期刊文献+
共找到2,361篇文章
< 1 2 119 >
每页显示 20 50 100
A Composite Loss-Based Autoencoder for Accurate and Scalable Missing Data Imputation
1
作者 Thierry Mugenzi Cahit Perkgoz 《Computers, Materials & Continua》 2026年第1期1985-2005,共21页
Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel a... Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel autoencoder-based imputation framework that integrates a composite loss function to enhance robustness and precision.The proposed loss combines(i)a guided,masked mean squared error focusing on missing entries;(ii)a noise-aware regularization term to improve resilience against data corruption;and(iii)a variance penalty to encourage expressive yet stable reconstructions.We evaluate the proposed model across four missingness mechanisms,such as Missing Completely at Random,Missing at Random,Missing Not at Random,and Missing Not at Random with quantile censorship,under systematically varied feature counts,sample sizes,and missingness ratios ranging from 5%to 60%.Four publicly available real-world datasets(Stroke Prediction,Pima Indians Diabetes,Cardiovascular Disease,and Framingham Heart Study)were used,and the obtained results show that our proposed model consistently outperforms baseline methods,including traditional and deep learning-based techniques.An ablation study reveals the additive value of each component in the loss function.Additionally,we assessed the downstream utility of imputed data through classification tasks,where datasets imputed by the proposed method yielded the highest receiver operating characteristic area under the curve scores across all scenarios.The model demonstrates strong scalability and robustness,improving performance with larger datasets and higher feature counts.These results underscore the capacity of the proposed method to produce not only numerically accurate but also semantically useful imputations,making it a promising solution for robust data recovery in clinical applications. 展开更多
关键词 Missing data imputation autoencoder deep learning missing mechanisms
在线阅读 下载PDF
基于DAE-BLS的锂离子电池剩余使用寿命预测方法 被引量:3
2
作者 张洪生 尚鑫磊 《计算机集成制造系统》 北大核心 2025年第3期1038-1047,共10页
为解决锂离子电池剩余使用寿命(RUL)预测中存在的实际容量难以准确测量、噪声信息影响算法性能等诸多问题,提出一种基于去噪自编码器(DAE)和宽度学习系统(BLS)相结合的预测方法。首先,从电池充放电曲线中提取多个与电池退化高度相关的... 为解决锂离子电池剩余使用寿命(RUL)预测中存在的实际容量难以准确测量、噪声信息影响算法性能等诸多问题,提出一种基于去噪自编码器(DAE)和宽度学习系统(BLS)相结合的预测方法。首先,从电池充放电曲线中提取多个与电池退化高度相关的健康因子(HI),并使用滑动时间窗口制备训练样本。其次,将样本输入DAE进行去噪处理。然后,将经过处理的样本输入BLS,预测电池RUL,并通过调整窗口大小和模型参数,得到最优模型。最后,利用MIT-Stanford电池退化数据集验证该方法的有效性。实验结果表明,相比于已有预测方法,所提方法在预测精度上具有更好的表现。 展开更多
关键词 锂离子电池 剩余使用寿命 健康因子 去噪自编码器 宽度学习系统
在线阅读 下载PDF
小样本下基于原型域增强的Meta-DAE故障诊断
3
作者 马萍 梁城 +2 位作者 王聪 李新凯 张宏立 《华南理工大学学报(自然科学版)》 北大核心 2025年第1期62-73,共12页
滚动轴承作为一种精密的机械元件,已广泛运用于现代工业机械设备中。在轴承运行时,采用合理的方法诊断轴承的故障具有重大的意义。但在实际复杂多变环境下,采集振动信号不仅面临样本量少的问题,还受到噪声干扰、工况变换等因素的影响,... 滚动轴承作为一种精密的机械元件,已广泛运用于现代工业机械设备中。在轴承运行时,采用合理的方法诊断轴承的故障具有重大的意义。但在实际复杂多变环境下,采集振动信号不仅面临样本量少的问题,还受到噪声干扰、工况变换等因素的影响,导致故障诊断的准确率低。因此,针对噪声干扰和变工况下的小样本滚动轴承故障诊断问题,该文提出了一种基于原型域增强的元学习去噪模型(Meta-DAE)。首先,构造基于时频图的小样本故障样本集,引入深度卷积生成对抗网络并对数据进行预处理,生成相似分布的伪样本集;然后,将故障样本集输入Meta-DAE模型进行自适应特征提取,Meta-DAE模型采用原型域增强策略,使同类别原型点在嵌入空间中凝聚更紧密;同时,构建了具有降噪性能的编码器,设计了基于原型域增强和去噪的目标函数,通过在小样本下进行模型微调,以提高小样本下模型的噪声鲁棒性和分类准确率。噪声及变工况下小样本故障诊断实验结果表明,相比于其他模型,所提模型在-8dB强噪声干扰下,仅用10个样本微调模型,分类准确率提高了35.78~57.25个百分点,具有较强的噪声鲁棒性。 展开更多
