期刊文献+
共找到3,116篇文章
< 1 2 156 >
每页显示 20 50 100
Encoding converters for quantum communication networks
1
作者 Hua-Xing Xu Shao-Hua Wang +2 位作者 Ya-Qi Song Ping Zhang Chang-Lei Wang 《Chinese Physics B》 2025年第5期64-69,共6页
Quantum communication networks,such as quantum key distribution(QKD)networks,typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding ... Quantum communication networks,such as quantum key distribution(QKD)networks,typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding types.To achieve direct communication between the devices with different quantum encoding types,in this paper,we propose encoding conversion schemes between the polarization bases(rectilinear,diagonal and circular bases)and the time-bin phase bases(two phase bases and time-bin basis)and design the quantum encoding converters.The theoretical analysis of the encoding conversion schemes is given in detail,and the basis correspondence of encoding conversion and the property of bit flip are revealed.The conversion relationship between polarization bases and time-bin phase bases can be easily selected by controlling a phase shifter.Since no optical switches are used in our scheme,the converter can be operated with high speed.The converters can also be modularized,which may be utilized to realize miniaturization in the future. 展开更多
关键词 quantum communication networks encoding conversion polarization encoding time-bin phase encoding
原文传递
An Auto Encoder-Enhanced Stacked Ensemble for Intrusion Detection in Healthcare Networks
2
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Mohammed K.Alzaylaee Syed Umar Amin Zafar Iqbal Khan 《Computers, Materials & Continua》 2025年第11期3457-3484,共28页
Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the st... Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the study is a stacked ensemble of encoder-enhanced auctions that can be used to improve intrusion detection in healthcare networks.TheWUSTL-EHMS 2020 dataset trains and evaluates themodel,constituting an imbalanced class distribution(87.46% normal traffic and 12.53% intrusion attacks).To address this imbalance,the study balances the effect of training Bias through Stratified K-fold cross-validation(K=5),so that each class is represented similarly on training and validation splits.Second,the Auto-Stack ID method combines many base classifiers such as TabNet,LightGBM,Gaussian Naive Bayes,Histogram-Based Gradient Boosting(HGB),and Logistic Regression.We apply a two-stage training process based on the first stage,where we have base classifiers that predict out-of-fold(OOF)predictions,which we use as inputs for the second-stage meta-learner XGBoost.The meta-learner learns to refine predictions to capture complicated interactions between base models,thus improving detection accuracy without introducing bias,overfitting,or requiring domain knowledge of the meta-data.In addition,the auto-stack ID model got 98.41% accuracy and 93.45%F1 score,better than individual classifiers.It can identify intrusions due to its 90.55% recall and 96.53% precision with minimal false positives.These findings identify its suitability in ensuring healthcare networks’security through ensemble learning.Ongoing efforts will be deployed in real time to improve response to evolving threats. 展开更多
关键词 Intrusion detection auto encoder stacked ensemble WUSTL-EHMS 2020 dataset class imbalance XGBoost
在线阅读 下载PDF
MMIF:Multimodal Medical Image Fusion Network Based on Multi-Scale Hybrid Attention
3
作者 Jianjun Liu Yang Li +2 位作者 Xiaoting Sun Xiaohui Wang Hanjiang Luo 《Computers, Materials & Continua》 2025年第11期3551-3568,共18页
Multimodal image fusion plays an important role in image analysis and applications.Multimodal medical image fusion helps to combine contrast features from two or more input imaging modalities to represent fused inform... Multimodal image fusion plays an important role in image analysis and applications.Multimodal medical image fusion helps to combine contrast features from two or more input imaging modalities to represent fused information in a single image.One of the critical clinical applications of medical image fusion is to fuse anatomical and functional modalities for rapid diagnosis of malignant tissues.This paper proposes a multimodal medical image fusion network(MMIF-Net)based on multiscale hybrid attention.The method first decomposes the original image to obtain the low-rank and significant parts.Then,to utilize the features at different scales,we add amultiscalemechanism that uses three filters of different sizes to extract the features in the encoded network.Also,a hybrid attention module is introduced to obtain more image details.Finally,the fused images are reconstructed by decoding the network.We conducted experiments with clinical images from brain computed tomography/magnetic resonance.The experimental results show that the multimodal medical image fusion network method based on multiscale hybrid attention works better than other advanced fusion methods. 展开更多
