Disturbances such as forest fires,intense winds,and insect damage exert strong impacts on forest ecosystems by shaping their structure and growth dynamics,with contributions from climate change.Consequently,there is a...Disturbances such as forest fires,intense winds,and insect damage exert strong impacts on forest ecosystems by shaping their structure and growth dynamics,with contributions from climate change.Consequently,there is a need for reliable and operational methods to monitor and map these disturbances for the development of suitable management strategies.While susceptibility assessment using machine learning methods has increased,most studies have focused on a single disturbance.Moreover,there has been limited exploration of the use of“Automated Machine Learning(AutoML)”in the literature.In this study,susceptibility assessment for multiple forest disturbances(fires,insect damage,and wind damage)was conducted using the PyCaret AutoML framework in the Izmir Regional Forest Directorate(RFD)in Turkey.The AutoML framework compared 14 machine learning algorithms and ranked the best models based on AUC(area under the curve)values.The extra tree classifier(ET)algorithm was selected for modeling the susceptibility of each disturbance due to its good performance(AUC values>0.98).The study evaluated susceptibilities for both individual and multiple disturbances,creating a total of four susceptibility maps using fifteen driving factors in the assessment.According to the results,82.5%of forested areas in the Izmir RFD are susceptible to multiple disturbances at high and very high levels.Additionally,a potential forest disturbances map was created,revealing that 15.6%of forested areas in the Izmir RFD may experience no damage from the disturbances considered,while 54.2%could face damage from all three disturbances.The SHAP(Shapley Additive exPlanations)methodology was applied to evaluate the importance of features on prediction and the nonlinear relationship between explanatory features and susceptibility to disturbance.展开更多
The aims of this study were threefold:1)study the research gap in carpark and price index via big data and natural language processing,2)examine the research gap of carpark indices,and 3)construct carpark price indice...The aims of this study were threefold:1)study the research gap in carpark and price index via big data and natural language processing,2)examine the research gap of carpark indices,and 3)construct carpark price indices via repeat sales methods and predict carpark indices via the AutoML.By researching the keyword“carpark”in Google Scholar,the largest electronic academic database that coversWeb of Science and Scopus indexed articles,this study obtained 999 articles and book chapters from 1910 to 2019.It confirmed that most carpark research threw light on multi-storey carparks,management and ventilation systems,and reinforced concrete carparks.The most common research method was case studies.Regarding price index research,many previous studies focused on consumer,stock,press and futures,with many keywords being related to finance and economics.These indicated that there is no research predicting carpark price indices based on an AutoML approach.This study constructed repeat sales indices for 18 districts in Hong Kong by using 34,562 carpark transaction records from December 2009 to June 2019.Wanchai’s carpark price was about four times that of Yuen Long’s carpark price,indicating the considerable carpark price differences inHong Kong.This research evidenced the features that affected the carpark price indices models most:gold price ranked the first in all 19 models;oil price or Link stock price ranked second depending on the district,and carpark affordability ranked third.展开更多
Current successes in artificial intelligence domain have revitalized interest in spacecraft pursuit-evasion game,which is an interception problem with a non-cooperative maneuvering target.The paper presents an automat...Current successes in artificial intelligence domain have revitalized interest in spacecraft pursuit-evasion game,which is an interception problem with a non-cooperative maneuvering target.The paper presents an automated machine learning(AutoML)based method to generate optimal trajectories in long-distance scenarios.Compared with conventional deep neural network(DNN)methods,the proposed method dramatically reduces the reliance on manual intervention and machine learning expertise.Firstly,based on differential game theory and costate normalization technique,the trajectory optimization problem is formulated under the assumption of continuous thrust.Secondly,the AutoML technique based on sequential model-based optimization(SMBO)framework is introduced to automate DNN design in deep learning process.If recommended DNN architecture exists,the tree-structured Parzen estimator(TPE)is used,otherwise the efficient neural architecture search(NAS)with network morphism is used.Thus,a novel trajectory optimization method with high computational efficiency is achieved.Finally,numerical results demonstrate the feasibility and efficiency of the proposed method.展开更多
