期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Automatic identification of discontinuities and refined modeling of rock blocks from 3D point cloud data of rock surfaces
1
作者 Yaopeng Ji Shengyuan Song +5 位作者 Jianping Chen Jingyu Xue Jianhua Yan Yansong Zhang Di Sun Qing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3093-3106,共14页
The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreach... The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreachable at some high-steep rock slopes.In contrast,unmanned aerial vehicle(UAV)photogrammetry is not limited by terrain conditions,and can efficiently collect high-precision three-dimensional(3D)point clouds of rock masses through all-round and multiangle photography for rock mass characterization.In this paper,a new method based on a 3D point cloud is proposed for discontinuity identification and refined rock block modeling.The method is based on four steps:(1)Establish a point cloud spatial topology,and calculate the point cloud normal vector and average point spacing based on several machine learning algorithms;(2)Extract discontinuities using the density-based spatial clustering of applications with noise(DBSCAN)algorithm and fit the discontinuity plane by combining principal component analysis(PCA)with the natural breaks(NB)method;(3)Propose a method of inserting points in the line segment to generate an embedded discontinuity point cloud;and(4)Adopt a Poisson reconstruction method for refined rock block modeling.The proposed method was applied to an outcrop of an ultrahigh steep rock slope and compared with the results of previous studies and manual surveys.The results show that the method can eliminate the influence of discontinuity undulations on the orientation measurement and describe the local concave-convex characteristics on the modeling of rock blocks.The calculation results are accurate and reliable,which can meet the practical requirements of engineering. 展开更多
关键词 Three-dimensional(3D)point cloud Rock mass automatic identification Refined modeling Unmanned aerial vehicle(UAV)
在线阅读 下载PDF
Automatic identification of rock discontinuity and stability analysis of tunnel rock blocks using terrestrial laser scanning 被引量:7
2
作者 Meng Wang Jiawen Zhou +3 位作者 Junlin Chen Nan Jiang Puwen Zhang Haibo Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1810-1825,共16页
Local geometric information and discontinuity features are key aspects of the analysis of the evolution and failure mechanisms of unstable rock blocks in rock tunnels.This study demonstrates the integration of terrest... Local geometric information and discontinuity features are key aspects of the analysis of the evolution and failure mechanisms of unstable rock blocks in rock tunnels.This study demonstrates the integration of terrestrial laser scanning(TLS)with distinct element method for rock mass characterization and stability analysis in tunnels.TLS records detailed geometric information of the surrounding rock mass by scanning and collecting the positions of millions of rock surface points without contact.By conducting a fuzzy K-means method,a discontinuity automatic identification algorithm was developed,and a method for obtaining the geometric parameters of discontinuities was proposed.This method permits the user to visually identify each discontinuity and acquire its spatial distribution features(e.g.occurrences,spac-ings,trace lengths)in great detail.Compared with hand mapping in conventional geotechnical surveys,the geometric information of discontinuities obtained by this approach is more accurate and the iden-tification is more efficient.Then,a discrete fracture network with the same statistical characteristics as the actual discontinuities was generated with the distinct element method,and a representative nu-merical model of the jointed surrounding rock mass was established.By means of numerical simulation,potential unstable rock blocks were assessed,and failure mechanisms were analyzed.This method was applied to detection and assessment of unstable rock blocks in the spillway and sand flushing tunnel of the Hongshiyan hydropower project after a collapse.The results show that the noncontact detection of blocks was more labor-saving with lower safety risks compared with manual surveys,and the stability assessment was more reliable since the numerical model built by this method was more consistent with the distribution characteristics of actual joints.This study can provide a reference for geological survey and unstable rock block hazard mitigation in tunnels subjected to complex geology and active rockfalls. 展开更多
关键词 Rock tunnel Terrestrial laser scanning(TLS) Discontinuity automatic identification Distinct element method Rock block stability assessment
在线阅读 下载PDF
Vessel fusion tracking with a dual-frequency high-frequency surface wave radar and calibrated by an automatic identification system 被引量:4
3
作者 ZHANG Hui LIU Yongxin +1 位作者 JI Yonggang WANG Linglin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第7期131-140,共10页
High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,wh... High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data. 展开更多