关键词 Medical image fusion multiscale mechanism hybrid attention module encoded network
在线阅读 下载PDF
Ensemble Encoder-Based Attack Traffic Classification for Secure 5G Slicing Networks
4
作者 Min-Gyu Kim Hwankuk Kim 《Computer Modeling in Engineering & Sciences》 2025年第5期2391-2415,共25页
This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method u... This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks. 展开更多
关键词 5G slicing networks attack traffic classification ensemble encoders autoencoder AI-based security
在线阅读 下载PDF
Risk Index Prediction of Civil Aviation Based on Deep Neural Network 被引量:2
5
作者 NI Xiaomei WANG Huawei CHE Changchang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第2期313-319,共7页
Safety is the foundation of sustainable development in civil aviation.Although catastrophic accidents are rare,indicators of potential incidents and unsafe events frequently materialize.Therefore,a history of unsafe d... Safety is the foundation of sustainable development in civil aviation.Although catastrophic accidents are rare,indicators of potential incidents and unsafe events frequently materialize.Therefore,a history of unsafe data are considered in predicting safety risks.A deep learning method is adopted for extracting reactions in safety risks.The deep neural network(DNN)model for safety risk prediction is shown to extract complex data characteristics better than a shallow network model.Using extended unsafe data and monthly risk indices,hidden layers and iterations are determined.The effectiveness of DNN is also revealed in comparison with the traditional neural network.Through early risk detection using the method in the paper,airlines and the government can mitigate potential risk and take proactive measures to improve civil aviation safety. 展开更多
关键词 unsafe EVENTS risk INDEX NEURAL network DENOISING AUTO ENCODER
在线阅读 下载PDF
A genetic algorithm for community detection in complex networks 被引量:6
6
作者 李赟 刘钢 老松杨 《Journal of Central South University》 SCIE EI CAS 2013年第5期1269-1276,共8页
A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similar... A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similarity, which enhances the diversity of initial individuals while retaining an acceptable level of accuracy, and improves the efficiency of optimal solution search. Individual crossover is based on the quality of individuals' genes; all nodes unassigned to any community are grouped into a new community, while ambiguously placed nodes are assigned to the community to which most of their neighbors belong. Individual mutation, which splits a gene into two new genes or randomly fuses it into other genes, is non-uniform. The simplicity and effectiveness of the algorithm are revealed in experimental tests using artificial random networks and real networks. The accuracy of the algorithm is superior to that of some classic algorithms, and is comparable to that of some recent high-precision algorithms. 展开更多
关键词 complex networks community detection genetic algorithm matrix encoding nodes similarity
在线阅读 下载PDF
Attention-based spatio-temporal graph convolutional network considering external factors for multi-step traffic flow prediction 被引量:6
7
作者 Jihua Ye Shengjun Xue Aiwen Jiang 《Digital Communications and Networks》 SCIE CSCD 2022年第3期343-350,共8页
Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network... Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network. Since traffic flow data has complex spatio-temporal correlation and non-linearity, existing prediction methods are mainly accomplished through a combination of a Graph Convolutional Network (GCN) and a recurrent neural network. The combination strategy has an excellent performance in traffic prediction tasks. However, multi-step prediction error accumulates with the predicted step size. Some scholars use multiple sampling sequences to achieve more accurate prediction results. But it requires high hardware conditions and multiplied training time. Considering the spatiotemporal correlation of traffic flow and influence of external factors, we propose an Attention Based Spatio-Temporal Graph Convolutional Network considering External Factors (ABSTGCN-EF) for multi-step traffic flow prediction. This model models the traffic flow as diffusion on a digraph and extracts the spatial characteristics of traffic flow through GCN. We add meaningful time-slots attention to the encoder-decoder to form an Attention Encoder Network (AEN) to handle temporal correlation. The attention vector is used as a competitive choice to draw the correlation between predicted states and historical states. We considered the impact of three external factors (daytime, weekdays, and traffic accident markers) on the traffic flow prediction tasks. Experiments on two public data sets show that it makes sense to consider external factors. The prediction performance of our ABSTGCN-EF model achieves 7.2%–8.7% higher than the state-of-the-art baselines. 展开更多
