The increasing penetration of renewable energy into power grids is reducing the regulation capacity of automatic generation control(AGC).Thus,there is an urgent demand to coordinate AGC units with active equipment suc...The increasing penetration of renewable energy into power grids is reducing the regulation capacity of automatic generation control(AGC).Thus,there is an urgent demand to coordinate AGC units with active equipment such as energy storage.Current dispatch decision-making methods often ignore the intermittent effects of renewable energy.This paper proposes a two-stage robust optimization model in which energy storage is used to compensate for the intermittency of renewable energy for the dispatch of AGC units.This model exploits the rapid adjustment capability of energy storage to compensate for the slow response speed of AGC units,improve the adjustment potential,and respond to the problems of intermittent power generation from renewable energy.A column and constraint generation algorithm is used to solve the model.In an example analysis,the proposed model was more robust than a model that did not consider energy storage at eliminating the effects of intermittency while offering clear improvements in economy and efficiency.展开更多
The operation efficiency of the manipulator is placed in the primary position in automatic production. This paper proposes a coordinated control strategy for joint servo and visual servo to enable timely transfer and ...The operation efficiency of the manipulator is placed in the primary position in automatic production. This paper proposes a coordinated control strategy for joint servo and visual servo to enable timely transfer and accurate gripping in the working area. Aiming at the issues of chattering and slow convergence of traditional sliding mode controller, a fast variable power reaching rate on the basis of the non-singular fast terminal sliding mode controller is proposed, which can effectively reduce the convergence time and chattering. For the purpose of addressing the problem that the traditional visual servo control method is sensitive to the environment, a visual servo controller based on integral sliding mode is proposed, to ensure the favorable positioning accuracy of the manipulator. Based on the two proposed controllers mentioned above, a coordinated control strategy is used to implement the control of the manipulator. Finally, the upper computer software is developed using the C# programming language to monitor the workstation. The feasibility of the above-mentioned method is verified through multiple simulations and experiments.展开更多
An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS)...An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS) to mitigate the voltage fluctuations caused by environmental disturbances. Only AVC is used when small environ- mental disturbances happen, while BESC is incorporated with AVC to restrain the voltage fluctuations when large disturbances happen. An adjustable parameter determining the allowed amplitudes of voltage fluctuations is introduced to realize the above switching process. A benchmark low voltage distribution system including ]?VGS is established by using the commercial software Dig SILENT. Simulation results show that the voltage under AVCCS satisfies the IEEE Standard 1547, and the installed battery capacity is also reduced. Meanwhile, the battery's service life is ex- tended by avoiding frequent charges/discharges in the control process.展开更多
In order to coordinate automatic voltage control (AVC) systems of a large interconnected system, a multi-level multi-area hybrid automatic voltage control (MLMA-HAVC) system was constructed. This system began its ...In order to coordinate automatic voltage control (AVC) systems of a large interconnected system, a multi-level multi-area hybrid automatic voltage control (MLMA-HAVC) system was constructed. This system began its trial operation in the Northeast China Grid in January 2010, and for the first time in China and abroad it realized automatic close-loop control of multi-area and multi-level interconnected power grid and multi-objective self-approaching optimization in aspects of security, high quality and economic operation. This system has three breakthroughs in theory and engineering application: l) Established the MLMA-HAVC theory to solve multi-objective optimization of large-scale system; 2) proposed reactive power/voltage coordination control method to inhibit or further eliminate regional oscillations; 3) presented advanced state estimation algorithm to guarantee acquisition of high reliability data. This paper summarizes the basic principle of MLMA-HAVC, and reports engineering realization of MI ,MA-HAVC system in tha Northeast China Grid.展开更多
Quickly getting back the synchronism of a disturbed interconnected multi-area power system due to variations in loading condition is recognized as prominent issue related to automatic generation control(AGC).In this r...Quickly getting back the synchronism of a disturbed interconnected multi-area power system due to variations in loading condition is recognized as prominent issue related to automatic generation control(AGC).In this regard,AGC system based on fuzzy logic,i.e.,so-called FLAGC can introduce an effectual performance to suppress the dynamic oscillations of tie-line power exchanges and frequency in multi-area interconnected power system.Apart from that,simultaneous coordination scheme based on particle swarm optimization(PSO)along with real coded genetic algorithm(RCGA)is suggested to coordinate FLAGCs of the all areas.To clarify the high efficiency of aforementioned strategy,two different interconnected multi-area power systems,i.e.,three-area hydro-thermal power system and five-area thermal power system have been taken into account for relevant studies.The potency of this strategy has been thoroughly dealt with by considering the step load perturbation(SLP)in both the under study power systems.To sum up,the simulation results have plainly revealed dynamic performance of FLAGC as compared with conventional AGC(CAGC)in each power system in order to damp out the power system oscillations.展开更多
基金supported by Theoretical study of power system synergistic dispatch National Science Foundation of China(51477091).
