The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent duc...The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent ductile iron (LCEDI) (CE = 3.06%, and CE represents cax- bon-equivalent) with 2.42% chromium was selected. LCEDI was austeintized at two difl'erent temperatures (900 and 975~C) a^ld soaked for 1 h and then quenched in a salt bath at 325~C for 0 to 10 h. Samples were analyzed using optical microscopy and X-ray diffraction. Wear tests were carded out on a pin-on-disk-type machine. The efl'ect of austenization temperature on the wear resistance, impact strength, and the mi- crostructure was evaluated. A stxucture-property correlation based on the observations is established.展开更多
The influences of nitrogen content and austenitization temperature on Nb(C, N) precipitation in niobium micro-alloyed steels were studied by different methods: optical microscopy, tensile tests, scanning electron m...The influences of nitrogen content and austenitization temperature on Nb(C, N) precipitation in niobium micro-alloyed steels were studied by different methods: optical microscopy, tensile tests, scanning electron mi- croscopy, transmission electron microscopy, physicochemical phase analysis, and small-angle X-ray scattering. The results show that the strength of the steel with high nitrogen content is slightly higher than that of the steel with low nitrogen content. The increase in the nitrogen content does not result in the increase in the amount of Nb(C,N) precipitates, which mainly depends on the niobium content in the steel. The mass fraction of small-sized Nb(C, N) precipitates (1--10 nm) in the steel with high nitrogen content is less than that in the steel with low nitrogen con- tent. After austenitized at 1 150 ℃, a number of large cuboidal and needle-shaped particles are detected in the steel with high nitrogen content, whereas they dissolve after austenitized at 1 200 ℃ and the Nb(C,N) precipitates become finer in both steels. Furthermore, the results also show that part of the nitrogen in steel involves the formation of al- loyed cementite.展开更多
In this paper, the austenitization and homogenization process of Q235 plain carbon steel during reheating is predicted using a two-dimensional model which has been developed for the prediction of diffusive phase trans...In this paper, the austenitization and homogenization process of Q235 plain carbon steel during reheating is predicted using a two-dimensional model which has been developed for the prediction of diffusive phase transformation (e.g. α to γ). The diffusion equations are solved within each phase (α and γ) and an explicit finite volume technique formulated for a regular hexagonal grid are used. The discrete interface is represented by special volume elements α/γ, an volume element a undergoes a transition to an interface state before it becomes γ. The procedure allows us to handle the displacement of the interface while respecting the flux condition at the interface. The simulated microstructure shows the dissolution of ferrite particles in the austenite matrix is presented at different stages of the phase transformation. Specifically, the influence of the microstructure scale and the heating rate on the phase transformation kinetics has been investigated. The experimental results agree well with the simulated ones.展开更多
In order to investigate the carbide dissolution mechanism of high carbon-chromium bearing steel during the intercritical austenitization, the database of TCFE7 of Thermo-calc and MOBFE of DICTRA software were used to ...In order to investigate the carbide dissolution mechanism of high carbon-chromium bearing steel during the intercritical austenitization, the database of TCFE7 of Thermo-calc and MOBFE of DICTRA software were used to calculate the elements diffusion kinetic and the evolution law of volume fraction of carbide. DIL805 A dilatometer was used to simulate the intercritical heat treatment. The microstructure was observed by scanning electron microscopy(SEM), and the micro-hardness was tested. The experimental results indicate that the dissolution of carbide is composed of two stages: initial austenite growth governed by carbon diffusion which sharply moves up the micro-hardness of quenched martensite, and subsequent growth controlled by diffusion of Cr elements in M3 C. The volume fraction of M3 C decreases with the increasing holding time, and the metallographic analysis shows a great agreement with values calculated by software.展开更多
