High resolution structural studies of DNA and DNA binding proteins by atomic force microscopy(AFM) require well-bound samples on suitably flat substrates. Adsorbing the DNA onto a positively charged supported lipid bi...High resolution structural studies of DNA and DNA binding proteins by atomic force microscopy(AFM) require well-bound samples on suitably flat substrates. Adsorbing the DNA onto a positively charged supported lipid bilayer has previously been shown to be a potentially effective strategy for structural studies with AFM. Here, using our home-built frequency-modulation AFM(FM-AFM), we show that these bilayer substrates are only maximally effective for high resolution AFM when the samples are short, linear DNA, compared with circular plasmid DNA. We find that, with the former sample, the measured width of the DNA is about 2 nm, the known DNA diameter, and there is a clear height modulation along the length of the DNA with a periodicity of about 3.4 nm, in excellent agreement with the known pitch of the double helix. This sample preparation strategy is expected to enable higher resolution studies of DNA and DNA binding proteins with FM-AFM than that can presently be achieved.展开更多
Frequency-modulation atomic force microscopy(FM-AFM) is a highly versatile tool for surface science.Besides imaging surfaces, FM-AFM is capable of measuring interactions between the AFM probe and the surface with high...Frequency-modulation atomic force microscopy(FM-AFM) is a highly versatile tool for surface science.Besides imaging surfaces, FM-AFM is capable of measuring interactions between the AFM probe and the surface with high sensitivity, which can provide chemical information at sub-nanometer resolution. This is achieved by deconvoluting the frequency shift, which is directly measured in experiments, into the force between the probe and sample. At present, the widely used method to perform this deconvolution has been shown to be accurate under high quality(high-Q) factor vacuum conditions. However, under low quality(low-Q) factor conditions, such as in solution, it is not clear if this method is valid. A previous study apparently verified this relation for experiments in solution by comparing the force calculated by this equation with that obtained in separate experiments using the surface force apparatus(SFA). Here we show that, in solution, a more direct comparison of the force calculated by this relation with that directly measured by the cantilever deflection in AFM reveals significant differences,both qualitative and quantitative. However, we also find that there are complications that hinder this comparison.Namely, while contact with the surface is clear in the direct measurements(including the SFA data), it is less certain in the FM-AFM case. Hence, it is not clear if the two methods are measuring the same tip-sample distance regimes. Thus, our results suggest that a more thorough verification of this relation is required, as application of this formulation for experiments in solution may not be valid.展开更多
Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-d...Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-dpe)·7H_(2)O(3),(1,2-bixH)[Cd3(1,4-ndpaH)(1,4-ndpaH_(2))2(H_(2)O)_(2)](4),and[Cd(1,4-ndpaH_(2))(H_(2)O)]·H_(2)O(5),have been synthesized from the selfassembly reactions of 1,4-naphthalenediphosphonic acid(1,4-ndpaH4)with Cd(NO3)2·4H_(2)O by introducing auxiliary ligands with variation of rigidity,such as 4,4'-bipyridine(4,4'-bpy),1,4-bis(1-imidazolyl)benzene(1,4-bib),1,2-di(4-pyridyl)ethylene(1,2-dpe),1,3-di(4-pyridyl)propane(1,3-dpp),and bis(imidazol-1-ylmethyl)benzene(1,2-bix),respectively.Structure resolution by single-crystal X-ray diffraction reveals that compound 1 possesses a layered framework,in which the{Cd3(PO2)2}trimers made up of corner-sharing two{CdO4N2}and one{CdO6}octahedra are connected by phosphonate groups,forming a ribbon,which are cross-linked by 4,4'-bipy ligands,forming a 2D layer.Compound 2 shows a 3D open-framework structure,where chains of corner-sharing{CdO4N}trigonal bipyramids and{PO3C}tetrahedra are cross-linked by 1,4-bib and/or phosphonate groups.A 1D ladder-like chain structure is found in compound 3,where the ladder-like chains made up of corner-sharing{CdO5N}octahedra and{PO3C}tetra hedra are connected by 1,4-ndpaH_(2)^(2-).Both compounds 4 and 5 obtained by the introduction of flexible ligands during the synthesis show a 2D layered structure,which is formed by ligand crosslinking double metal chains.Interestingly,In 4,flexible 1,2-bix was singly protonated,as vip molecules,filled between layer and layer,while flexible ligand 1,3-dpp is absent in 5.Photophysical measurements indicate that compounds 1-5 show ligand-centered emissions.展开更多