关键词 小样本 故障诊断 元学习 原型域增强 去噪自编码器
在线阅读 下载PDF
YOLO11-DAE:高分遥感图像露天煤矿复杂场景目标识别方法
4
作者 刘英 范雅慧 岳辉 《地球信息科学学报》 北大核心 2025年第9期2230-2249,共20页
【目的】矿产资源是人类生存和经济发展的重要物质基础,开展矿山监测、建立矿山监测模型对矿产资源的高效开发和矿区环境保护具有重要意义。针对露天矿区背景复杂、目标尺度多样且小目标聚集的特点,本研究旨在构建兼顾监测精度与效率的... 【目的】矿产资源是人类生存和经济发展的重要物质基础,开展矿山监测、建立矿山监测模型对矿产资源的高效开发和矿区环境保护具有重要意义。针对露天矿区背景复杂、目标尺度多样且小目标聚集的特点,本研究旨在构建兼顾监测精度与效率的轻量化模型,以提升矿区目标地物监测的准确性和效率。【方法】现有遥感数据集存在的样本单一、地域局限等问题,因此本文基于0.9 m天地图与1.8 m谷歌影像构建了不同气候背景、大范围和多种地物的六大露天煤矿基地OMTSFD(Open-pit Mine Typical Surface Features Dataset)数据集,提出改进的YOLO11-DAE算法进行模型训练与验证。首先,在骨干网络和特征金字塔中引入C3K2-DBB模块以增强多尺度特征捕获能力;其次,采用ADown模块替换网络下采样卷积,增强了模块对不同特征的表征能力,减少了低对比度场景的细节丢失;最后,采用E_Detect高效检测头降低模型复杂度和参数量,实现模型轻量化。【结果】实验表明,YOLO11-DAE的每秒帧数(Frames Per Second,FPS)为528.100,模型推理速度较快,精确率(Precision,P)、召回率(Recall,R)、综合评价指标(F1-Score,F1)、平均精度均值(Mean Average Precision,mAP)分别达到0.932、0.894、0.913和0.950,显著优于YOLOv5n、YOLOv8n和YOLOv10n算法,相较于YOLOv11n各项指标分别提高7.600%、10.000%、8.800%、8.000%。【结论】YOLO11-DAE算法能够满足矿区实时监测,并适用于多尺度、多背景等复杂场景的目标识别,实现了高精度、低漏检率的监测目标,达到了模型可应用性与实时性的平衡。 展开更多
关键词 矿山监测 目标识别 多尺度特征 矿山地物数据集 YOLO11-dae 轻量化模型 深度学习
原文传递
基于FIML和DAE的水稻种质资源数据自适应填充算法设计
5
作者 李艳玲 韩茹菲 +3 位作者 苏楠 李飞涛 FERNANDO Bacao 司海平 《河南农业大学学报》 北大核心 2025年第2期316-325,共10页
【目的】设计一种基于FIML和DAE的填充缺失值的方法,即聚类全信息选择性过滤编码器数据填补算法(clustering-based comprehensive information selective filtering encoder data imputation algorithm,CFSM-DAE),为水稻种质资源缺失数... 【目的】设计一种基于FIML和DAE的填充缺失值的方法,即聚类全信息选择性过滤编码器数据填补算法(clustering-based comprehensive information selective filtering encoder data imputation algorithm,CFSM-DAE),为水稻种质资源缺失数据进行填充。【方法】利用聚类辅助避免数据异常值对算法的影响,采用选择性过滤层用于识别高质量估算、减少低质量估算的影响。传统的DAE框架通常没有选择性过滤层,所有的估算值都被视为同等重要,无法区分高质量和低质量的估算值。为了进一步提高估算精度,研究采用集成框架将全信息最大似然性(FIML)与多对抗性自编码器(DAE)结合的方法(CFSM-DAE),在选择性过滤层基础上,自适应填充,即当估算值不符合设定阈值时,采用FIML填充策略以确保填充结果的稳定性和精确度,从而进一步来提高整体估算精度。在3种缺失数据机制(随机缺失(MAR)、完全随机缺失(MCAR)和非随机缺失(MNAR))下对模拟数据和实际水稻种质资源数据集进行研究,将CFSM-DAE方法与多种常用填充算法比较(全信息最大似然性(FIML)、对抗自编码器(DAE)、K近邻填充(KNN)、随机森林(RF)、链式方程多重插补(MICE))。【结果】CFSM-DAE在模拟数据上的表现为S_(RME)=0.0676,E_(MA)=0.0093,R^(2)=0.9958;在水稻种质资源数据上的表现为S_(RME)=0.0395,E_(MA)=0.0078,R^(2)=0.8913。相比之下,其他算法如DAE在这两类数据下的SRME表现分别为0.8896和0.7707;KNN算法的EMA表现分别为0.1183和0.1305;FIML算法的R2表现为0.3382和0.7321。因此,CFSM-DAE在多个评价指标上相较于其他算法都表现出了一定的提升,CFSM-DAE在模拟数据和水稻种质资源数据的表现优于其他算法。【结论】CFSM-DAE方法通过结合聚类、选择性过滤和全信息最大似然性等策略,显著提高了水稻种质资源数据中缺失值的填补精度,展示了其在处理复杂缺失值问题上的有效性和潜力。 展开更多
关键词 水稻种质资源 聚类 全信息最大似然性 对抗性自编码器 选择性过滤层 数据缺失
在线阅读 下载PDF
基于SDAE-EEMD降噪分解与改进Informer-BiLSTM模型的电力短期负荷预测方法
6
作者 蔡子龙 李嘉棋 +3 位作者 沈赋 王健 徐潇源 杨宇林 《电网技术》 北大核心 2025年第12期5009-5018,I0010-I0015,共16页
当前短期负荷预测模型在电价与负荷动态融合机制、负荷数据降噪与时序特征提取环节仍存在不足,制约了预测精度的提升。该文提出了一种集成电价及气象多维特征的短期电力负荷预测框架。首先,结合堆叠降噪自编码器(stacked denoising auto... 当前短期负荷预测模型在电价与负荷动态融合机制、负荷数据降噪与时序特征提取环节仍存在不足,制约了预测精度的提升。该文提出了一种集成电价及气象多维特征的短期电力负荷预测框架。首先,结合堆叠降噪自编码器(stacked denoising autoencoders,SDAE)和集合经验模态分解(ensemble empirical mode decomposition,EEMD)构建混合降噪分解模块,有效抑制负荷序列中的噪声干扰和模态混叠问题。EEMD将去噪后负荷序列分解为固有模态函数(intrinsic mode functions,IMFs)分量。其次,基于最大信息系数(maximum information coefficient,MIC)分析,将电价和气象特征分别融入高、低频IMFs分量中,实现差异化的特征动态融合。在此基础上,提出分频预测策略。针对高频分量,引入全局时间戳编码与稀疏注意力机制的改进Informer模型,以捕捉短时剧烈波动特征;对低频分量,采用Bi LSTM网络捕捉长期趋势与周期性。最后,基于澳大利亚国家电力市场公开数据集的实证结果表明,在平均绝对百分比误差和均方误差两个指标上均显著优于未引入电价特征或未采用分频策略的对比模型。通过高质量数据预处理、关键特征动态融合与针对性分频结构建模的协同优化,有效提升了短期负荷预测的精度与稳定性,可为电力市场动态定价机制下的负荷预测提供高效可靠的技术支撑。 展开更多