AutoML(Automated Machine Learning)is an emerging field that aims to automate the process of building machine learning models.AutoML emerged to increase productivity and efficiency by automating as much as possible the...AutoML(Automated Machine Learning)is an emerging field that aims to automate the process of building machine learning models.AutoML emerged to increase productivity and efficiency by automating as much as possible the inefficient work that occurs while repeating this process whenever machine learning is applied.In particular,research has been conducted for a long time on technologies that can effectively develop high-quality models by minimizing the intervention of model developers in the process from data preprocessing to algorithm selection and tuning.In this semantic review research,we summarize the data processing requirements for AutoML approaches and provide a detailed explanation.We place greater emphasis on neural architecture search(NAS)as it currently represents a highly popular sub-topic within the field of AutoML.NAS methods use machine learning algorithms to search through a large space of possible architectures and find the one that performs best on a given task.We provide a summary of the performance achieved by representative NAS algorithms on the CIFAR-10,CIFAR-100,ImageNet and wellknown benchmark datasets.Additionally,we delve into several noteworthy research directions in NAS methods including one/two-stage NAS,one-shot NAS and joint hyperparameter with architecture optimization.We discussed how the search space size and complexity in NAS can vary depending on the specific problem being addressed.To conclude,we examine several open problems(SOTA problems)within current AutoML methods that assure further investigation in future research.展开更多
Objective To develop and evaluate an automated system for digitizing audiograms,classifying hearing loss levels,and comparing their performance with traditional methods and otolaryngologists'interpretations.Design...Objective To develop and evaluate an automated system for digitizing audiograms,classifying hearing loss levels,and comparing their performance with traditional methods and otolaryngologists'interpretations.Designed and Methods We conducted a retrospective diagnostic study using 1,959 audiogram images from patients aged 7 years and older at the Faculty of Medicine,Vajira Hospital,Navamindradhiraj University.We employed an object detection approach to digitize audiograms and developed multiple machine learning models to classify six hearing loss levels.The dataset was split into 70%training(1,407 images)and 30%testing(352 images)sets.We compared our model's performance with classifications based on manually extracted audiogram values and otolaryngologists'interpretations.Result Our object detection-based model achieved an F1-score of 94.72%in classifying hearing loss levels,comparable to the 96.43%F1-score obtained using manually extracted values.The Light Gradient Boosting Machine(LGBM)model is used as the classifier for the manually extracted data,which achieved top performance with 94.72%accuracy,94.72%f1-score,94.72 recall,and 94.72 precision.In object detection based model,The Random Forest Classifier(RFC)model showed the highest 96.43%accuracy in predicting hearing loss level,with a F1-score of 96.43%,recall of 96.43%,and precision of 96.45%.Conclusion Our proposed automated approach for audiogram digitization and hearing loss classification performs comparably to traditional methods and otolaryngologists'interpretations.This system can potentially assist otolaryngologists in providing more timely and effective treatment by quickly and accurately classifying hearing loss.展开更多
文摘Disturbances such as forest fires,intense winds,and insect damage exert strong impacts on forest ecosystems by shaping their structure and growth dynamics,with contributions from climate change.Consequently,there is a need for reliable and operational methods to monitor and map these disturbances for the development of suitable management strategies.While susceptibility assessment using machine learning methods has increased,most studies have focused on a single disturbance.Moreover,there has been limited exploration of the use of“Automated Machine Learning(AutoML)”in the literature.In this study,susceptibility assessment for multiple forest disturbances(fires,insect damage,and wind damage)was conducted using the PyCaret AutoML framework in the Izmir Regional Forest Directorate(RFD)in Turkey.The AutoML framework compared 14 machine learning algorithms and ranked the best models based on AUC(area under the curve)values.The extra tree classifier(ET)algorithm was selected for modeling the susceptibility of each disturbance due to its good performance(AUC values>0.98).The study evaluated susceptibilities for both individual and multiple disturbances,creating a total of four susceptibility maps using fifteen driving factors in the assessment.According to the results,82.5%of forested areas in the Izmir RFD are susceptible to multiple disturbances at high and very high levels.Additionally,a potential forest disturbances map was created,revealing that 15.6%of forested areas in the Izmir RFD may experience no damage from the disturbances considered,while 54.2%could face damage from all three disturbances.The SHAP(Shapley Additive exPlanations)methodology was applied to evaluate the importance of features on prediction and the nonlinear relationship between explanatory features and susceptibility to disturbance.