Piezocomposites with both flexibility and electromechanical conversion characteristics have been widely applied in various fields,including sensors,energy harvesting,catalysis,and biomedical treatment.In the compositi...Piezocomposites with both flexibility and electromechanical conversion characteristics have been widely applied in various fields,including sensors,energy harvesting,catalysis,and biomedical treatment.In the composition of piezocomposites or their preparation process,a category of materials is commonly employed that do not possess piezoelectric properties themselves but play a crucial role in performance enhancement.In this review,the concept of auxiliary phase is first proposed to define these materials,aiming to provide a new perspective for designing high-performance piezocomposites.Three different categories of modulation forms of auxiliary phase in piezocomposites are systematically summarized,including the modification of piezo-matrix,the modification of piezo-fillers,and the construction of special structures.Each category emphasizes the role of the auxiliary phase and systematically discusses the latest advancements and the physical mechanisms of the auxiliary phase enhanced flexible piezocomposites.Finally,a summary and future outlook of piezocomposites based on the auxiliary phase are provided.展开更多
Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy....Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes.展开更多
In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the i...In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the interference signal determines interference cancellation performance,while the auxiliary antenna array affects the correlation by influencing the amplitude and phase of the reference signals.This paper analyzes the effect of auxiliary antenna array on multiple performances of wideband noncooperative interference cancellation.Firstly,the array received signal model of wideband interference is established,and the weight vector coupled with the auxiliary antennas array manifold is solved by spectral analysis and eigen-subspace decomposition.Then,multiple performances which include cancellation resolution,grating null,wideband interference cancellation ratio(ICR),and convergence rate are quantitatively characterized with the auxiliary antenna array.It is obtained through analysis that the performances mutually restrict the auxiliary antenna array.Higher cancellation resolution requires larger array aperture,but when the number of auxiliary antennas is fixed,larger array aperture results in more grating nulls.When the auxiliary antennas are closer to the main antenna,the wideband ICR is improved,but the convergence rate is reduced.The conclusions are verified through simulation of one-dimensional uniform array and two-dimensional nonuniform array.The experiments of three arrays are compared,and the results conform well with simulation and support the theoretical analysis.展开更多
An efficient and accurate scalar auxiliary variable(SAV)scheme for numerically solving nonlinear parabolic integro-differential equation(PIDE)is developed in this paper.The original equation is first transformed into ...An efficient and accurate scalar auxiliary variable(SAV)scheme for numerically solving nonlinear parabolic integro-differential equation(PIDE)is developed in this paper.The original equation is first transformed into an equivalent system,and the k-order backward differentiation formula(BDF k)and central difference formula are used to discretize the temporal and spatial derivatives,respectively.Different from the traditional discrete method that adopts full implicit or full explicit for the nonlinear integral terms,the proposed scheme is based on the SAV idea and can be treated semi-implicitly,taking into account both accuracy and effectiveness.Numerical results are presented to demonstrate the high-order convergence(up to fourth-order)of the developed schemes and it is computationally efficient in long-time computations.展开更多
Frequency-modulated continuous-wave radar enables the non-contact and privacy-preserving recognition of human behavior.However,the accuracy of behavior recognition is directly influenced by the spatial relationship be...Frequency-modulated continuous-wave radar enables the non-contact and privacy-preserving recognition of human behavior.However,the accuracy of behavior recognition is directly influenced by the spatial relationship between human posture and the radar.To address the issue of low accuracy in behavior recognition when the human body is not directly facing the radar,a method combining local outlier factor with Doppler information is proposed for the correction of multi-classifier recognition results.Initially,the information such as distance,velocity,and micro-Doppler spectrogram of the target is obtained using the fast Fourier transform and histogram of oriented gradients-support vector machine methods,followed by preliminary recognition.Subsequently,Platt scaling is employed to transform recognition results into confidence scores,and finally,the Doppler-local outlier factor method is utilized to calibrate the confidence scores,with the highest confidence classifier result considered as the recognition outcome.Experimental results demonstrate that this approach achieves an average recognition accuracy of 96.23%for comprehensive human behavior recognition in various orientations.展开更多