关键词 短期负荷预测 电价 Sdae EEMD 改进Informer BiLSTM 分频预测
原文传递
基于CBDAE和TCN-Transformer的工业传感器时间序列预测
7
作者 许涛 南新元 +1 位作者 蔡鑫 赵濮 《南京信息工程大学学报》 北大核心 2025年第4期455-466,共12页
在真实的工业物联网环境中,传感器信号常受外界噪声干扰,难以获取纯净数据,这影响了基于数据驱动的时间序列预测任务的准确性.为此,基于改进的对比盲去噪自编码器(Contrast Blind Denoising AutoEncoder,CBDAE)和TCN-Transformer网络,... 在真实的工业物联网环境中,传感器信号常受外界噪声干扰,难以获取纯净数据,这影响了基于数据驱动的时间序列预测任务的准确性.为此,基于改进的对比盲去噪自编码器(Contrast Blind Denoising AutoEncoder,CBDAE)和TCN-Transformer网络,本文提出一种新型时间序列预测框架,称为MoCo-CBDAE-TCN-Transformer.该框架通过引入额外的动量编码器、动态队列和信息噪声对比估计正则化,增强了对时间序列数据动态特征的捕捉能力,并有效利用历史负样本信息.在无需噪声先验知识和传感器纯净数据的前提下,通过捕捉和对比时间相关性和噪声特征,实现传感器数据的盲去噪.去噪后的数据通过TCN-Transformer网络进行时间序列预测.TCN-Transformer网络结合残差连接和膨胀卷积的优势以及Transformer的注意力机制,显著提高了预测的准确性和效率.最后,在公开的四缸过程数据集上进行仿真验证,实验结果表明,与传统的去噪方法和时间序列预测模型相比,本文设计的模型能够获得更好的去噪效果和更高的预测精度,其实时处理能力适合部署在实际的工业环境中,为工业物联网中的数据处理和分析提供了一种有效的技术方案. 展开更多
关键词 去噪自编码器 动量编码器 动态队列 信息噪声对比估计 时间卷积网络 TRANSFORMER
在线阅读 下载PDF
基于SRGAN-DAE的室内定位指纹生成
8
作者 吕博 周蓉 +1 位作者 张甜愉 浦梦杨 《电子测量技术》 北大核心 2025年第3期154-160,共7页
基于WiFi指纹数据库的室内定位技术因其高精度和易于部署的特点而备受关注,而离线指纹数据库的质量则是决定定位精度的关键因素。针对离线指纹数据库采集成本高的问题,提出了一种基于降噪自编码器超分辨率生成对抗网络的降噪指纹数据库... 基于WiFi指纹数据库的室内定位技术因其高精度和易于部署的特点而备受关注,而离线指纹数据库的质量则是决定定位精度的关键因素。针对离线指纹数据库采集成本高的问题,提出了一种基于降噪自编码器超分辨率生成对抗网络的降噪指纹数据库增强模型(FASRGAN-DAE)。该方法通过增强稀疏指纹数据库,提高定位精度。具体而言,首先将指纹数据映射为相应的指纹图像;接着,生成器网络在删除批量归一化层(BN层)的基础上改进感知损失函数,生成高分辨率指纹图像,并通过降噪自编码器的隐藏层和输出层,以提高生成图像的质量,同时在判别器网络中,删除BN层并采用卷积层的输出作为输入图像的真实性评分,利用均方差损失函数优化判别器网络,以增强对真实和生成图像的区分能力;最终,通过映射模块将指纹图像还原为指纹数据,实现指纹数据库的增强。通过在真实地下停车场环境中进行定位实验,与原始指纹数据库相比,FASRGAN-DAE增强数据后将平均定位误差降低了5.69%。 展开更多
关键词 室内定位 超分辨率生成对抗网络 降噪自编码器 指纹数据库 数据增强
原文传递
基于SDAE-DCPInformer的电动汽车电池SOC和SOH估算方法
9
作者 彭自然 王顺豪 肖伸平 《智能系统学报》 北大核心 2025年第4期969-983,共15页
针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)... 针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)清洗电压、电流和温度数据中的异常数据和空缺数据,减小对估算精度的影响。引入动态通道剪枝(dynamical channel pruning,DCP)技术对Informer模型进行稀疏化处理,提高剪枝后模型的性能和稳定性。将清洗过的数据输入DCPInformer模型实现SOC和SOH的精确估计。实验结果表明,所提出的SDAE-DCPInformer模型估计SOC的平均绝对误差和均方根误差分别达到0.25%和0.38%,估计SOH的平均绝对误差和均方根误差分别达到了0.51%和0.64%。与传统Transformer等模型相比,所提模型预测SOC和SOH的速度更快,估算准确度有效提升,拥有的更好稳定性和泛化性。 展开更多
关键词 电动汽车 动力电池 荷电状态 健康状态 堆叠降噪自编码器 数据清洗 动态通道剪枝 改进Informer
在线阅读 下载PDF
基于Bi-GRUA-SDAE模型的工业过程故障诊断
10
作者 田文斌 廖光忠 《计算机与数字工程》 2025年第5期1338-1344,共7页
针对现有的故障诊断方法存在特征提取不充分、重构能力弱以及可靠性差等问题,论文提出了一种基于Bi-GRU改进自编码器(Bi-GRUA-SDAE)模型的故障诊断算法。首先,将Bi-GRU网络结构融入到SDAE中,以结合Bi-GRU同时处理双向顺序信息的优势,使S... 针对现有的故障诊断方法存在特征提取不充分、重构能力弱以及可靠性差等问题,论文提出了一种基于Bi-GRU改进自编码器(Bi-GRUA-SDAE)模型的故障诊断算法。首先,将Bi-GRU网络结构融入到SDAE中,以结合Bi-GRU同时处理双向顺序信息的优势,使SDAE能够充分利用时序信息,学习原始数据的更深层特征;然后,引入注意力机制,对所提取特征进行权重计算,有效选择关键特征,提高特征重构能力,从而提升整个模型的性能;最后,将数据预处理后进行模型训练,学习分析正常数据集的高维复杂情况,并通过统计量计算阈值,将结果与测试数据计算得出的统计量进行对比完成故障诊断。实验结果表明,较传统方法相比故障诊断的准确率更高、可靠性更强。 展开更多
关键词 故障诊断 门控循环单元 堆叠式降噪自编码器 注意力机制
在线阅读 下载PDF
基于PO-SSDAE算法的XLPE电缆局部放电模式识别
11
作者 卢姝婷 方程 程江洲 《自动化与仪表》 2025年第7期80-86,共7页
随着电力系统发展,电缆的绝缘老化问题日益突出,局部放电的检测与模式识别成为保障电力设备稳定运行的关键技术。传统方法在复杂噪声和多样化放电模式下精度较低。为此,研究提出了一种基于美洲狮优化算法的堆叠稀疏降噪自编码网络(puma ... 随着电力系统发展,电缆的绝缘老化问题日益突出,局部放电的检测与模式识别成为保障电力设备稳定运行的关键技术。传统方法在复杂噪声和多样化放电模式下精度较低。为此,研究提出了一种基于美洲狮优化算法的堆叠稀疏降噪自编码网络(puma optimizar algorithm-stack sparse denoising auto-encoder,PO-SSDAE)放电识别方法,通过优化SSDAE的超参数,提高了复杂信号噪声条件下的识别精度。实验采集XLPE电缆放电信号,提取时域与频域特征,并使用PO-SSDAE进行训练与优化。与其他6种方法对比,PO-SSDAE在准确率和鲁棒性方面具有显著优势,分类精度提高了15%以上,验证了其在局部放电模式识别中的应用潜力。 展开更多