文摘The increasing penetration of renewable energy into power grids is reducing the regulation capacity of automatic generation control(AGC).Thus,there is an urgent demand to coordinate AGC units with active equipment such as energy storage.Current dispatch decision-making methods often ignore the intermittent effects of renewable energy.This paper proposes a two-stage robust optimization model in which energy storage is used to compensate for the intermittency of renewable energy for the dispatch of AGC units.This model exploits the rapid adjustment capability of energy storage to compensate for the slow response speed of AGC units,improve the adjustment potential,and respond to the problems of intermittent power generation from renewable energy.A column and constraint generation algorithm is used to solve the model.In an example analysis,the proposed model was more robust than a model that did not consider energy storage at eliminating the effects of intermittency while offering clear improvements in economy and efficiency.
基金supported by the National Natural Science Foundation of China(No.62273189)the Natural Science Foundation of Shandong Province(No.ZR2021MF005).
文摘The operation efficiency of the manipulator is placed in the primary position in automatic production. This paper proposes a coordinated control strategy for joint servo and visual servo to enable timely transfer and accurate gripping in the working area. Aiming at the issues of chattering and slow convergence of traditional sliding mode controller, a fast variable power reaching rate on the basis of the non-singular fast terminal sliding mode controller is proposed, which can effectively reduce the convergence time and chattering. For the purpose of addressing the problem that the traditional visual servo control method is sensitive to the environment, a visual servo controller based on integral sliding mode is proposed, to ensure the favorable positioning accuracy of the manipulator. Based on the two proposed controllers mentioned above, a coordinated control strategy is used to implement the control of the manipulator. Finally, the upper computer software is developed using the C# programming language to monitor the workstation. The feasibility of the above-mentioned method is verified through multiple simulations and experiments.
基金Supported by National Basic Research Program of China ("973" Program,No. 2009CB219701 and No. 2010CB234608)Tianjin Municipal Science and Technology Development Program (No. 09JCZDJC25000)Specialized Research Fund for Doctor Discipline of Ministry of Education of China (No. 20090032110064)
文摘An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS) to mitigate the voltage fluctuations caused by environmental disturbances. Only AVC is used when small environ- mental disturbances happen, while BESC is incorporated with AVC to restrain the voltage fluctuations when large disturbances happen. An adjustable parameter determining the allowed amplitudes of voltage fluctuations is introduced to realize the above switching process. A benchmark low voltage distribution system including ]?VGS is established by using the commercial software Dig SILENT. Simulation results show that the voltage under AVCCS satisfies the IEEE Standard 1547, and the installed battery capacity is also reduced. Meanwhile, the battery's service life is ex- tended by avoiding frequent charges/discharges in the control process.
基金supported by the Science and Technology Project of Northeast China Grid Company(Grant No.2009ZB1048)the National Natural Science Foundation of China(Grant Nos.50907038,50977047)
文摘In order to coordinate automatic voltage control (AVC) systems of a large interconnected system, a multi-level multi-area hybrid automatic voltage control (MLMA-HAVC) system was constructed. This system began its trial operation in the Northeast China Grid in January 2010, and for the first time in China and abroad it realized automatic close-loop control of multi-area and multi-level interconnected power grid and multi-objective self-approaching optimization in aspects of security, high quality and economic operation. This system has three breakthroughs in theory and engineering application: l) Established the MLMA-HAVC theory to solve multi-objective optimization of large-scale system; 2) proposed reactive power/voltage coordination control method to inhibit or further eliminate regional oscillations; 3) presented advanced state estimation algorithm to guarantee acquisition of high reliability data. This paper summarizes the basic principle of MLMA-HAVC, and reports engineering realization of MI ,MA-HAVC system in tha Northeast China Grid.
文摘Quickly getting back the synchronism of a disturbed interconnected multi-area power system due to variations in loading condition is recognized as prominent issue related to automatic generation control(AGC).In this regard,AGC system based on fuzzy logic,i.e.,so-called FLAGC can introduce an effectual performance to suppress the dynamic oscillations of tie-line power exchanges and frequency in multi-area interconnected power system.Apart from that,simultaneous coordination scheme based on particle swarm optimization(PSO)along with real coded genetic algorithm(RCGA)is suggested to coordinate FLAGCs of the all areas.To clarify the high efficiency of aforementioned strategy,two different interconnected multi-area power systems,i.e.,three-area hydro-thermal power system and five-area thermal power system have been taken into account for relevant studies.The potency of this strategy has been thoroughly dealt with by considering the step load perturbation(SLP)in both the under study power systems.To sum up,the simulation results have plainly revealed dynamic performance of FLAGC as compared with conventional AGC(CAGC)in each power system in order to damp out the power system oscillations.