期刊文献+
共找到353篇文章
< 1 2 18 >
每页显示 20 50 100
Automatic diagnosis of extraocular muscle palsy based on machine learning and diplopia images
1
作者 Xiao-Lu Jin Xue-Mei Li +1 位作者 Tie-Juan Liu Ling-Yun Zhou 《International Journal of Ophthalmology(English edition)》 2025年第5期757-764,共8页
AIM:To develop different machine learning models to train and test diplopia images and data generated by the computerized diplopia test.METHODS:Diplopia images and data generated by computerized diplopia tests,along w... AIM:To develop different machine learning models to train and test diplopia images and data generated by the computerized diplopia test.METHODS:Diplopia images and data generated by computerized diplopia tests,along with patient medical records,were retrospectively collected from 3244 cases.Diagnostic models were constructed using logistic regression(LR),decision tree(DT),support vector machine(SVM),extreme gradient boosting(XGBoost),and deep learning(DL)algorithms.A total of 2757 diplopia images were randomly selected as training data,while the test dataset contained 487 diplopia images.The optimal diagnostic model was evaluated using test set accuracy,confusion matrix,and precision-recall curve(P-R curve).RESULTS:The test set accuracy of the LR,SVM,DT,XGBoost,DL(64 categories),and DL(6 binary classifications)algorithms was 0.762,0.811,0.818,0.812,0.858 and 0.858,respectively.The accuracy in the training set was 0.785,0.815,0.998,0.965,0.968,and 0.967,respectively.The weighted precision of LR,SVM,DT,XGBoost,DL(64 categories),and DL(6 binary classifications)algorithms was 0.74,0.77,0.83,0.80,0.85,and 0.85,respectively;weighted recall was 0.76,0.81,0.82,0.81,0.86,and 0.86,respectively;weighted F1 score was 0.74,0.79,0.82,0.80,0.85,and 0.85,respectively.CONCLUSION:In this study,the 7 machine learning algorithms all achieve automatic diagnosis of extraocular muscle palsy.The DL(64 categories)and DL(6 binary classifications)algorithms have a significant advantage over other machine learning algorithms regarding diagnostic accuracy on the test set,with a high level of consistency with clinical diagnoses made by physicians.Therefore,it can be used as a reference for diagnosis. 展开更多
关键词 machine learning extraocular muscle paralysis automatic diagnosis diplopia images
原文传递
Machine learning guided automatic recognition of crystal boundaries in bainitic/martensitic alloy and relationship between boundary types and ductile-to-brittle transition behavior 被引量:10
2
作者 X.C.Li J.X.Zhao +4 位作者 J.H.Cong R.D.K.Misra X.M.Wang X.L.Wang C.J.Shang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第25期49-58,共10页
Gradient boosting decision tree(GBDT)machine learning(ML)method was adopted for the first time to automatically recognize and conduct quantitative statistical analysis of boundaries in bainitic microstructure using el... Gradient boosting decision tree(GBDT)machine learning(ML)method was adopted for the first time to automatically recognize and conduct quantitative statistical analysis of boundaries in bainitic microstructure using electron back-scatter diffraction(EBSD)data.In spite of lack of large sets of EBSD data,we were successful in achieving the desired accuracy and accomplishing the objective of recognizing the boundaries.Compared with a low model accuracy of<50%as using Euler angles or axis-angle pair as characteristic features,the accuracy of the model was significantly enhanced to about 88%when the Euler angle was converted to overall misorientation angle(OMA)and specific misorientation angle(SMA)and considered as important features.In this model,the recall score of prior austenite grain(PAG)boundary