关键词 XLPE电缆 局部放电 美洲狮优化算法 堆叠稀疏降噪自编码网络
在线阅读 下载PDF
AESR3D:3D overcomplete autoencoder for trabecular computed tomography super resolution
12
作者 Shuwei Zhang Yefeng Liang +3 位作者 Xingyu Li Shibo Li Xiaofeng Xiong Lihai Zhang 《CAAI Transactions on Intelligence Technology》 2025年第3期652-665,共14页
Osteoporosis is a major cause of bone fracture and can be characterised by both mass loss and microstructure deterioration of the bone.The modern way of osteoporosis assessment is through the measurement of bone miner... Osteoporosis is a major cause of bone fracture and can be characterised by both mass loss and microstructure deterioration of the bone.The modern way of osteoporosis assessment is through the measurement of bone mineral density,which is not able to unveil the pathological condition from the mesoscale aspect.To obtain mesoscale information from computed tomography(CT),the super-resolution(SR)approach for volumetric imaging data is required.A deep learning model AESR3D is proposed to recover high-resolution(HR)Micro-CT from low-resolution Micro-CT and implement an unsupervised segmentation for better trabecular observation and measurement.A new regularisation overcomplete autoencoder framework for the SR task is proposed and theoretically analysed.The best performance is achieved on structural similarity measure of trabecular CT SR task compared with the state-of-the-art models in both natural and medical image SR tasks.The HR and SR images show a high correlation(r=0.996,intraclass correlation coefficients=0.917)on trabecular bone morphological indicators.The results also prove the effectiveness of our regularisation framework when training a large capacity model. 展开更多
关键词 overcomplete autoencoder SEGMENTATION super resolution trabecular CT
在线阅读 下载PDF
Multimodal Gas Detection Using E-Nose and Thermal Images:An Approach Utilizing SRGAN and Sparse Autoencoder
13
作者 Pratik Jadhav Vuppala Adithya Sairam +5 位作者 Niranjan Bhojane Abhyuday Singh Shilpa Gite Biswajeet Pradhan Mrinal Bachute Abdullah Alamri 《Computers, Materials & Continua》 2025年第5期3493-3517,共25页
Electronic nose and thermal images are effective ways to diagnose the presence of gases in real-time realtime.Multimodal fusion of these modalities can result in the development of highly accurate diagnostic systems.T... Electronic nose and thermal images are effective ways to diagnose the presence of gases in real-time realtime.Multimodal fusion of these modalities can result in the development of highly accurate diagnostic systems.The low-cost thermal imaging software produces low-resolution thermal images in grayscale format,hence necessitating methods for improving the resolution and colorizing the images.The objective of this paper is to develop and train a super-resolution generative adversarial network for improving the resolution of the thermal images,followed by a sparse autoencoder for colorization of thermal images and amultimodal convolutional neural network for gas detection using electronic nose and thermal images.The dataset used comprises 6400 thermal images and electronic nose measurements for four classes.A multimodal Convolutional Neural Network(CNN)comprising an EfficientNetB2 pre-trainedmodel was