From July 14 to 18,the"2025 National Practical Technology Training on Textile Dyeing and Printing Auxiliaries Preparation"hosted by the National Engineering Research Center for Surfactants and China Research...From July 14 to 18,the"2025 National Practical Technology Training on Textile Dyeing and Printing Auxiliaries Preparation"hosted by the National Engineering Research Center for Surfactants and China Research Institute of Daily Chemical,and co-organized by the Dyeing and Finishing Technology Research Institute of Zhejiang Fashion Institute of Technology was successfully held as scheduled in Guangzhou.展开更多
针对辅汽轮发电机组振动传递路径不清晰问题,以某高速辅汽轮发电机组为研究对象,建立转子-轴承-定子整机模型,基于工况传递路径分析(operational transfer path analysis,OTPA)方法构建机组振动传递模型,分析机组振动传递规律。首先应...针对辅汽轮发电机组振动传递路径不清晰问题,以某高速辅汽轮发电机组为研究对象,建立转子-轴承-定子整机模型,基于工况传递路径分析(operational transfer path analysis,OTPA)方法构建机组振动传递模型,分析机组振动传递规律。首先应用有限元方法获取机组各传递路径频率响应函数,综合考虑转子不平衡、脉动汽流力及不平衡磁拉力等激励源,采用奇异值分解技术对各轴承座处输入信号进行降噪合成,构建各路径输入与输出关系的传递函数矩阵,分析不同路径对定子外壳的振动贡献,明确其主要振动传递路径。结果表明:定子外壳各测点振动主要振动路径来源于辅汽轮机的2个轴承座,特别是发电机侧轴承座的振动贡献量最大。通过优化调整该轴承座结构固有特性与转子不平衡力相位差可以有效降低定子外壳振动,最大振幅由364μm降至51μm。研究结果可以为辅汽轮发电机组振动溯源及故障诊断的优化提供参考。展开更多
基金the National Basic Research Program(973) of China(No.2013CB932801)the National Natural Science Foundation of China(Nos.991129000,11374207,11375253,31370750,21273148 and 11074168)the Fund of Chinese Academy of Sciences(No.KJCX2-EW-N03)
文摘High resolution structural studies of DNA and DNA binding proteins by atomic force microscopy(AFM) require well-bound samples on suitably flat substrates. Adsorbing the DNA onto a positively charged supported lipid bilayer has previously been shown to be a potentially effective strategy for structural studies with AFM. Here, using our home-built frequency-modulation AFM(FM-AFM), we show that these bilayer substrates are only maximally effective for high resolution AFM when the samples are short, linear DNA, compared with circular plasmid DNA. We find that, with the former sample, the measured width of the DNA is about 2 nm, the known DNA diameter, and there is a clear height modulation along the length of the DNA with a periodicity of about 3.4 nm, in excellent agreement with the known pitch of the double helix. This sample preparation strategy is expected to enable higher resolution studies of DNA and DNA binding proteins with FM-AFM than that can presently be achieved.
基金the National Natural Science Foundation of China(Nos.991129000,11374207,31370750,21273148 and 11074168)
文摘Frequency-modulation atomic force microscopy(FM-AFM) is a highly versatile tool for surface science.Besides imaging surfaces, FM-AFM is capable of measuring interactions between the AFM probe and the surface with high sensitivity, which can provide chemical information at sub-nanometer resolution. This is achieved by deconvoluting the frequency shift, which is directly measured in experiments, into the force between the probe and sample. At present, the widely used method to perform this deconvolution has been shown to be accurate under high quality(high-Q) factor vacuum conditions. However, under low quality(low-Q) factor conditions, such as in solution, it is not clear if this method is valid. A previous study apparently verified this relation for experiments in solution by comparing the force calculated by this equation with that obtained in separate experiments using the surface force apparatus(SFA). Here we show that, in solution, a more direct comparison of the force calculated by this relation with that directly measured by the cantilever deflection in AFM reveals significant differences,both qualitative and quantitative. However, we also find that there are complications that hinder this comparison.Namely, while contact with the surface is clear in the direct measurements(including the SFA data), it is less certain in the FM-AFM case. Hence, it is not clear if the two methods are measuring the same tip-sample distance regimes. Thus, our results suggest that a more thorough verification of this relation is required, as application of this formulation for experiments in solution may not be valid.