关键词 Multi-step traffic flow prediction Graph convolutional network External factors Attentional encoder network Spatiotemporal correlation
在线阅读 下载PDF
Gait recognition based on Wasserstein generating adversarial image inpainting network 被引量:4
8
作者 XIA Li-min WANG Hao GUO Wei-ting 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2759-2770,共12页
Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion a... Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion area.In order to reduce the effect of noise on feature extraction,the stacked automatic encoder with robustness was used.In order to improve the ability of gait classification,the sparse coding was used to express and classify the gait features.Experiments results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA-B and TUM-GAID for gait recognition. 展开更多
关键词 gait recognition image inpainting generating adversarial network stacking automatic encoder
在线阅读 下载PDF
Bridge the Gap Between Full-Reference and No-Reference:A Totally Full-Reference Induced Blind Image Quality Assessment via Deep Neural Networks 被引量:2
9
作者 Xiaoyu Ma Suiyu Zhang +1 位作者 Chang Liu Dingguo Yu 《China Communications》 SCIE CSCD 2023年第6期215-228,共14页
Blind image quality assessment(BIQA)is of fundamental importance in low-level computer vision community.Increasing interest has been drawn in exploiting deep neural networks for BIQA.Despite of the notable success ach... Blind image quality assessment(BIQA)is of fundamental importance in low-level computer vision community.Increasing interest has been drawn in exploiting deep neural networks for BIQA.Despite of the notable success achieved,there is a broad consensus that training deep convolutional neural networks(DCNN)heavily relies on massive annotated data.Unfortunately,BIQA is typically a small sample problem,resulting the generalization ability of BIQA severely restricted.In order to improve the accuracy and generalization ability of BIQA metrics,this work proposed a totally opinion-unaware BIQA in which no subjective annotations are involved in the training stage.Multiple full-reference image quality assessment(FR-IQA)metrics are employed to label the distorted image as a substitution of subjective quality annotation.A deep neural network(DNN)is trained to blindly predict the multiple FR-IQA score in absence of corresponding pristine image.In the end,a selfsupervised FR-IQA score aggregator implemented by adversarial auto-encoder pools the predictions of multiple FR-IQA scores into the final quality predicting score.Even though none of subjective scores are involved in the training stage,experimental results indicate that our proposed full reference induced BIQA framework is as competitive as state-of-the-art BIQA metrics. 展开更多
关键词 deep neural networks image quality assessment adversarial auto encoder
在线阅读 下载PDF
Position Encoding Based Convolutional Neural Networks for Machine Remaining Useful Life Prediction 被引量:4
10
作者 Ruibing Jin Min Wu +3 位作者 Keyu Wu Kaizhou Gao Zhenghua Chen Xiaoli Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第8期1427-1439,共13页
Accurate remaining useful life(RUL)prediction is important in industrial systems.It prevents machines from working under failure conditions,and ensures that the industrial system works reliably and efficiently.Recentl... Accurate remaining useful life(RUL)prediction is important in industrial systems.It prevents machines from working under failure conditions,and ensures that the industrial system works reliably and efficiently.Recently,many deep learning based methods have been proposed to predict RUL.Among these methods,recurrent neural network(RNN)based approaches show a strong capability of capturing sequential information.This allows RNN based methods to perform better than convolutional neural network(CNN)based approaches on the RUL prediction task.In this paper,we question this common paradigm and argue that existing CNN based approaches are not designed according to the classic principles of CNN,which reduces their performances.Additionally,the capacity of capturing sequential information is highly affected by the receptive field of CNN,which is neglected by existing CNN based methods.To solve these problems,we propose a series of new CNNs,which show competitive results to RNN based methods.Compared with RNN,CNN processes the input signals in parallel so that the temporal sequence is not easily determined.To alleviate this issue,a position encoding scheme is developed to enhance the sequential information encoded by a CNN.Hence,our proposed position encoding based CNN called PE-Net is further improved and even performs better than RNN based methods.Extensive experiments are conducted on the C-MAPSS dataset,where our PE-Net shows state-of-the-art performance. 展开更多
关键词 Convolutional neural network(CNN) deep learning position encoding remaining useful life prediction
在线阅读 下载PDF
A compound objective reconfiguration of distribution networks using hierarchical encoded particle swarm optimization 被引量:3