developed using both early and late feature fusion.The Super Resolution Generative Adversarial Network(SRGAN)model was developed and trained on low and high-resolution thermal images.Asparse autoencoder was trained on the grayscale and colorized thermal images.The SRGAN was trained on lowand high-resolution thermal images,achieving a Structural Similarity Index(SSIM)of 90.28,a Peak Signal-to-Noise Ratio(PSNR)of 68.74,and a Mean Absolute Error(MAE)of 0.066.The autoencoder model produced an MAE of 0.035,a Mean Squared Error(MSE)of 0.006,and a Root Mean Squared Error(RMSE)of 0.0705.The multimodal CNN,trained on these images and electronic nose measurements using both early and late fusion techniques,achieved accuracies of 97.89% and 98.55%,respectively.Hence,the proposed framework can be of great aid for the integration with low-cost software to generate high quality thermal camera images and highly accurate detection of gases in real-time. 展开更多
关键词 Thermal imaging gas detection multimodal learning generative models autoencoders
在线阅读 下载PDF
ALSTNet:Autoencoder fused long-and short-term time-series network for the prediction of tunnel structure
14
作者 Bowen Du Haohan Liang +3 位作者 Yuhang Wang Junchen Ye Xuyan Tan Weizhong Chen 《Deep Underground Science and Engineering》 2025年第1期72-82,共11页
It is crucial to predict future mechanical behaviors for the prevention of structural disasters.Especially for underground construction,the structural mechanical behaviors are affected by multiple internal and externa... It is crucial to predict future mechanical behaviors for the prevention of structural disasters.Especially for underground construction,the structural mechanical behaviors are affected by multiple internal and external factors due to the complex conditions.Given that the existing models fail to take into account all the factors and accurate prediction of the multiple time series simultaneously is difficult using these models,this study proposed an improved prediction model through the autoencoder fused long-and short-term time-series network driven by the mass number of monitoring data.Then,the proposed model was formalized on multiple time series of strain monitoring data.Also,the discussion analysis with a classical baseline and an ablation experiment was conducted to verify the effectiveness of the prediction model.As the results indicate,the proposed model shows obvious superiority in predicting the future mechanical behaviors of structures.As a case study,the presented model was applied to the Nanjing Dinghuaimen tunnel to predict the stain variation on a different time scale in the future. 展开更多
关键词 autoencoder deep learning structural health monitoring time-series prediction
原文传递
Adapting Convolutional Autoencoder for DDoS Attack Detection via Joint Reconstruction Learning and Refined Anomaly Scoring
15
作者 Seulki Han Sangho Son +1 位作者 Won Sakong Haemin Jung 《Computers, Materials & Continua》 2025年第11期2893-2912,共20页