was~93%,high angle packet boundary(OMA>40°)was~97%,and block boundary was~96%.The derived outcomes of ML were used to obtain insights into the ductile-to-brittle transition(DBTT)behavior.Interestingly,ML modeling approach suggested that DBTT was not determined by the density of high angle grain boundaries,but significantly influenced by the density of PAG and packet boundaries.The study underscores that ML has a great potential in detailed recognition of complex multi-hierarchical microstructure such as bainite and martensite and relates to material performance. 展开更多
关键词 machine learning Feature engineering automatic recognition Lath structure CRYSTALLOGRAPHY
原文传递
Development of a machine learning model for predicting abnormalities of commercial airplanes 被引量:1
3
作者 Rossi Passarella Siti Nurmaini +2 位作者 Muhammad Naufal Rachmatullah Harumi Veny Fara Nissya Nur Hafidzoh 《Data Science and Management》 2024年第3期256-265,共10页
Airplanes are a social necessity for movement of humans,goods,and other.They are generally safe modes of transportation;however,incidents and accidents occasionally occur.To prevent aviation accidents,it is necessary ... Airplanes are a social necessity for movement of humans,goods,and other.They are generally safe modes of transportation;however,incidents and accidents occasionally occur.To prevent aviation accidents,it is necessary to develop a machine-learning model to detect and predict commercial flights using automatic dependent surveillance–broadcast data.This study combined data-quality detection,anomaly detection,and abnormality-classification-model development.The research methodology involved the following stages:problem statement,data selection and labeling,prediction-model development,deployment,and testing.The data labeling process was based on the rules framed by the international civil aviation organization for commercial,jet-engine flights and validated by expert commercial pilots.The results showed that the best prediction model,the quadratic-discriminant-analysis,was 93%accurate,indicating a“good fit”.Moreover,the model’s area-under-the-curve results for abnormal and normal detection were 0.97 and 0.96,respectively,thus confirming its“good fit”. 展开更多
关键词 automatic dependent surveillance-broadcast data Commercial airplanes accident Data-labeling machine learning Prediction model
在线阅读 下载PDF
Spatio-temporal change and driving mechanisms of land use/cover in Qarhan Salt Lake area during from 2000 to 2020,based on machine learning
4
作者 Chao Yue ZiTao Wang JianPing Wang 《Research in Cold and Arid Regions》 CSCD 2024年第5期239-249,共11页
The significance of land use classification has garnered attention due to its implications for climate and ecosystems.This paper establishes a connection by introducing and applying automatic machine learning(Auto ML)... The significance of land use classification has garnered attention due to its implications for climate and ecosystems.This paper establishes a connection by introducing and applying automatic machine learning(Auto ML)techniques to salt lake landscape,with a specific focus on the Qarhan Salt Lake area.Utilizing Landsat-5 Thematic Mappe(TM)and Landsat-8 Operational Land Imager(OLI)imagery,six machine learning algorithms were employed to classify eight land use types from 2000 to 2020.Results show that XGBLD performed optimally with 77%accuracy.Over two decades,salt fields,construction land,and water areas increased due to transformations in saline land and salt flats.The exposed lakes area exhibited a rise followed by a decline,mainly transforming into salt flats.Agricultural land areas slightly increased,influenced by both