关键词 vessel tracking high-frequency surface wave radar automatic identification system joint probabilistic data association unscented Kalman filter
在线阅读 下载PDF
Automatic Identification of Butterfly Species Based on Gray-Level Co-occurrence Matrix Features of Image Block 被引量:4
4
作者 XUE Ankang LI Fan XIONG Yin 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第2期220-225,共6页
In recent years, automatic identification of butterfly species arouses more and more attention in different areas. Because most of their larvae are pests, this research is not only meaningful for the popularization of... In recent years, automatic identification of butterfly species arouses more and more attention in different areas. Because most of their larvae are pests, this research is not only meaningful for the popularization of science but also important to the agricultural production and the environment. Texture as a notable feature is widely used in digital image recognition technology; for describing the texture, an extremely effective method, graylevel co-occurrence matrix(GLCM), has been proposed and used in automatic identification systems. However,according to most of the existing works, GLCM is computed by the whole image, which likely misses some important features in local areas. To solve this problem, this paper presents a new method based on the GLCM features extruded from three image blocks, and a weight-based k-nearest neighbor(KNN) search algorithm used for classifier design. With this method, a butterfly classification system works on ten butterfly species which are hard to identify by shape features. The final identification accuracy is 98%. 展开更多
关键词 automatic identification butterfly species gray-level co-occurrence matrix(GLCM) features of image block
原文传递
Non-coherent sequence detection scheme for satellite-based automatic identification system 被引量:1
5
作者 Haosu Zhou Jianxin Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期442-448,共7页
The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detecti... The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detection scheme for the satellite-based AIS signal transmitted over the white Gaussian noise channel. Based on the maximum likelihood estimation and a Viterbi decoder, the proposed scheme is capable of tolerating a frequency offset up to 5% of the symbol rate. The complexity of the proposed scheme is reduced by the state-complexity reduction, which is based on per-survivor processing. Simulation results prove that the proposed non-coherent sequence detection scheme has high robustness to frequency offset compared to the relative scheme when messages collision exists. 展开更多
关键词 non-coherent sequence detection scheme satellite based automatic identification system frequency offset messages collision Viterbi decoder
在线阅读 下载PDF
Combined iterative cross-correlation demodulation scheme for mixing space borne automatic identification system signals 被引量:1
6
作者 朱守中 王小玲 +1 位作者 姜文利 张锡祥 《Journal of Central South University》 SCIE EI CAS 2013年第3期670-677,共8页
Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross... Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross-correlation demodulation scheme,referred to as CICCD,yielded a set of single short signals based on the prior information of AIS,after the frequency,code rate and modulation index were estimated.It demodulates the corresponding short codes according to the maximum peak of cross-correlation,which is simple and easy to implement.Numerical simulations show that the bit error rate of proposed algorithm improves by about 40% compared with existing ones,and about 3 dB beyond the standard AIS receiver.In addition,the proposed demodulation scheme shows the satisfying performance and engineering value in mixing AIS environment and can also perform well in low signal-to-noise conditions. 展开更多
关键词 space borne automatic identification system combined iterative cross-correlation demodulation scheme bit error rate simulation
在线阅读 下载PDF
A fast automatic identification method for seismic belts based on distance correlation and its earthquake case
7
作者 Wei Yan Xueze Wen +2 位作者 Changrong He Guiping Liu Zirui Li 《Earthquake Science》 2020年第3期153-158,共6页
Earthquake prediction practice and a large number of earthquake cases show that anomalous images of small earthquake belts may appear near the epicenter before strong earthquakes.Through the research of earthquake cas... Earthquake prediction practice and a large number of earthquake cases show that anomalous images of small earthquake belts may appear near the epicenter before strong earthquakes.Through the research of earthquake cases,researchers have a relatively consistent method to determine the clarity of an identified seismic belt,but there is still a lack of method on seismic belt identification from the distribution of scattered points.Due to the complexity of exhaustive algorithm,the rapid automatic identification technique of seismic belts has been progressing slowly.Visual recognition is still the basic method of seismic belt identification.Based on the algorithm of distance correlation,this paper presents a fast automatic identification method of seismic belts.The effectiveness of this method was proved by 100 random earthquakes and an example of seismic belts of magnitude 4.0 before the 2005 Jiujiang M5.7 earthquake.The results show that:①the automatic identification of seismic belts should first identify the"relational earthquake",then identify the"suspected seismic belt",and finally use the criterion of seismic belt clarity to determine;②random earthquakes and real earthquakes identification results show that the distance correlation method can realize the fast automatic identification of seismic belts by computer. 展开更多