As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic... As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic.Although unsupervised anomaly detection using convolutional autoencoders(CAEs)has gained attention for its ability to model normal network behavior without requiring labeled data,conventional CAEs struggle to effectively distinguish between normal and attack traffic due to over-generalized reconstructions and naive anomaly scoring.To address these limitations,we propose CA-CAE,a novel anomaly detection framework designed to improve DDoS detection through asymmetric joint reconstruction learning and refined anomaly scoring.Our architecture connects two CAEs sequentially with asymmetric filter allocation,which amplifies reconstruction errors for anomalous data while preserving low errors for normal traffic.Additionally,we introduce a scoring mechanism that incorporates exponential decay weighting to emphasize recent anomalies and relative traffic volume adjustment to highlight highrisk instances,enabling more accurate and timely detection.We evaluate CA-CAE on a real-world network traffic dataset collected using Cisco NetFlow,containing over 190,000 normal instances and only 78 anomalous instances—an extremely imbalanced scenario(0.0004% anomalies).We validate the proposed framework through extensive experiments,including statistical tests and comparisons with baseline models.Despite this challenge,our method achieves significant improvement,increasing the F1-score from 0.515 obtained by the baseline CAE to 0.934,and outperforming other models.These results demonstrate the effectiveness,scalability,and practicality of CA-CAE for unsupervised DDoS detection in realistic network environments.By combining lightweight model architecture with a domain-aware scoring strategy,our framework provides a robust solution for early detection of DDoS attacks without relying on labeled attack data. 展开更多
关键词 Anomaly detection DDoS attack detection convolutional autoencoder
在线阅读 下载PDF
A two-stage method with twin autoencoders for the degradation trajectories prediction of lithium-ion batteries
16
作者 Lei Cai Jing Yan +5 位作者 Haiyan Jin Jinhao Meng Jichang Peng Bin Wang Wei Liang Remus Teodorescu 《Journal of Energy Chemistry》 2025年第4期759-772,共14页
To predict the lithium-ion(Li-ion)battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great importance.However,under different operation conditions,Li-io... To predict the lithium-ion(Li-ion)battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great importance.However,under different operation conditions,Li-ion batteries present distinct degradation patterns,and it is challenging to capture negligible capacity fade in early cycles.Despite the data-driven method showing promising performance,insufficient data is still a big issue since the ageing experiments on the batteries are too slow and expensive.In this study,we proposed twin autoencoders integrated into a two-stage method to predict the early cycles'degradation trajectories.The two-stage method can properly predict the degradation from course to fine.The twin autoencoders serve as a feature extractor and a synthetic data generator,respectively.Ultimately,a learning procedure based on the long-short term memory(LSTM)network is designed to hybridize the learning process between the real and synthetic data.The performance of the proposed method is verified on three datasets,and the experimental results show that the proposed method can achieve accurate predictions compared to its competitors. 展开更多