文摘The aims of this study were threefold:1)study the research gap in carpark and price index via big data and natural language processing,2)examine the research gap of carpark indices,and 3)construct carpark price indices via repeat sales methods and predict carpark indices via the AutoML.By researching the keyword“carpark”in Google Scholar,the largest electronic academic database that coversWeb of Science and Scopus indexed articles,this study obtained 999 articles and book chapters from 1910 to 2019.It confirmed that most carpark research threw light on multi-storey carparks,management and ventilation systems,and reinforced concrete carparks.The most common research method was case studies.Regarding price index research,many previous studies focused on consumer,stock,press and futures,with many keywords being related to finance and economics.These indicated that there is no research predicting carpark price indices based on an AutoML approach.This study constructed repeat sales indices for 18 districts in Hong Kong by using 34,562 carpark transaction records from December 2009 to June 2019.Wanchai’s carpark price was about four times that of Yuen Long’s carpark price,indicating the considerable carpark price differences inHong Kong.This research evidenced the features that affected the carpark price indices models most:gold price ranked the first in all 19 models;oil price or Link stock price ranked second depending on the district,and carpark affordability ranked third.
基金supported by the National Defense Science and Technology Innovation program(18-163-15-LZ-001-004-13).
文摘Current successes in artificial intelligence domain have revitalized interest in spacecraft pursuit-evasion game,which is an interception problem with a non-cooperative maneuvering target.The paper presents an automated machine learning(AutoML)based method to generate optimal trajectories in long-distance scenarios.Compared with conventional deep neural network(DNN)methods,the proposed method dramatically reduces the reliance on manual intervention and machine learning expertise.Firstly,based on differential game theory and costate normalization technique,the trajectory optimization problem is formulated under the assumption of continuous thrust.Secondly,the AutoML technique based on sequential model-based optimization(SMBO)framework is introduced to automate DNN design in deep learning process.If recommended DNN architecture exists,the tree-structured Parzen estimator(TPE)is used,otherwise the efficient neural architecture search(NAS)with network morphism is used.Thus,a novel trajectory optimization method with high computational efficiency is achieved.Finally,numerical results demonstrate the feasibility and efficiency of the proposed method.
文摘AutoML(Automated Machine Learning)is an emerging field that aims to automate the process of building machine learning models.AutoML emerged to increase productivity and efficiency by automating as much as possible the inefficient work that occurs while repeating this process whenever machine learning is applied.In particular,research has been conducted for a long time on technologies that can effectively develop high-quality models by minimizing the intervention of model developers in the process from data preprocessing to algorithm selection and tuning.In this semantic review research,we summarize the data processing requirements for AutoML approaches and provide a detailed explanation.We place greater emphasis on neural architecture search(NAS)as it currently represents a highly popular sub-topic within the field of AutoML.NAS methods use machine learning algorithms to search through a large space of possible architectures and find the one that performs best on a given task.We provide a summary of the performance achieved by representative NAS algorithms on the CIFAR-10,CIFAR-100,ImageNet and wellknown benchmark datasets.Additionally,we delve into several noteworthy research directions in NAS methods including one/two-stage NAS,one-shot NAS and joint hyperparameter with architecture optimization.We discussed how the search space size and complexity in NAS can vary depending on the specific problem being addressed.To conclude,we examine several open problems(SOTA problems)within current AutoML methods that assure further investigation in future research.
文摘Objective To develop and evaluate an automated system for digitizing audiograms,classifying hearing loss levels,and comparing their performance with traditional methods and otolaryngologists'interpretations.Designed and Methods We conducted a retrospective diagnostic study using 1,959 audiogram images from patients aged 7 years and older at the Faculty of Medicine,Vajira Hospital,Navamindradhiraj University.We employed an object detection approach to digitize audiograms and developed multiple machine learning models to classify six hearing loss levels.The dataset was split into 70%training(1,407 images)and 30%testing(352 images)sets.We compared our model's performance with classifications based on manually extracted audiogram values and otolaryngologists'interpretations.Result Our object detection-based model achieved an F1-score of 94.72%in classifying hearing loss levels,comparable to the 96.43%F1-score obtained using manually extracted values.The Light Gradient Boosting Machine(LGBM)model is used as the classifier for the manually extracted data,which achieved top performance with 94.72%accuracy,94.72%f1-score,94.72 recall,and 94.72 precision.In object detection based model,The Random Forest Classifier(RFC)model showed the highest 96.43%accuracy in predicting hearing loss level,with a F1-score of 96.43%,recall of 96.43%,and precision of 96.45%.Conclusion Our proposed automated approach for audiogram digitization and hearing loss classification performs comparably to traditional methods and otolaryngologists'interpretations.This system can potentially assist otolaryngologists in providing more timely and effective treatment by quickly and accurately classifying hearing loss.