关键词 seismic belt automatic identification relational earthquake suspected seismic belt belt clarity
在线阅读 下载PDF
Deep Learning-Based Automatic Identification of Gust Fronts from Weather Radar Data
8
作者 Haoran ZHANG Jiafeng ZHENG +3 位作者 Chao LIU Junling DONG Yihua LIU Tingwei PENG 《Journal of Meteorological Research》 CSCD 2024年第6期1021-1031,共11页
Gust fronts,which are characterized by strong winds and intense wind shear,pose a threat to both aviation and public safety.To aid forecasters in issuing timely warnings for this hazardous weather phenomenon,a deep le... Gust fronts,which are characterized by strong winds and intense wind shear,pose a threat to both aviation and public safety.To aid forecasters in issuing timely warnings for this hazardous weather phenomenon,a deep learning-based automatic gust front identification algorithm is proposed in this study.The algorithm utilizes Mask Region-based Convolutional Neural Network(Mask R-CNN),a state-of-the-art instance segmentation model,trained on a large dataset of 2623 gust front samples from S-band weather radar volume scans in East China and the North China Plain between 2009 and 2016.Extensive data preprocessing and manual annotation are performed to prepare the training dataset.The optimized model achieves impressive performance on a test set of 604 samples,with a detection probability of 93.21%,a false alarm rate of 3.60%,a missed alarm rate of 6.79%,and a critical success index of 90.08%.The algorithm demonstrates robust identification capabilities across gust fronts of varying scales,types,and parent thunderstorm systems,highlighting its operational applicability. 展开更多
关键词 gust fronts deep learning automatic identification algorithm weather radar
原文传递
Automatic fracture–vug identification and extraction from electric imaging logging data based on path morphology 被引量:8
9
作者 Xi-Ning Li Jin-Song Shen +1 位作者 Wu-Yang Yang Zhen-Ling Li 《Petroleum Science》 SCIE CAS CSCD 2019年第1期58-76,共19页
We present a path morphology method to separate total rock pore space into matrix, fractures and vugs and derive their pore structure spectrum. Thus, we can achieve fine pore evaluation in fracture–vug reservoirs bas... We present a path morphology method to separate total rock pore space into matrix, fractures and vugs and derive their pore structure spectrum. Thus, we can achieve fine pore evaluation in fracture–vug reservoirs based on electric imaging logging data. We automatically identify and extract fracture–vug information from the electric imaging images by adopting a path morphological operator that remains flexible enough to fit rectilinear and slightly curved structures because they are independent of the structuring element shape. The Otsu method was used to extract fracture–vug information from the background noise caused by the matrix. To accommodate the differences in scale and form of the different target regions,including fracture and vug path, operators with different lengths were selected for their recognition and extraction at the corresponding scale. Polynomial and elliptic functions are used to fit the extracted fractures and vugs, respectively, and the fracture–vug parameters are deduced from the fitted edge. Finally, test examples of numerical simulation data and several measured well data have been provided for the verification of the effectiveness and adaptability of the path morphology method in the application of electric imaging logging data processing. This also provides algorithm support for the fine evaluation of fracture–vug reservoirs. 展开更多
关键词 Path morphology Image automatic identification Electric imaging logging Fracture–vug reservoir
原文传递
RESEARCH ON AUTOMATIC FOG IDENTIFICATION TECHNOLOGY BY METEOROLOGICAL SATELLITE REMOTE SENSING 被引量:1
10
作者 周红妹 葛伟强 +2 位作者 柏桦 刘冬韡 杨引明 《Journal of Tropical Meteorology》 SCIE 2009年第1期28-37,共10页
There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters ... There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters to China’s national economy and people's lives and property in the urban and coastal areas. In this paper, the correlative relationship between the reflectivity of land surface and clouds in different time phases is found, based on the analysis of the radiative and satellite-based spectral characteristics of fog. Through calculation and analyses of the relative variability of the reflectivity in the images, the threshold to identify quasi-fog areas is generated automatically. Furthermore, using the technique of quick image run-length encoding, and in combination with such practical methods as analyzing texture and shape fractures, smoothness, and template characteristics, the automatic identification of fog and fog-cloud separation using meteorological satellite remote sensing images are studied, with good results in application. 展开更多