文摘Five cadmium naphthalene-diphosphonates,formulated as[Cd_(1.5)(1,4-ndpaH_(2))2(4,4'-bpyH)(4,4'-bpy)0.5(H_(2)O)_(2)]2(1),[Cd(1,4-ndpaH_(2))(1,4-bib)0.5(H_(2)O)](2),[Cd(1,4-ndpaH3)2(1,2-dpe)(H_(2)O)]·(1,2-dpe)·7H_(2)O(3),(1,2-bixH)[Cd3(1,4-ndpaH)(1,4-ndpaH_(2))2(H_(2)O)_(2)](4),and[Cd(1,4-ndpaH_(2))(H_(2)O)]·H_(2)O(5),have been synthesized from the selfassembly reactions of 1,4-naphthalenediphosphonic acid(1,4-ndpaH4)with Cd(NO3)2·4H_(2)O by introducing auxiliary ligands with variation of rigidity,such as 4,4'-bipyridine(4,4'-bpy),1,4-bis(1-imidazolyl)benzene(1,4-bib),1,2-di(4-pyridyl)ethylene(1,2-dpe),1,3-di(4-pyridyl)propane(1,3-dpp),and bis(imidazol-1-ylmethyl)benzene(1,2-bix),respectively.Structure resolution by single-crystal X-ray diffraction reveals that compound 1 possesses a layered framework,in which the{Cd3(PO2)2}trimers made up of corner-sharing two{CdO4N2}and one{CdO6}octahedra are connected by phosphonate groups,forming a ribbon,which are cross-linked by 4,4'-bipy ligands,forming a 2D layer.Compound 2 shows a 3D open-framework structure,where chains of corner-sharing{CdO4N}trigonal bipyramids and{PO3C}tetrahedra are cross-linked by 1,4-bib and/or phosphonate groups.A 1D ladder-like chain structure is found in compound 3,where the ladder-like chains made up of corner-sharing{CdO5N}octahedra and{PO3C}tetra hedra are connected by 1,4-ndpaH_(2)^(2-).Both compounds 4 and 5 obtained by the introduction of flexible ligands during the synthesis show a 2D layered structure,which is formed by ligand crosslinking double metal chains.Interestingly,In 4,flexible 1,2-bix was singly protonated,as vip molecules,filled between layer and layer,while flexible ligand 1,3-dpp is absent in 5.Photophysical measurements indicate that compounds 1-5 show ligand-centered emissions.
基金supported by the Beijing Natural Science Foundation(Grant No.JL23004)the National Natural Science Foundation of China(Grant Nos.52473120,52472117,52072010,51972005 and 52325204).
文摘Piezocomposites with both flexibility and electromechanical conversion characteristics have been widely applied in various fields,including sensors,energy harvesting,catalysis,and biomedical treatment.In the composition of piezocomposites or their preparation process,a category of materials is commonly employed that do not possess piezoelectric properties themselves but play a crucial role in performance enhancement.In this review,the concept of auxiliary phase is first proposed to define these materials,aiming to provide a new perspective for designing high-performance piezocomposites.Three different categories of modulation forms of auxiliary phase in piezocomposites are systematically summarized,including the modification of piezo-matrix,the modification of piezo-fillers,and the construction of special structures.Each category emphasizes the role of the auxiliary phase and systematically discusses the latest advancements and the physical mechanisms of the auxiliary phase enhanced flexible piezocomposites.Finally,a summary and future outlook of piezocomposites based on the auxiliary phase are provided.
基金supported by the following funding bodies:the National Key Research and Development Program of China(Grant No.2020YFA0608000)National Science Foundation of China(Grant Nos.42075142,42375148,42125503+2 种基金42130608)FY-APP-2022.0609,Sichuan Province Key Tech nology Research and Development project(Grant Nos.2024ZHCG0168,2024ZHCG0176,2023YFG0305,2023YFG-0124,and 23ZDYF0091)the CUIT Science and Technology Innovation Capacity Enhancement Program project(Grant No.KYQN202305)。
文摘Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes.
基金supported by the National Fund for Distinguished Young Scholars(52025072)the National Natural Science Foundation of China(52177012)the Foundation of National Key Laboratory of Science and Technology(614221722051301).
