheres,the valence states of SiO_(x)are regulated.The inorganic transition layer formed by the combination of SiO_(x)with higher average valence and asphalt-derived carbon demonstrates better performance in both stabilizing the core-shell structure and inhibiting the agglomeration of Si particles.Given these advantages,the SSC-A electrode exhibits excellent electrochemical performance(1163 mAh g^(-1)after 400 cycles at 1 A g^(-1)),and the commercial blended graphite-SSC-A electrode reaches a specific capacity of 442 mAh g^(-1)with 74.8%capacity retention under the same conditions.Even the SSC-A electrode without Super P maintains an ultrahigh discharge specific capacity of 803 mAh g^(-1)with 60.6%after cycling.Importantly,the full batteries based on SSC-A without Super P achieve a discharge specific capacity of 126 mAh g^(-1)with 28.2%capacity decay after 200 cycles,demonstrating the superior commercial application potential.