关键词 meteorological satellites remote sensing fog dynamic monitoring rapid and automatic identification methods
在线阅读 下载PDF
Automatic defect identification technology of digital image of pipeline weld
11
作者 Dong Shaohua Sun Xuana +1 位作者 Xie Shuyi Wang Mingfeng 《Natural Gas Industry B》 2019年第4期399-403,共5页
Digital image of pipeline weld is an important basis for the reliability management of pipeline welds.However,the error rate of artificial discrimination is high.In order to increase the defect identification accuracy... Digital image of pipeline weld is an important basis for the reliability management of pipeline welds.However,the error rate of artificial discrimination is high.In order to increase the defect identification accuracy of digital image of pipeline weld,we adopted several methods(e.g.multiple edge detection,detection channel and threshold segmentation)to carry out image processing on the image defects of pipeline welds.Then,a defect characteristic database on the digital images of pipeline welds was constructed,including grayscale difference,equivalent area(S/C),circularity,entropy,correlation and other parameters.Furthermore,a multi-classifier construction(SVM)model was established.Thus,the classification and evaluation on the defects in the digital images of pipeline welds were realized.Finally,an automatic defect identification software for digital image of pipeline weld was developed and verified on site.And the following research results were obtained.First,after image processing,the edge detection results obtained by Canny and other algorithms are satisfactory when there is no noise.In the case of noise,however,pseudo-edge emerges in the detection results.In this case,the automatic threshold selection method shall be adopted to detect the image edge to obtain the rational threshold.Second,there are 14 parameters in the defect characteristic database,including shape characteristic,lamination characteristic and image length pixel.Third,by virtue of the SVM classification model,the shape characteristics of each type of defect can be clarified,and the defect characteristics can be identified,such as crack,slag inclusion,air hole,incomplete penetration,non-fusion and strip.Based on field application,the following results were obtained.First,this automatic defect identification technology is applicable to quality identification and evaluation of various defects in pipeline welds.Second,its identification accuracy is higher than 90%.Third,by virtue of this technology,automatic defect identification and evaluation of digital image of pipeline weld is realized.In conclusion,these research results help to ensure the safe operation of pipelines. 展开更多
关键词 Pipeline weld Ray film Digital image Defect database SVM classification model Defect identification automatic identification Software development
在线阅读 下载PDF
Automatic modal parameter identification of high arch dams:feasibility verification 被引量:7
12
作者 Li Shuai Pan Jianwen +1 位作者 Luo Guangheng Wang Jinting 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第4期953-965,共13页
Modal parameters, including fundamental frequencies, damping ratios, and mode shapes, could be used to evaluate the health condition of structures. Automatic modal parameter identification, which plays an essential ro... Modal parameters, including fundamental frequencies, damping ratios, and mode shapes, could be used to evaluate the health condition of structures. Automatic modal parameter identification, which plays an essential role in realtime structural health monitoring, has become a popular topic in recent years. In this study, an automatic modal parameter identification procedure for high arch dams is proposed. The proposed procedure is implemented by combining the densitybased spatial clustering of applications with noise(DBSCAN) algorithm and the stochastic subspace identification(SSI). The 210-m-high Dagangshan Dam is investigated as an example to verify the feasibility of the procedure. The results show that the DBSCAN algorithm is robust enough to interpret the stabilization diagram from SSI and may avoid outline modes. This leads to the proposed procedure obtaining a better performance than the partitioned clustering and hierarchical clustering algorithms. In addition, the errors of the identified frequencies of the arch dam are within 4%, and the identified mode shapes are in agreement with those obtained from the finite element model, which implies that the proposed procedure is accurate enough to use in modal parameter identification. The procedure is feasible for online modal parameter identification and modal tracking of arch dams. 展开更多
关键词 automatic modal parameter identification high arch dam DBSCAN algorithm stochastic subspace identification stabilization diagram ambient vibration