关键词 Battery degradation trajectory Early prediction autoencoder Synthetic data generation
在线阅读 下载PDF
A Hybrid Wasserstein GAN and Autoencoder Model for Robust Intrusion Detection in IoT
17
作者 Mohammed S.Alshehri Oumaima Saidani +4 位作者 Wajdan Al Malwi Fatima Asiri Shahid Latif Aizaz Ahmad Khattak Jawad Ahmad 《Computer Modeling in Engineering & Sciences》 2025年第6期3899-3920,共22页
The emergence of Generative Adversarial Network(GAN)techniques has garnered significant attention from the research community for the development of Intrusion Detection Systems(IDS).However,conventional GAN-based IDS ... The emergence of Generative Adversarial Network(GAN)techniques has garnered significant attention from the research community for the development of Intrusion Detection Systems(IDS).However,conventional GAN-based IDS models face several challenges,including training instability,high computational costs,and system failures.To address these limitations,we propose a Hybrid Wasserstein GAN and Autoencoder Model(WGAN-AE)for intrusion detection.The proposed framework leverages the stability of WGAN and the feature extraction capabilities of the Autoencoder Model.The model was trained and evaluated using two recent benchmark datasets,5GNIDD and IDSIoT2024.When trained on the 5GNIDD dataset,the model achieved an average area under the precisionrecall curve is 99.8%using five-fold cross-validation and demonstrated a high detection accuracy of 97.35%when tested on independent test data.Additionally,the model is well-suited for deployment on resource-limited Internetof-Things(IoT)devices due to its ability to detect attacks within microseconds and its small memory footprint of 60.24 kB.Similarly,when trained on the IDSIoT2024 dataset,the model achieved an average PR-AUC of 94.09%and an attack detection accuracy of 97.35%on independent test data,with a memory requirement of 61.84 kB.Extensive simulation results demonstrate that the proposed hybrid model effectively addresses the shortcomings of traditional GAN-based IDS approaches in terms of detection accuracy,computational efficiency,and applicability to real-world IoT environments. 展开更多
关键词 autoencoder CYBERSECURITY generative adversarial network Internet of Things intrusion detection system
在线阅读 下载PDF
Dynamic behavior recognition in aerial deployment of multi-segmented foldable-wing drones using variational autoencoders
18
作者 Yilin DOU Zhou ZHOU Rui WANG 《Chinese Journal of Aeronautics》 2025年第6期143-165,共23页
The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,wi... The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,with applications such as the gravity-only aerial deployment of high-aspect-ratio solar-powered UAVs,and aerial takeoff of fixed-wing drones in Mars research.However,the significant morphological changes during deployment are accompanied by strong nonlinear dynamic aerodynamic forces,which result in multiple degrees of freedom and an unstable character.This hinders the description and analysis of unknown dynamic behaviors,further leading to difficulties in the design of deployment strategies and flight control.To address this issue,this paper proposes an analysis method for dynamic