human activities and climate.Our analysis reveals a strong correlation between salt fields and precipitation,while exposed lakes demonstrate a significant negative correlation with evaporation and temperature,highlighting their vulnerability to climate change.Additionally,human water usage was identified as a significant factor impacting land use change,emphasizing the dual influence of anthropogenic activities and natural factors.This paper addresses the void in the application of Auto ML in salt lake environments and provides valuable insights into the dynamic evolution of land use types in the Qarhan Salt Lake region. 展开更多
关键词 automatic machine learning Qarhan Salt Lake Land use classicification TRANSFORMATION
在线阅读 下载PDF
Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning 被引量:1
5
作者 U˘gur Ayvaz Hüseyin Gürüler +3 位作者 Faheem Khan Naveed Ahmed Taegkeun Whangbo Abdusalomov Akmalbek Bobomirzaevich 《Computers, Materials & Continua》 SCIE EI 2022年第6期5511-5521,共11页
Automatic speaker recognition(ASR)systems are the field of Human-machine interaction and scientists have been using feature extraction and feature matching methods to analyze and synthesize these signals.One of the mo... Automatic speaker recognition(ASR)systems are the field of Human-machine interaction and scientists have been using feature extraction and feature matching methods to analyze and synthesize these signals.One of the most commonly used methods for feature extraction is Mel Frequency Cepstral Coefficients(MFCCs).Recent researches show that MFCCs are successful in processing the voice signal with high accuracies.MFCCs represents a sequence of voice signal-specific features.This experimental analysis is proposed to distinguish Turkish speakers by extracting the MFCCs from the speech recordings.Since the human perception of sound is not linear,after the filterbank step in theMFCC method,we converted the obtained log filterbanks into decibel(dB)features-based spectrograms without applying the Discrete Cosine Transform(DCT).A new dataset was created with converted spectrogram into a 2-D array.Several learning algorithms were implementedwith a 10-fold cross-validationmethod to detect the speaker.The highest accuracy of 90.2%was achieved using Multi-layer Perceptron(MLP)with tanh activation function.The most important output of this study is the inclusion of human voice as a new feature set. 展开更多
关键词 automatic speaker recognition human voice recognition spatial pattern recognition MFCCs SPECTROGRAM machine learning artificial intelligence
在线阅读 下载PDF
Investigation on Analog and Digital Modulations Recognition Using Machine Learning Algorithms
6
作者 Jean Ndoumbe Ivan Basile Kabeina +1 位作者 Gaelle Patricia Talotsing Soubiel-Noël Nkomo Biloo 《World Journal of Engineering and Technology》 2024年第4期867-884,共18页
In the field of radiocommunication, modulation type identification is one of the most important characteristics in signal processing. This study aims to implement a modulation recognition system on two approaches to m... In the field of radiocommunication, modulation type identification is one of the most important characteristics in signal processing. This study aims to implement a modulation recognition system on two approaches to machine learning techniques, the K-Nearest Neighbors (KNN) and Artificial Neural Networks (ANN). From a statistical and spectral analysis of signals, nine key differentiation features are extracted and used as input vectors for each trained model. The feature extraction is performed by using the Hilbert transform, the forward and inverse Fourier transforms. The experiments with the AMC Master dataset classify ten (10) types of analog and digital modulations. AM_DSB_FC, AM_DSB_SC, AM_USB, AM_LSB, FM, MPSK, 2PSK, MASK, 2ASK, MQAM are put forward in this article. For the simulation of the chosen model, signals are polluted by the Additive White Gaussian Noise (AWGN). The simulation results show that the best identification rate is the MLP neuronal method with 90.5% of accuracy after 10 dB signal-to-noise ratio value, with a shift of more than 15% from the k-nearest neighbors’ algorithm. 展开更多