在线阅读 下载PDF
An Insect Imaging System to Automate Rice Light-Trap Pest Identification 被引量:24
13
作者 YAO Qing LV Jun +4 位作者 LIU Qing-jie DIAO Guang-qiang YANG Bao-jun CHEN Hong-ming TANGJian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第6期978-985,共8页
Identification and counting of rice light-trap pests are important to monitor rice pest population dynamics and make pest forecast. Identification and counting of rice light-trap pests manually is time-consuming, and ... Identification and counting of rice light-trap pests are important to monitor rice pest population dynamics and make pest forecast. Identification and counting of rice light-trap pests manually is time-consuming, and leads to fatigue and an increase in the error rate. A rice light-trap insect imaging system is developed to automate rice pest identification. This system can capture the top and bottom images of each insect by two cameras to obtain more image features. A method is proposed for removing the background by color difference of two images with pests and non-pests. 156 features including color, shape and texture features of each pest are extracted into an support vector machine (SVM) classifier with radial basis kernel function. The seven-fold cross-validation is used to improve the accurate rate of pest identification. Four species of Lepidoptera rice pests are tested and achieved 97.5% average accurate rate. 展开更多
关键词 automatic identification imaging system rice light-trap pests SVM cross-validate
在线阅读 下载PDF
An Overview of Anti-Collision Protocols for Radio Frequency Identification Devices 被引量:8
14
作者 QIAN Zhihong WANG Xue 《China Communications》 SCIE CSCD 2014年第11期44-59,共16页
Radio frequency identification(RFID) is a new type of non-contact automatic identification technology.Due to its low energy consumption,low cost,and its adaptability to harsh environments,it has been applied to many f... Radio frequency identification(RFID) is a new type of non-contact automatic identification technology.Due to its low energy consumption,low cost,and its adaptability to harsh environments,it has been applied to many fields.In the RFID systems,data collision is inevitable when the reader sends a communication request and multiple tags respond with simultaneous data transmission.Data collision is prone to causing problems such as:identification delay,spectrum resource waste,a decreased system throughput rate,etc.Therefore,an efficient,stable anti-collision protocol is crucial for RFID systems.This research analysed the current research into RFID anticollision protocols and summarised means for its improvement through the mechanism of implementation of different types anticollision protocols.Finally,a new direction is proposed for the future development of RFID anti-collision protocol systems. 展开更多
关键词 radio frequency identification automatic identification data collision anticollision protocol.
在线阅读 下载PDF
AN EFFICIENT APPROACH TO COMMENT SPAM IDENTIFICATION 被引量:1
15
作者 Yang Yuhang Zhao Tiejun Zheng Dequan Yu Hao 《Journal of Electronics(China)》 2009年第5期644-650,共7页
This paper proposes a novel approach to comment spam identification based on content analysis. Three main features including the number of links, content repetitiveness, and text similarity are used for comment spam i... This paper proposes a novel approach to comment spam identification based on content analysis. Three main features including the number of links, content repetitiveness, and text similarity are used for comment spam identification. In practice, content repetitiveness is determined by the length and frequency of the longest common substring. Furthermore, text similarity is calculated using vector space model. The precisions of preliminary experiments on comment spam identification conducted on Chinese and English are as high as 93% and 82% respectively. The results show the validity and language independency of this approach. Compared with conventional spam filtering approaches, our method requires no training, no rule sets and no link relationships. The proposed approach can also deal with new comments as well as existing comments. 展开更多
关键词 Comment spam automatic identification Content analysis BLOG
在线阅读 下载PDF
Establishment and application of an intelligent treating method for oil spill identification
16
作者 TAN Liju ZHAO Ruxiang +2 位作者 YIN Xiaonan ZHANG Haijiang WANG Jiangtao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第11期116-122,共7页