The austenitization behaviors of two high niohium-containing X80 pipeline steels with different titanium contents, including the dissolution of microalloying precipitates and the austenite grain growth, were investiga...The austenitization behaviors of two high niohium-containing X80 pipeline steels with different titanium contents, including the dissolution of microalloying precipitates and the austenite grain growth, were investigated by using physical-chemical phase analysis method and microstructural observation. The results illustrated that most niobium could be dissolved into austenite during soaking at 1 180 ℃, whereas little amount of titanium could be dissolved. It was found that during soaking, the austenite grain growth rate was initially high, and then decreased after soaking for 1 h; moreover, the austenite grains grew up more rapidly at temperatures above 1 180 ℃ than below 1 180 ℃. The results show that the steel with titanium content of 0. 016% has a larger austenite grain size than that with titanium content of 0. 012% under the same soaking conditions, which is explained by considering the particle size distribution.展开更多
A modified cellular automaton model is developed to depict the interface evolution inside the cementite plus ferrite lamellar microstructures during the reaustenitization of a pearlite steel. In this model, migrations...A modified cellular automaton model is developed to depict the interface evolution inside the cementite plus ferrite lamellar microstructures during the reaustenitization of a pearlite steel. In this model, migrations of both the austenite- ferrite and austenite-cementite interfaces coupled with the carbon diffusion and redistribution are integrated. The capil- laxity effect derived from local interface curvatures is also carefully considered by involving the concentration given by the phase diagram modified by the Gibbs-Thomson effect. This allows the interface evolution from a transient state to a steady state under different annealing conditions and various interlamellar spacings to be simulated. The proposed cellular automaton approach could be readily used to describe the kinetics of austenite formation from the lamellar pearlites and virtually reveal the kinematics of the moving interfaces from the microstructural aspect.展开更多
The effect of austenitization heat treatment on magnetic properties was examined by means of M6ssbauer spectroscopy on an Fe-40wt%Ni-2wt%Mn alloy. The morphology of the alloy was obtained by using scanning electron mi...The effect of austenitization heat treatment on magnetic properties was examined by means of M6ssbauer spectroscopy on an Fe-40wt%Ni-2wt%Mn alloy. The morphology of the alloy was obtained by using scanning electron microscopy (SEM) under different heat treatment conditions. The magnetic behavior of the non heat-treated alloy is ferromagnetic. A mixed magnetic structure including both paramagnetic and ferromagnetic states was obtained at 800℃ after 6 and 12 h heat treatments. In addition, the magnetic structure of the heat-treated alloy at 1150~C for 12 h was ferromagnetic. With the volume fraction changing, the effective hyperfine field of the ferromagnetic austenite phase and isomery shift values were also determined by Mtssbauer spectroscopy.展开更多
The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmiss...The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase.展开更多
Producing steel requires large amounts of energy to convert iron ores into steel,which often comes from fossil fuels,leading to carbon emissions and other pollutants.Increasing scrap usage emerges as one of the most e...Producing steel requires large amounts of energy to convert iron ores into steel,which often comes from fossil fuels,leading to carbon emissions and other pollutants.Increasing scrap usage emerges as one of the most effective strategies for addressing these issues.However,typical residual elements(Cu,As,Sn,Sb,Bi,etc.)inherited from scrap could significantly influence the mechanical properties of steel.In this work,we investigate the effects of residual elements on the microstructure evolution and mechanical properties of a quenching and partitioning(Q&P)steel by comparing a commercial QP1180 steel(referred to as QP)to the one containing typical residual elements(Cu+As+Sn+Sb+Bi<0.3wt%)(referred to as QP-R).The results demonstrate that in comparison with the QP steel,the residual elements significantly refine the prior austenite grain(9.7μm vs.14.6μm)due to their strong solute drag effect,leading to a higher volume fraction(13.0%vs.11.8%),a smaller size(473 nm vs.790 nm)and a higher average carbon content(1.26 wt%vs.0.99 wt%)of retained austenite in the QP-R steel.As a result,the QP-R steel exhibits a sustained transformation-induced plasticity(TRIP)effect,leading to an enhanced strain hardening effect and a simultaneous improvement of strength and ductility.Grain boundary segregation of residual elements was not observed at prior austenite grain boundaries in the QP-R steel,primarily due to continuous interface migration during austenitization.This study demonstrates that the residual elements with concentrations comparable to that in scrap result in significant microstructural refinement,causing retained austenite with relatively higher stability and thus offering promising mechanical properties and potential applications.展开更多
In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The ...In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ).展开更多