关键词 automatic Recognition Artificial Neural Networks K-Nearest Neighbors machine learning Analog Modulations Digital Modulations
在线阅读 下载PDF
Developing a diagnostic support system for audiogram interpretation using deep learning-based object detection
7
作者 Titipat Achakulvisut Suchanon Phanthong +4 位作者 Thanawut Timpitak Kanpat Vesessook Sirinan Junthong Withita Utainrat Kanokrat Bunnag 《Journal of Otology》 2025年第1期26-32,共7页
Objective To develop and evaluate an automated system for digitizing audiograms,classifying hearing loss levels,and comparing their performance with traditional methods and otolaryngologists'interpretations.Design... Objective To develop and evaluate an automated system for digitizing audiograms,classifying hearing loss levels,and comparing their performance with traditional methods and otolaryngologists'interpretations.Designed and Methods We conducted a retrospective diagnostic study using 1,959 audiogram images from patients aged 7 years and older at the Faculty of Medicine,Vajira Hospital,Navamindradhiraj University.We employed an object detection approach to digitize audiograms and developed multiple machine learning models to classify six hearing loss levels.The dataset was split into 70%training(1,407 images)and 30%testing(352 images)sets.We compared our model's performance with classifications based on manually extracted audiogram values and otolaryngologists'interpretations.Result Our object detection-based model achieved an F1-score of 94.72%in classifying hearing loss levels,comparable to the 96.43%F1-score obtained using manually extracted values.The Light Gradient Boosting Machine(LGBM)model is used as the classifier for the manually extracted data,which achieved top performance with 94.72%accuracy,94.72%f1-score,94.72 recall,and 94.72 precision.In object detection based model,The Random Forest Classifier(RFC)model showed the highest 96.43%accuracy in predicting hearing loss level,with a F1-score of 96.43%,recall of 96.43%,and precision of 96.45%.Conclusion Our proposed automated approach for audiogram digitization and hearing loss classification performs comparably to traditional methods and otolaryngologists'interpretations.This system can potentially assist otolaryngologists in providing more timely and effective treatment by quickly and accurately classifying hearing loss. 展开更多
关键词 AUDIOGRAM Deep machine learning Training set Validation set Testing set automatic machine learning(automl) Random Forest Classifier(RFC) Support Vector machine(SVM) XGBoost
在线阅读 下载PDF
Automatic Sentiment Classification of News Using Machine Learning Methods
8
作者 Yuhan Wang 《Modern Electronic Technology》 2022年第1期7-11,共5页