In the identifying process of an oil spill accident, manual integral and artificial visual comparison are commonly used at present to determine the oil spill sources, these methods are time-consuming and easily affect... In the identifying process of an oil spill accident, manual integral and artificial visual comparison are commonly used at present to determine the oil spill sources, these methods are time-consuming and easily affected by human factors. Therefore, it is difficult to achieve the purpose of rapid identification of an oil spill accident. In this paper, an intelligent method of automatic recognition, integration and calculation of diagnostic ratio of Gas Chromatography-Mass Spectrometer (GC/MS) spectrum are established. Firstly, four hundreds of samples collected around the world were analyzed using a standard method and Retention time locking technology (RTL) was applied to reduce the change of retention time of GC/MS spectrum. Secondly, the automatic identification, integration of n-alkanes, biomarker compounds, polycyclic aromatic hydrocarbons and calculation of the diagnostic ratios were realized by MATLAB software. Finally, a database of oil fingerprints were established and applied successfully in a spill oil accident. Based on the new method and database, we could acquire the diagnostic ratios of an oil sample and find out the suspected oil within a few minutes. This method and database can improve the efficiency in spilled oil identification. 展开更多
关键词 oil fingerprint automatic identification diagnostic ratio standardized database oil spills sources
在线阅读 下载PDF
Identification of Fishing State of Purse Seine Fishing Vessels Based on Multi-Indices
17
作者 XU Zhenqi WANG Jintao +3 位作者 ZHOU Cheng LEI Lin CHEN Xinjun LI Bin 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1605-1612,共8页
With the popularization of vessel satellite AIS(automatic identification system)equipment and the continuous improve-ment of the AIS data’s coverage,continuity and effectiveness,AIS has become an important data sourc... With the popularization of vessel satellite AIS(automatic identification system)equipment and the continuous improve-ment of the AIS data’s coverage,continuity and effectiveness,AIS has become an important data source to study the navigation char-acteristics of vessel groups.This study established an identification model to extract the fishing state and intensity information of fishing vessels,based on the AIS data of purse seine fishing vessels,combined with the variables of vessel position,speed and course.Expert experience,spatial statistics and data mining analysis methods were applied to establish the model,and the Western and Cen-tral Pacific Ocean areas were studied.The results showed that the overall accuracy of identification of the fishing state using Support Vector Machine method is higher,and the method has a good modeling effect.The spatial distribution characteristics of the vessels’fishing intensity based on AIS data showed a significant cluster distribution pattern.The obtained high-intensity fishing area can be used as a prediction of purse seine fishing grounds in the Western and Central Pacific areas.Through the processing and research of AIS data,this study provided important scientific support for the identification of fishing state of purse seine fishing vessels.The spatial fishing intensity of fishing vessels based on AIS data can also be used for the analysis of fishery resources and fishing grounds,and further serve the sustainable development of marine fisheries. 展开更多
关键词 automatic identification system(AIS) fishing state machine learning fishing intensity
在线阅读 下载PDF
A Novel Method in Wood Identification Based on Anatomical Image Using Hybrid Model
18
作者 Nguyen Minh Trieu Nguyen Truong Thinh 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2381-2396,共16页
Nowadays,wood identification is made by experts using hand lenses,wood atlases,and field manuals which take a lot of cost and time for the training process.The quantity and species must be strictly set up,and accurate... Nowadays,wood identification is made by experts using hand lenses,wood atlases,and field manuals which take a lot of cost and time for the training process.The quantity and species must be strictly set up,and accurate identification of the wood species must be made during exploitation to monitor trade and enforce regulations to stop illegal logging.With the development of science,wood identification should be supported with technology to enhance the perception of fairness of trade.An automatic wood identification system and a dataset of 50 commercial wood species from Asia are established,namely,wood anatomical images collected and used to train for the proposed model.In the convolutional neural network(CNN),the last layers are usually soft-max functions with dense layers.These layers contain the most parameters that affect the speed model.To reduce the number of parameters in the last layers of the CNN model and enhance the accuracy,the structure of the model should be optimized and developed.Therefore,a hybrid of convolutional neural network and random forest model(CNN-RF model)is introduced to wood identification.The accuracy’s hybrid model is more than 98%,and the processing speed is 3 times higher than the CNN model.The highest accuracy is 1.00 in some species,and the lowest is 0.92.These results show the excellent adaptability of the hybrid model in wood identification based on anatomical images.It also facilitates further investigations of wood cells and has implications for wood science. 展开更多
关键词 Identifying wood anatomical wood hybrid model CNN-RF automatic identification vietnam wood
在线阅读 下载PDF