A cyclic quenching treatment(CQT)succeeded in turning a 2.3 GPa maraging steel with a Charpy impact energy of 9 J into a new grade with the same strength but a Charpy impact energy of 20 J upon 4 cyclic treatments.The...A cyclic quenching treatment(CQT)succeeded in turning a 2.3 GPa maraging steel with a Charpy impact energy of 9 J into a new grade with the same strength but a Charpy impact energy of 20 J upon 4 cyclic treatments.The improvement of mechanical properties is attributed to the refinement and increased chemical heterogeneity of the martensitic substructure,rather than the refinement of prior austenite grain(PAG),as well as the Transformation-Induced Plasticity(TRIP)effect facilitated by small austenite grains.The role of local segregation of Ni during CQT in the formation of Ni-rich austenite grains,Ni-rich martensite laths and Ni-poor martensite laths,was investigated and verified by DICTRA simulations.This study highlights the important influence of Ni partitioning behavior during CQT,providing insights into microstructural evolution and mechanical properties.展开更多
The austenite(γ)reversely transformed from lath martensite(LM),lath bainite(LB),granular bainite(GB)and pearlite+ferrite(P+F)in a high-strength steel was studied at high temperatures using in-situ electron backscatte...The austenite(γ)reversely transformed from lath martensite(LM),lath bainite(LB),granular bainite(GB)and pearlite+ferrite(P+F)in a high-strength steel was studied at high temperatures using in-situ electron backscatter diffraction(EBSD).The memory effect of initial γ significantly affects the nucleation of the reverted γ in LM and GB structures,while a weak influence on that of LB and P+F structures.This results in a significant difference in γ grain size after complete austenitization,with the first two obtaining larger γ grains while the latter two are relatively small.Crystallographic analysis revealed that the reverted γ with acicular morphology(γA),most of which maintained the same orientation with the prior γ,dominated the reaustenitization behavior of LM and GB structures through preferential nucleation within γ grains and coalesced growth modes.Although globular reverted γ(γ_(G))with random orientation or large deviation from the prior γ can nucleate at the grain boundaries or within the grains,it is difficult for it to grow and play a role in segmenting and refining the prior γ due to the inhibition of γ_(A) coalescing.For LB and P+F structures,the nucleation rate of intragranular γ_(G) increases with increasing temperature,and always shows a random orientation.These γ_(G) grains can coarsen simultaneously with the intergranular γ_(G),ultimately playing a role in jointly dividing and refining the finalγgrains.Research also found that the differences in the effects of four different microstructures on revertedγnucleation are closely related to the variant selection of the matrix structure,as well as the content and size of cementite(θ).High density of block boundaries induced by weakening of variant selection and many fineθformed in the lath are the key to promoting LB structure to obtain more intragranular γ_(G) formation,as well as the important role of the large-sized θ in P+F structure.展开更多
Multistage heat treatment involving quenching(Q),lamellarizing(L),and tempering(T)is applied to marine 10Ni5CrMoV steel.The microstructure and mechanical properties were studied by multiscale characterizations,and the...Multistage heat treatment involving quenching(Q),lamellarizing(L),and tempering(T)is applied to marine 10Ni5CrMoV steel.The microstructure and mechanical properties were studied by multiscale characterizations,and the kinetics of reverse austenite transformation,strain hardening behavior,and toughening mechanism were further investigated.The lamellarized specimens possess low yield strength but high toughness,especially cryogenic toughness.Lamellarization leads to the development of film-like reversed austenite at the martensite block and lath boundaries,refining the martensite structure and lowering the equivalent grain size.Kinetic analysis of austenite reversion based on the JMAK model shows that the isothermal transformation is dominated by the growth of reversed austenite,and the maximum transformation of reversed austenite is reached at the peak temperature(750℃).The strain hardening behavior based on the modified Crussard-Jaoul analysis indicates that the reversed austenite obtained from lamellarization reduces the proportion of martensite,significantly hindering crack propagation via martensitic transformation during the deformation.As a consequence,the QLT specimens exhibit high machinability and low yield strength.Compared with the QT specimen,the ductile-brittle transition temperature of the QLT specimens decreases from-116 to-130℃due to the low equivalent grain size and reversed austenite,which increases the cleavage force required for crack propagation and absorbs the energy of external load,respectively.This work provides an idea to improve the cryogenic toughness of marine 10Ni5CrMoV steel and lays a theoretical foundation for its industrial application and comprehensive performance improvement.展开更多