文摘In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the interference signal determines interference cancellation performance,while the auxiliary antenna array affects the correlation by influencing the amplitude and phase of the reference signals.This paper analyzes the effect of auxiliary antenna array on multiple performances of wideband noncooperative interference cancellation.Firstly,the array received signal model of wideband interference is established,and the weight vector coupled with the auxiliary antennas array manifold is solved by spectral analysis and eigen-subspace decomposition.Then,multiple performances which include cancellation resolution,grating null,wideband interference cancellation ratio(ICR),and convergence rate are quantitatively characterized with the auxiliary antenna array.It is obtained through analysis that the performances mutually restrict the auxiliary antenna array.Higher cancellation resolution requires larger array aperture,but when the number of auxiliary antennas is fixed,larger array aperture results in more grating nulls.When the auxiliary antennas are closer to the main antenna,the wideband ICR is improved,but the convergence rate is reduced.The conclusions are verified through simulation of one-dimensional uniform array and two-dimensional nonuniform array.The experiments of three arrays are compared,and the results conform well with simulation and support the theoretical analysis.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12001210 and 12261103)the Natural Science Foundation of Henan(Grant No.252300420308)the Yunnan Fundamental Research Projects(Grant No.202301AT070117).
文摘An efficient and accurate scalar auxiliary variable(SAV)scheme for numerically solving nonlinear parabolic integro-differential equation(PIDE)is developed in this paper.The original equation is first transformed into an equivalent system,and the k-order backward differentiation formula(BDF k)and central difference formula are used to discretize the temporal and spatial derivatives,respectively.Different from the traditional discrete method that adopts full implicit or full explicit for the nonlinear integral terms,the proposed scheme is based on the SAV idea and can be treated semi-implicitly,taking into account both accuracy and effectiveness.Numerical results are presented to demonstrate the high-order convergence(up to fourth-order)of the developed schemes and it is computationally efficient in long-time computations.
基金the National Key Research and Development Program of China(No.2022YFC3601400)。
文摘Frequency-modulated continuous-wave radar enables the non-contact and privacy-preserving recognition of human behavior.However,the accuracy of behavior recognition is directly influenced by the spatial relationship between human posture and the radar.To address the issue of low accuracy in behavior recognition when the human body is not directly facing the radar,a method combining local outlier factor with Doppler information is proposed for the correction of multi-classifier recognition results.Initially,the information such as distance,velocity,and micro-Doppler spectrogram of the target is obtained using the fast Fourier transform and histogram of oriented gradients-support vector machine methods,followed by preliminary recognition.Subsequently,Platt scaling is employed to transform recognition results into confidence scores,and finally,the Doppler-local outlier factor method is utilized to calibrate the confidence scores,with the highest confidence classifier result considered as the recognition outcome.Experimental results demonstrate that this approach achieves an average recognition accuracy of 96.23%for comprehensive human behavior recognition in various orientations.
文摘From July 14 to 18,the"2025 National Practical Technology Training on Textile Dyeing and Printing Auxiliaries Preparation"hosted by the National Engineering Research Center for Surfactants and China Research Institute of Daily Chemical,and co-organized by the Dyeing and Finishing Technology Research Institute of Zhejiang Fashion Institute of Technology was successfully held as scheduled in Guangzhou.
文摘针对辅汽轮发电机组振动传递路径不清晰问题,以某高速辅汽轮发电机组为研究对象,建立转子-轴承-定子整机模型,基于工况传递路径分析(operational transfer path analysis,OTPA)方法构建机组振动传递模型,分析机组振动传递规律。首先应用有限元方法获取机组各传递路径频率响应函数,综合考虑转子不平衡、脉动汽流力及不平衡磁拉力等激励源,采用奇异值分解技术对各轴承座处输入信号进行降噪合成,构建各路径输入与输出关系的传递函数矩阵,分析不同路径对定子外壳的振动贡献,明确其主要振动传递路径。结果表明:定子外壳各测点振动主要振动路径来源于辅汽轮机的2个轴承座,特别是发电机侧轴承座的振动贡献量最大。通过优化调整该轴承座结构固有特性与转子不平衡力相位差可以有效降低定子外壳振动,最大振幅由364μm降至51μm。研究结果可以为辅汽轮发电机组振动溯源及故障诊断的优化提供参考。