With the rapid development of social economy,the society has entered into a new stage of development,especially in new media under the background of rapid development,makes the importance of news and information to ge... With the rapid development of social economy,the society has entered into a new stage of development,especially in new media under the background of rapid development,makes the importance of news and information to get the comprehensive promotion,and in order to further identify the positive and negative news,should be fully using machine learning methods,based on the emotion to realize the automatic classifying of news,in order to improve the efficiency of news classification.Therefore,the article first makes clear the basic outline of news sentiment classification.Secondly,the specific way of automatic classification of news emotion is deeply analyzed.On the basis of this,the paper puts forward the concrete measures of automatic classification of news emotion by using machine learning. 展开更多
关键词 machine learning automatic classification of news sentiment Specific measures
在线阅读 下载PDF
Applications of advanced signal processing and machine learning in the neonatal hypoxic-ischemic electroencephalography 被引量:6
9
作者 Hamid Abbasi Charles P.Unsworth 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第2期222-231,共10页
Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research comm... Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research community with an opportunity to develop automated real-time identification techniques to detect the signs of hypoxic-ischemic-encephalopathy in larger electroencephalography/amplitude-integrated electroencephalography data sets more easily. This review details the recent achievements, performed by a number of prominent research groups across the world, in the automatic identification and classification of hypoxic-ischemic epileptiform neonatal seizures using advanced signal processing and machine learning techniques. This review also addresses the clinical challenges that current automated techniques face in order to be fully utilized by clinicians, and highlights the importance of upgrading the current clinical bedside sampling frequencies to higher sampling rates in order to provide better hypoxic-ischemic biomarker detection frameworks. Additionally, the article highlights that current clinical automated epileptiform detection strategies for human neonates have been only concerned with seizure detection after the therapeutic latent phase of injury. Whereas recent animal studies have demonstrated that the latent phase of opportunity is critically important for early diagnosis of hypoxic-ischemic-encephalopathy electroencephalography biomarkers and although difficult, detection strategies could utilize biomarkers in the latent phase to also predict the onset of future seizures. 展开更多
关键词 advanced signal processing AEEG automatic detection classification clinical EEG fetal HIE hypoxic-ischemic ENCEPHALOPATHY machine learning neonatal SEIZURE real-time identification review
暂未订购
Auto machine learning-based modelling and prediction of excavationinduced tunnel displacement 被引量:7
10
作者 Dongmei Zhang Yiming Shen +1 位作者 Zhongkai Huang Xiaochuang Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1100-1114,共15页
The influence of a deep excavation on existing shield tunnels nearby is a vital issue in tunnelling engineering.Whereas,there lacks robust methods to predict excavation-induced tunnel displacements.In this study,an au... The influence of a deep excavation on existing shield tunnels nearby is a vital issue in tunnelling engineering.Whereas,there lacks robust methods to predict excavation-induced tunnel displacements.In this study,an auto machine learning(AutoML)-based approach is proposed to precisely solve the issue.Seven input parameters are considered in the database covering two physical aspects,namely soil property,and spatial characteristics of the deep excavation.The 10-fold cross-validation method is employed to overcome the scarcity of data,and promote model’s robustness.Six genetic algorithm(GA)-ML