11
作者 WEN Juan TAN Yang-hong +1 位作者 JIANG Lin XU Zu-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第3期600-615,共16页
With the development of automation in smart grids,network reconfiguration is becoming a feasible approach for improving the operation of distribution systems.A novel reconfiguration strategy was presented to get the o... With the development of automation in smart grids,network reconfiguration is becoming a feasible approach for improving the operation of distribution systems.A novel reconfiguration strategy was presented to get the optimal configuration of improving economy of the system,and then identifying the important nodes.In this strategy,the objectives increase the node importance degree and decrease the active power loss subjected to operational constraints.A compound objective function with weight coefficients is formulated to balance the conflict of the objectives.Then a novel quantum particle swarm optimization based on loop switches hierarchical encoded was employed to address the compound objective reconfiguration problem.Its main contribution is the presentation of the hierarchical encoded scheme which is used to generate the population swarm particles of representing only radial connected solutions.Because the candidate solutions are feasible,the search efficiency would improve dramatically during the optimization process without tedious topology verification.To validate the proposed strategy,simulations are carried out on the test systems.The results are compared with other techniques in order to evaluate the performance of the proposed method. 展开更多
关键词 distribution network reconfiguration node importance degree compound objective function hierarchical encoded
在线阅读 下载PDF
Improve Fractal Compression Encoding Speed Using Feature Extraction and Self-organization Network 被引量:1
12
作者 Berthe Kya, Yang Yang Information Engineering School. University of Science and Technology Beijing. Beijing 100083. China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第4期306-310,共5页
Image compression consists of two main parts: encoding and decoding. One of the important problems of the fractal theory is the long encoding implementation time, which hindered the acceptance of fractal image compres... Image compression consists of two main parts: encoding and decoding. One of the important problems of the fractal theory is the long encoding implementation time, which hindered the acceptance of fractal image compression as a practical method. The long encoding time results from the need to perform a large number of domain-range matches, the total encoding time is the product of the number of matches and the time to perform each match. In order to improve encoding speed, a hybrid method combining features extraction and self-organization network has been provided, which is based on the feature extraction approach the comparison pixels by pixels between the feature of range blocks and domains blocks. The efficiency of the new method was been proved by examples. 展开更多
关键词 image compression fractal theory features extraction self-organization network fractal encoding
在线阅读 下载PDF
Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis 被引量:1
13
作者 Qiankun Zuo Junhua Hu +5 位作者 Yudong Zhang Junren Pan Changhong Jing Xuhang Chen Xiaobo Meng Jin Hong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2129-2147,共19页
The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlat... The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders.However,it is challenging to access considerable amounts of brain functional network data,which hinders the widespread application of data-driven models in dementia diagnosis.In this study,a novel distribution-regularized adversarial graph auto-Encoder(DAGAE)with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset,improving the dementia diagnosis accuracy of data-driven models.Specifically,the label distribution is estimated to regularize the latent space learned by the graph encoder,which canmake the learning process stable and the learned representation robust.Also,the transformer generator is devised to map the node representations into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions.The typical topological properties and discriminative features can be preserved entirely.Furthermore,the generated brain functional networks improve the prediction performance using different classifiers,which can be applied to analyze other cognitive diseases.Attempts on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset demonstrate that the proposed model can generate good brain functional networks.The classification results show adding generated data can achieve the best accuracy value of 85.33%,sensitivity value of 84.00%,specificity value of 86.67%.The proposed model also achieves superior performance compared with other related augmentedmodels.Overall,the proposedmodel effectively improves cognitive disease diagnosis by generating diverse brain functional networks. 展开更多