behaviors during aerial deployment based on the Variational Autoencoder(VAE).Focusing on the gravity-only deployment problem of highaspect-ratio foldable-wing UAVs,the method encodes the multi-degree-of-freedom unstable motion signals into a low-dimensional feature space through a data-driven approach.By clustering in the feature space,this paper identifies and studies several dynamic behaviors during aerial deployment.The research presented in this paper offers a new method and perspective for feature extraction and analysis of complex and difficult-to-describe extreme flight dynamics,guiding the research on aerial deployment drones design and control strategies. 展开更多
关键词 Dynamic behavior recognition Aerial deployment technology Variational autoencoder Pattern recognition Multi-rigid-bodydynamics
原文传递
Multi-scale feature fused stacked autoencoder and its application for soft sensor modeling
19
作者 Zhi Li Yuchong Xia +2 位作者 Jian Long Chensheng Liu Longfei Zhang 《Chinese Journal of Chemical Engineering》 2025年第5期241-254,共14页
Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE... Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE)has been widely used to improve the model accuracy of soft sensors.However,with the increase of network layers,SAE may encounter serious information loss issues,which affect the modeling performance of soft sensors.Besides,there are typically very few labeled samples in the data set,which brings challenges to traditional neural networks to solve.In this paper,a multi-scale feature fused stacked autoencoder(MFF-SAE)is suggested for feature representation related to hierarchical output,where stacked autoencoder,mutual information(MI)and multi-scale feature fusion(MFF)strategies are integrated.Based on correlation analysis between output and input variables,critical hidden variables are extracted from the original variables in each autoencoder's input layer,which are correspondingly given varying weights.Besides,an integration strategy based on multi-scale feature fusion is adopted to mitigate the impact of information loss with the deepening of the network layers.Then,the MFF-SAE method is designed and stacked to form deep networks.Two practical industrial processes are utilized to evaluate the performance of MFF-SAE.Results from simulations indicate that in comparison to other cutting-edge techniques,the proposed method may considerably enhance the accuracy of soft sensor modeling,where the suggested method reduces the root mean square error(RMSE)by 71.8%,17.1%and 64.7%,15.1%,respectively. 展开更多
关键词 Multi-scale feature fusion Soft sensors Stacked autoencoders Computational chemistry Chemical processes Parameter estimation
在线阅读 下载PDF
Spatially Constrained Variational Autoencoder for Geochemical Data Denoising and Uncertainty Quantification
20
作者 Dazheng Huang Renguang Zuo +1 位作者 Jian Wang Raimon Tolosana-Delgado 《Journal of Earth Science》 2025年第5期2317-2336,共20页
Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying... Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains. 展开更多
关键词 geochemical data denoising spatially constrained variational autoencoder GEOSTATISTICS bayesian optimization uncertainty analysis GEOCHEMISTRY
原文传递
上一页 1 2 119 下一页 到第
使用帮助 返回顶部