models are established as well for comparison.The results indicated that the proposed AutoML model is a comprehensive model that integrates efficiency and robustness.Importance analysis reveals that the ratio of the average shear strength to the vertical effective stress E_(ur)/σ′_(v),the excavation depth H,and the excavation width B are the most influential variables for the displacements.Finally,the AutoML model is further validated by practical engineering.The prediction results are in a good agreement with monitoring data,signifying that our model can be applied in real projects. 展开更多
关键词 Soilestructure interaction Auto machine learning(automl) Displacement prediction Robust model Geotechnical engineering
在线阅读 下载PDF
Design of Machine Learning Based Smart Irrigation System for Precision Agriculture 被引量:2
11
作者 Khalil Ibrahim Mohammad Abuzanouneh Fahd N.Al-Wesabi +6 位作者 Amani Abdulrahman Albraikan Mesfer Al Duhayyim M.Al-Shabi Anwer Mustafa Hilal Manar Ahmed Hamza Abu Sarwar Zamani K.Muthulakshmi 《Computers, Materials & Continua》 SCIE EI 2022年第7期109-124,共16页
Agriculture 4.0,as the future of farming technology,comprises numerous key enabling technologies towards sustainable agriculture.The use of state-of-the-art technologies,such as the Internet of Things,transform tradit... Agriculture 4.0,as the future of farming technology,comprises numerous key enabling technologies towards sustainable agriculture.The use of state-of-the-art technologies,such as the Internet of Things,transform traditional cultivation practices,like irrigation,to modern solutions of precision agriculture.To achieve effectivewater resource usage and automated irrigation in precision agriculture,recent technologies like machine learning(ML)can be employed.With this motivation,this paper design an IoT andML enabled smart irrigation system(IoTML-SIS)for precision agriculture.The proposed IoTML-SIS technique allows to sense the parameters of the farmland and make appropriate decisions for irrigation.The proposed IoTML-SIS model involves different IoT based sensors for soil moisture,humidity,temperature sensor,and light.Besides,the sensed data are transmitted to the cloud server for processing and decision making.Moreover,artificial algae algorithm(AAA)with least squares-support vector machine(LS-SVM)model is employed for the classification process to determine the need for irrigation.Furthermore,the AAA is applied to optimally tune the parameters involved in the LS-SVM model,and thereby the classification efficiency is significantly increased.The performance validation of the proposed IoTML-SIS technique ensured better performance over the compared methods with the maximum accuracy of 0.975. 展开更多
关键词 automatic irrigation precision agriculture smart farming machine learning cloud computing decision making internet of things
在线阅读 下载PDF
Machine Learning of Weather Forecasting Rules from Large Meteorological Data Bases 被引量:1
12
作者 Honghua DaiDepartment of Computer Science,Monash University,Australia,dai@ brucc.cs.monash.edu.au 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1996年第4期471-488,共18页
Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by h... Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by human scientists.This paper presents the experimental results of an automatic machine learning system which derives forecasting rules from real observational data.We tested the system on the two large real data sets from the areas of centra! China and Victoria of Australia.The experimental results show that the forecasting rules discovered by the system are very competitive to human experts.The forecasting accuracy rates are 86.4% and 78% of the two data sets respectively 展开更多