An approach for traffic pattern recognition integration of ship AIS data and port geospatial features
19
作者 Gaocai Li Xinyu Zhang +3 位作者 Lingling Jiang Chengbo Wang Ruining Huang Zhensheng Liu 《Geo-Spatial Information Science》 CSCD 2024年第6期2048-2075,共28页
Recognition of ship traffic patterns can provide insights into the rules of navigation,maneuvering,and collision avoidance for ships at sea.This is essential for ensuring safe navigation at sea and improving navigatio... Recognition of ship traffic patterns can provide insights into the rules of navigation,maneuvering,and collision avoidance for ships at sea.This is essential for ensuring safe navigation at sea and improving navigational efficiency.With the popularization of the Automatic Identification System(AIS),numerous studies utilized ship trajectories to identify maritime traffic patterns.However,the current research focuses on the spatiotemporal behavioral feature clustering of ship trajectory points or segments while lacking consideration for multiple factors that influence ship behavior,such as ship static and maritime geospatial features,resulting in insufficient precision in ship traffic pattern recognition.This study proposes a ship traffic pattern recognition method that considers multi-attribute trajectory similarity(STPMTS),which considers ship static feature,dynamic feature,port geospatial feature,as well as semantic relationships between these features.First,A ship trajectory reconstruction method based on grid compression was introduced to eliminate redundant data and enhance the efficiency of trajectory similarity measurements.Subsequently,to quantify the degree of similarity of ship trajectories,a trajectory similarity measurement method is proposed that combines ship static and dynamic information with port geospatial features.Furthermore,trajectory clustering with hierarchical methods was applied based on the trajectory similarity matrix for dividing trajectories into different clusters.The quality of the similarity measurement results was evaluated by quality criterion to recognize the optimal number of ship traffic patterns.Finally,the effectiveness of the proposed method was verified using actual port ship trajectory data from the Tianjin Port of China,ranging from September to November 2016.Compared with other methods,the proposed method exhibits significant advantages in identifying traffic patterns of ships entering and leaving the port in terms of geometric features,dynamic features,and adherence to navigation rules.This study could serve as an inspiration for a comprehensive exploration of maritime transportation knowledge from multiple perspectives. 展开更多
关键词 Ship traffic pattern automatic identification System(AIS) geospatial features semantic relationships trajectory similarity measurement hierarchical clustering
原文传递
Extended linear regression model for vessel trajectory prediction with a-priori AIS information
20
作者 Christiaan Neil Burger Waldo Kleynhans Trienko Lups Grobler 《Geo-Spatial Information Science》 CSCD 2024年第1期202-220,共19页
As maritime activities increase globally,there is a greater dependency on technology in monitoring,control,and surveillance of vessel activity.One of the most prominent systems for monitoring vessel activity is the Au... As maritime activities increase globally,there is a greater dependency on technology in monitoring,control,and surveillance of vessel activity.One of the most prominent systems for monitoring vessel activity is the Automatic Identification System(AIS).An increase in both vessels fitted with AIS transponders and satellite and terrestrial AIS receivers has resulted in a significant increase in AIS messages received globally.This resultant rich spatial and temporal data source related to vessel activity provides analysts with the ability to perform enhanced vessel movement analytics,of which a pertinent example is the improvement of vessel location predictions.In this paper,we propose a novel strategy for predicting future locations of vessels making use of historic AIS data.The proposed method uses a Linear Regression Model(LRM)and utilizes historic AIS movement data in the form of a-priori generated spatial maps of the course over ground(LRMAC).The LRMAC is an accurate low complexity first-order method that is easy to implement operationally and shows promising results in areas where there is a consistency in the directionality of historic vessel movement.In areas where the historic directionality of vessel movement is diverse,such as areas close to harbors and ports,the LRMAC defaults to the LRM.The proposed LRMAC method is compared to the Single-Point Neighbor Search(SPNS),which is also a first-order method and has a similar level of computational complexity,and for the use case of predicting tanker and cargo vessel trajectories up to 8 hours into the future,the LRMAC showed improved results both in terms of prediction accuracy and execution time. 展开更多
关键词 automatic identification System(AIS)data Linear Regression Model(LRM) trajectory mining spatial map historic data trajectory prediction
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部