关键词 Adversarial graph encoder label distribution generative transformer functional brain connectivity graph convolutional network DEMENTIA
在线阅读 下载PDF
Cluster DetectionMethod of Endogenous Security Abnormal Attack Behavior in Air Traffic Control Network 被引量:1
14
作者 Ruchun Jia Jianwei Zhang +2 位作者 Yi Lin Yunxiang Han Feike Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2523-2546,共24页
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f... In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network. 展开更多
关键词 Air traffic control network security attack behavior cluster detection behavioral characteristics information gain cluster threshold automatic encoder
在线阅读 下载PDF
Encoding-Decoding-Based Control and Filtering of Networked Systems: Insights, Developments and Opportunities 被引量:3
15
作者 Zidong Wang Licheng Wang +1 位作者 Shuai Liu Guoliang Wei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期3-18,共16页
In order to make the information transmission more efficient and reliable in a digital communication channel with limited capacity, various encoding-decoding techniques have been proposed and widely applied in many br... In order to make the information transmission more efficient and reliable in a digital communication channel with limited capacity, various encoding-decoding techniques have been proposed and widely applied in many branches of the signal processing including digital communications, data compression,information encryption, etc. Recently, due to its promising application potentials in the networked systems(NSs), the analysis and synthesis issues of the NSs under various encoding-decoding schemes have stirred some research attention. However, because of the network-enhanced complexity caused by the limited network resources, it poses new challenges to the design of suitable encoding-decoding procedures to meet certain control or filtering performance for the NSs. In this survey paper, our aim is to present a comprehensive review of the encoding-decodingbased control and filtering problems for different types of NSs.First, some basic introduction with respect to the coding-decoding mechanism is presented in terms of its engineering insights,specific properties and theoretical formulations. Then, the recent representative research progress in the design of the encodingdecoding protocols for various control and filtering problems is discussed. Some possible further research topics are finally outlined for the encoding-decoding-based NSs. 展开更多
关键词 Encoding-decoding-based communication mechanism encoding-decoding-based control encoding-decodingbased state estimation networked systems
在线阅读 下载PDF
A Hybrid Time-delay Prediction Method for Networked Control System 被引量:8
16
作者 Zhong-Da Tian Xian-Wen Gao Kun Li 《International Journal of Automation and computing》 EI CSCD 2014年第1期19-24,共6页
This paper presents an Ethernet based hybrid method for predicting random time-delay in the networked control system.First,db3 wavelet is used to decompose and reconstruct time-delay sequence,and the approximation com... This paper presents an Ethernet based hybrid method for predicting random time-delay in the networked control system.First,db3 wavelet is used to decompose and reconstruct time-delay sequence,and the approximation component and detail components of time-delay sequences are fgured out.Next,one step prediction of time-delay is obtained through echo state network(ESN)model and auto-regressive integrated moving average model(ARIMA)according to the diferent characteristics of approximate component and detail components.Then,the fnal predictive value of time-delay is obtained by summation.Meanwhile,the parameters of echo state network is optimized by genetic algorithm.The simulation results indicate that higher accuracy can be achieved through this prediction method. 展开更多
关键词 networked control system wavelet transform auto-regressive integrated moving average model echo state network genetic algorithm time-delay prediction
原文传递
Application of Improved Deep Auto-Encoder Network in Rolling Bearing Fault Diagnosis 被引量:1
17
作者 Jian Di Leilei Wang 《Journal of Computer and Communications》 2018年第7期41-53,共13页
Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive... Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive Particle Swarm Optimization (CAPSO) was proposed. On the basis of analyzing CAPSO and DAEN, the CAPSO-DAEN fault diagnosis model is built. The model uses the randomness and stability of CAPSO algorithm to optimize the connection weight of DAEN, to reduce the constraints on the weights and extract fault features adaptively. Finally, efficient and accurate fault diagnosis can be implemented with the Softmax classifier. The results of test show that the proposed method has higher diagnostic accuracy and more stable diagnosis results than those based on the DAEN, Support Vector Machine (SVM) and the Back Propagation algorithm (BP) under appropriate parameters. 展开更多