关键词 Weather forecasting machine learning machine discovery Meteorological expert system Meteorological knowledge processing automatic forecasting
在线阅读 下载PDF
基于AutoML-SHAP的超高性能混凝土抗压强度可解释预测 被引量:2
13
作者 李硕 艾丽菲拉·艾尔肯 +1 位作者 罗文波 陈锦杰 《硅酸盐通报》 CAS 北大核心 2024年第10期3634-3644,共11页
超高性能混凝土(UHPC)的抗压强度与其配比成分之间存在高度非线性的复杂关系,利用传统的统计方法难以准确预测抗压强度。为解决这一问题,本文提出一种基于自动机器学习(AutoML)技术的UHPC抗压强度预测办法,同时引入沙普利加和解释(SHAP... 超高性能混凝土(UHPC)的抗压强度与其配比成分之间存在高度非线性的复杂关系,利用传统的统计方法难以准确预测抗压强度。为解决这一问题,本文提出一种基于自动机器学习(AutoML)技术的UHPC抗压强度预测办法,同时引入沙普利加和解释(SHAP)增加其可解释性。AutoML和SHAP的集成有助于构建精确、高效且可解释的模型。结果表明,AutoML模型可自动建立,其准确性、稳健性优于基础模型。SHAP通过全局解释性分析、单样本解释分析以及特征依赖性解释分析,阐明了各个特征因素对抗压强度的影响机理,有助于UHPC抗压强度发展机制以及影响参数重要性的理解,可为UHPC的设计与应用提供参考。 展开更多
关键词 超高性能混凝土 抗压强度 机器学习 automl SHAP
在线阅读 下载PDF
Semi-supervised learning based probabilistic latent semantic analysis for automatic image annotation 被引量:1
14
作者 Tian Dongping 《High Technology Letters》 EI CAS 2017年第4期367-374,共8页
In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficie... In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficient and effective searching environment for users to query their images more easily. In this paper,a semi-supervised learning based probabilistic latent semantic analysis( PLSA) model for automatic image annotation is presenred. Since it's often hard to obtain or create labeled images in large quantities while unlabeled ones are easier to collect,a transductive support vector machine( TSVM) is exploited to enhance the quality of the training image data. Then,different image features with different magnitudes will result in different performance for automatic image annotation. To this end,a Gaussian normalization method is utilized to normalize different features extracted from effective image regions segmented by the normalized cuts algorithm so as to reserve the intrinsic content of images as complete as possible. Finally,a PLSA model with asymmetric modalities is constructed based on the expectation maximization( EM) algorithm to predict a candidate set of annotations with confidence scores. Extensive experiments on the general-purpose Corel5k dataset demonstrate that the proposed model can significantly improve performance of traditional PLSA for the task of automatic image annotation. 展开更多
关键词 automatic image annotation semi-supervised learning probabilistic latent semantic analysis(PLSA) transductive support vector machine(TSVM) image segmentation image retrieval
在线阅读 下载PDF
An intelligent automatic correlation method of oilbearing strata based on pattern constraints:An example of accretionary stratigraphy of Shishen 100 block in Shinan Oilfield of Bohai Bay Basin,East China 被引量:1
15
作者 WU Degang WU Shenghe +1 位作者 LIU Lei SUN Yide 《Petroleum Exploration and Development》 SCIE 2024年第1期180-192,共13页
Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thic... Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thickness,an intelligent automatic correlation method of oil-bearing strata based on pattern constraints is formed.We propose to introduce knowledge-driven in automatic correlation of oil-bearing strata,constraining the correlation process by stratigraphic sedimentary patterns and improving the similarity measuring machine and conditional constraint dynamic time warping algorithm to automate the correlation of marker layers and the interfaces of each stratum.The application in Shishen 100 block in the Shinan Oilfield of the Bohai Bay Basin shows that the coincidence rate of the marker layers identified by this method is over 95.00%,and the average coincidence rate of identified oil-bearing strata reaches 90.02% compared to artificial correlation results,which is about 17 percentage points higher than that of the existing automatic correlation methods.The accuracy of the automatic correlation of oil-bearing strata has been effectively improved. 展开更多