关键词 Fault Diagnosis ROLLING BEARING Deep Auto-Encoder network CAPSO Algorithm Feature Extraction
暂未订购
Application of artificial neural networks in optimal tuning of tuned mass dampers implemented in high-rise buildings subjected to wind load 被引量:9
18
作者 Meysam Ramezani Akbar Bathaei Amir K.Ghorbani-Tanha 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期903-915,共13页
High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an ef... High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building. 展开更多
关键词 artificial neural networks tuned mass damper wind load auto-regressive model optimal frequency anddamping
在线阅读 下载PDF
M/S Controller Area Network(CAN) System Using Shared-Clock Scheduler
19
作者 LIU Jianxin1,TAN Ping2,LIU Yu1 (1.School of Mechanical Engineering & Automation,Xihua University,Chengdu 610039,China 2.School of Mathematical & Computer Science,Xihua University,ChengDu 610039,China) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S1期284-288,共5页
The Controller Area Network (CAN) is a well established control network for automotive and automation control applications. Time-Triggered Controller Area Network (TTCAN) is a recent development which introduces a ses... The Controller Area Network (CAN) is a well established control network for automotive and automation control applications. Time-Triggered Controller Area Network (TTCAN) is a recent development which introduces a session layer,for message scheduling,to the existing CAN standard,which is a two layer standard comprising of a physical layer and a data link layer. TTCAN facilitates network communication in a time-triggered fashion,by introducing a Time Division Multiple Access style communication scheme. This allows deterministic network behavior,where maximum message latency times can be quantified and guaranteed. In order to solve the problem of determinate time latency and synchronization among several districted units in one auto panel CAN systems,this paper proposed a prototype design implementation for a shared-clock scheduler based on PIC18F458 MCU. This leads to improved CAN system performance and avoid the latency jitters and guarantee a deterministic communication pattern on the bus. The real runtime performance is satisfied. 展开更多
关键词 TIME-TRIGGERED controller area network auto PANEL shared-clock SCHEDULER embedded SYSTEM
在线阅读 下载PDF
Identification of Anomaly Scenes in Videos Using Graph Neural Networks
20
作者 Khalid Masood Mahmoud M.Al-Sakhnini +3 位作者 Waqas Nawaz Tauqeer Faiz Abdul Salam Mohammad Hamza Kashif 《Computers, Materials & Continua》 SCIE EI 2023年第3期5417-5430,共14页
Generally,conventional methods for anomaly detection rely on clustering,proximity,or classification.With themassive growth in surveillance videos,outliers or anomalies find ingenious ways to obscure themselves in the ... Generally,conventional methods for anomaly detection rely on clustering,proximity,or classification.With themassive growth in surveillance videos,outliers or anomalies find ingenious ways to obscure themselves in the network and make conventional techniques inefficient.This research explores the structure of Graph neural networks(GNNs)that generalize deep learning frameworks to graph-structured data.Every node in the graph structure is labeled and anomalies,represented by unlabeled nodes,are predicted by performing random walks on the node-based graph structures.Due to their strong learning abilities,GNNs gained popularity in various domains such as natural language processing,social network analytics and healthcare.Anomaly detection is a challenging task in computer vision but the proposed algorithm using GNNs efficiently performs the identification of anomalies.The Graph-based deep learning networks are designed to predict unknown objects and outliers.In our case,they detect unusual objects in the form of malicious nodes.The edges between nodes represent a relationship of nodes among each other.In case of anomaly,such as the bike rider in Pedestrians data,the rider node has a negative value for the edge and it is identified as an anomaly.The encoding and decoding layers are crucial for determining how statistical measurements affect anomaly identification and for correcting the graph path to the best possible outcome.Results show that the proposed framework is a step ahead of the traditional approaches in detecting unusual activities,which shows a huge potential in automatically monitoring surveillance videos.Performing autonomous monitoring of CCTV,crime control and damage or destruction by a group of people or crowd can be identified and alarms may be triggered in unusual activities in streets or public places.The suggested GNN model improves accuracy by 4%for the Pedestrian 2 dataset and 12%for the Pedestrian 1 dataset compared to a few state-of the-art techniques. 展开更多
关键词 Graph neural network deep learning anomaly detection auto encoders
在线阅读 下载PDF
上一页 1 2 156 下一页 到第
使用帮助 返回顶部