关键词 oil-bearing strata automatic correlation contrastive learning stratigraphic sedimentary pattern marker layer similarity measuring machine conditional constraint dynamic time warping algorithm
在线阅读 下载PDF
Robust signal recognition algorithm based on machine learning in heterogeneous networks
16
作者 Xiaokai Liu Rong Li +1 位作者 Chenglin Zhao Pengbiao Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期333-342,共10页
There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR)... There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel. 展开更多
关键词 heterogeneous networks automatic signal classification extreme learning machine(ELM) features-extracted Rayleigh fading channel
在线阅读 下载PDF
基于改进YOLOv11与GWO-ELM的食品生产线黄桃自动分级方法 被引量:1
17
作者 彭永杰 赵良军 龙绪明 《食品与机械》 北大核心 2025年第5期89-97,共9页
[目的]提高食品生产线黄桃自动分级方法的准确率和效率。[方法]在黄桃自动分级系统(机器视觉和高光谱技术)的基础上,提出一种融合改进YOLOv11与改进极限学习机的黄桃品质自动检测方法。外部品质图像通过CMOS传感器相机进行采集,通过改进... [目的]提高食品生产线黄桃自动分级方法的准确率和效率。[方法]在黄桃自动分级系统(机器视觉和高光谱技术)的基础上,提出一种融合改进YOLOv11与改进极限学习机的黄桃品质自动检测方法。外部品质图像通过CMOS传感器相机进行采集,通过改进YOLOv11模型识别缺陷,并结合果型指数与色泽判定外部品质。内部品质则通过高光谱仪采集,经特征筛选后,输入改进灰狼算法优化的极限学习机模型中检测可溶性固形物和硬度指标判定内部品质。结合外部品质和内部品质对黄桃进行分级。通过试验对其性能进行验证。[结果]试验方法可以实现食品生产线黄桃内外品质的有效检测,综合内部品质具有较高的分级准确率和效率,分级准确率大于95.00%,平均分级时间小于0.3 s。[结论]将机器视觉、高光谱技术以及智能算法相结合,可实现食品品质的快速无损检测。 展开更多
关键词 食品生产线 黄桃 自动分级 机器视觉 高光谱技术 YOLOv11 极限学习机
在线阅读 下载PDF
随机森林机器学习方法用于冻雨现象自动识别的试验研究 被引量:2
18
作者 王小兰 仇建华 +3 位作者 李翠翠 陶法 梁静舒 秦建峰 《气象科技》 2025年第2期191-200,共10页
现行气象观测业务中尚缺乏对冻雨天气现象的自动监测,研究引入随机森林机器学习方法,利用Ka波段毫米波云雷达的观测数据,建立了冻雨现象的自动识别方法,为弥补观测业务中冻雨的自动识别和连续观测的缺乏提供一种可能。研究首先分析了202... 现行气象观测业务中尚缺乏对冻雨天气现象的自动监测,研究引入随机森林机器学习方法,利用Ka波段毫米波云雷达的观测数据,建立了冻雨现象的自动识别方法,为弥补观测业务中冻雨的自动识别和连续观测的缺乏提供一种可能。研究首先分析了2024年2月武汉地区的2次雨雪冰冻天气过程中不同降水现象(雨、冻雨、雪和雨夹雪)的Ka波段毫米波云雷达的回波强度、偏度值的分布特征,发现在数值范围和垂直高度分布上存在显著差异,由此确定回波强度、偏度及近地面气温作为识别变量。针对武汉地区、贵州地区多个雨雪冰冻过程分别建立RF机器学习方法的冻雨现象自动识别模型,经训练和验证计算,测试识别准确率(A _(cc))均超90%、冻雨命中率均超80%,使用独立的冻雨实例进行检验,检验A _(cc)可达到80%。与现行观测业务中电线积冰人工观测比较,该方法可以自动连续地识别分钟级冻雨现象,具备业务应用可行性。由于冻雨发生时的毫米波云雷达回波强度和偏度的地域特征明显,需要使用不同地区的冻雨样本数据建立针对不同地区的识别模型,扩充样本和优化模型参数及指标,可以进一步提升该方法的识别准确率,降低虚警率。 展开更多
关键词 冻雨 自动识别 机器学习 随机森林 毫米波云雷达
在线阅读 下载PDF
基于极限梯度提升树的实时P波初至自动拾取方法
19
作者 李山有 高艺萱 +3 位作者 卢建旗 谢志南 马强 谢博楠 《中国铁道科学》 北大核心 2025年第4期199-209,共11页
针对传统P波初至自动拾取方法抗干扰能力弱、拾取精度低的问题,提出1种基于极限梯度提升树(XGBoost)的实时P波初至自动拾取方法。首先,选择有助于区分地震信号与背景噪声的4种特征参数作为模型的输入,以降低模型的复杂度;其次,构建P波... 针对传统P波初至自动拾取方法抗干扰能力弱、拾取精度低的问题,提出1种基于极限梯度提升树(XGBoost)的实时P波初至自动拾取方法。首先,选择有助于区分地震信号与背景噪声的4种特征参数作为模型的输入,以降低模型的复杂度;其次,构建P波初至自动拾取XGBoost模型,并对模型进行训练和测试;最后,通过与目前地震预警中常用的P波初至实时识别方法进行对比,验证模型的有效性。结果表明:所提方法在±0.5 s误差范围内的拾取样本占比为93.3%,优于能量周期双参数(EDP-Picker)方法和短时/长时平均比(STA/LTA)方法,二者拾取样本占比分别为91.9%和83.6%;当误差超出±0.5 s时,XGBoost方法的提前和滞后触发样本占比分别为4.27%和5.26%,而EDP-Picker的相应比例分别为5.03%和6.50%,STA/LTA的相应比例分别为5.39%和1.71%。相较于2种传统方法,XGBoost方法的综合性能显著提升,且具有更高的识别精度和更强的抗干扰能力,能够更稳定地适应复杂场景下的拾取需求。 展开更多
关键词 现地预警 地震紧急处置 P波初至自动识别 极限梯度提升树 机器学习
在线阅读 下载PDF
多垃圾自动分类系统设计
20
作者 王喜社 朱炜义 《机械设计与制造》 北大核心 2025年第9期74-77,81,共5页
针对人工垃圾分类复杂繁琐的问题,设计了一款基于机器视觉的多垃圾自动分类系统。该系统主要由检测系统和分拣系统两部分组成。树莓派4B、NCS2(Neural Compute Stick 2)与高清摄像头等构成检测系统,将训练YOLOv4-Tiny网络建立的目标检... 针对人工垃圾分类复杂繁琐的问题,设计了一款基于机器视觉的多垃圾自动分类系统。该系统主要由检测系统和分拣系统两部分组成。树莓派4B、NCS2(Neural Compute Stick 2)与高清摄像头等构成检测系统,将训练YOLOv4-Tiny网络建立的目标检测模型通过OpenVINO工具包优化后部署于树莓派进行实时垃圾识别与定位。Arduino、UM(Ultimaker)结构、二自由度机械臂与分拣台等构成分拣系统,采取S型加减速算法与PI位置环算法控制步进电机,提高了运行效率。实测结果表明:该系统分类垃圾的平均准确率高达91%以上,平均速度约为6秒每个,实现了对同时投入的多个垃圾快速准确地进行分类。 展开更多
关键词 机器视觉 深度学习 YOLOv4-Tiny 多垃圾 自动分类 树莓派 ARDUINO
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部