In the present study,a simple but effective two-step annealing processing strategy via manipulating the austenite reversion path is proposed to obtain a large fraction of retained austenite in low-Mn medium-Mn steels....In the present study,a simple but effective two-step annealing processing strategy via manipulating the austenite reversion path is proposed to obtain a large fraction of retained austenite in low-Mn medium-Mn steels.Initially,the Fe-3Mn-0.2C-1.5Si(wt%)steel is intercritically annealed to form Mn-enriched lamellar martensite precursors.Subsequently,the austenite reversion transformation is manipulated to occur within the martensite lamellae during the second annealing process,resulting in an ultra-fine duplex microstructure of laminated austenite and ferrite.This process can not only allow a large fraction of austenite to be retained in low-Mn medium-Mn steels,but also increase the elongation by up to 41%without sacrificing the strength level compared to the conventional annealing.展开更多
Austenitic stainless steels(ASSs)are widely used in various in-dustries such as aerospace,nuclear energy,food,and biotechnol-ogy owing to their exceptional combination of corrosion resistance,weldability,toughness,and...Austenitic stainless steels(ASSs)are widely used in various in-dustries such as aerospace,nuclear energy,food,and biotechnol-ogy owing to their exceptional combination of corrosion resistance,weldability,toughness,and formability[1,2].However,a signifi-cant drawback of ASSs is their low yield strength,which limits their applications in extreme environments[3].Grain boundary(GB)engineering plays a crucial role in enhancing the strength of ASSs[4,5].For instance,grain refinement techniques such as cold rolling followed by annealing[6],severe plastic deformation(SPD)[7],and surface mechanical attrition/rolling treatments[8,9]introduce high-angle GBs(HAGBs)into ASSs,thereby improving their strength.However,the high density of HAGBs limits their ca-pacity for dislocation storage and multiplication,leading to a sig-nificant loss of ductility[10,11].Additionally,several studies have shown that twin boundaries(TBs)can simultaneously enhance the strength,toughness,and corrosion resistance of ASSs[12,13].展开更多
In this study, novel reconstruction methods, including grain graph and variant graph, were established to reconstruct parent austenite on the basis of electron backscatter diffraction (EBSD) data. The evaluation indic...In this study, novel reconstruction methods, including grain graph and variant graph, were established to reconstruct parent austenite on the basis of electron backscatter diffraction (EBSD) data. The evaluation indicators included boundary identification and variant distribution. Moreover, an innovative variant pair analysis method was proposed. The results indicated that the Kurdjumov-Sachs orientation relationship was the most appropriate because it had the smallest refinement error and deviation. In addition, the variant graph reconstruction was more effective in reducing mis-indexing areas than the grain graph, exhibiting a robust capacity to accurately identify austenite grain boundaries. Additionally, the variant graph reconstruction induced the transformation of variants, variant pairs, close-packed plane (CP) groups, and Bain groups. Moreover, various reconstructed datasets (calc-grain data and EBSD data) affected the distribution of variants. The austenite grains reconstructed from the calc-grain data featured two or more variants clustered within the same region due to the preprocessing (calculating, filtering, and smoothing) of the EBSD data. These variations did not impede the microstructural analysis when consistent original data and reconstruction methods were used. The reconstruction of parent austenite grains holds promise for providing a fresh perspective and a deeper understanding of strengthening and toughening mechanisms in the future.展开更多
The hardenability of steel is crucial for its durability and performance in engineering applications,significantly influencing mechanical properties such as hardness,strength,and wear resistance.As the engineering fie...The hardenability of steel is crucial for its durability and performance in engineering applications,significantly influencing mechanical properties such as hardness,strength,and wear resistance.As the engineering field continuously demands higher-performance steel materials,a deep understanding of the key influencing factors on hardenability is crucial for developing quality steel that meets stringent application requirements.The effects of some specific elements,including carbon(C),vanadium(V),molybdenum(Mo),and boron(B),as well as heat treatment process parameters such as austenitizing temperature,austenitizing holding time,and cooling rate,were examined.It aims to elucidate the interactions among these factors and their influence on steel hardenability.For each influencing factor,the heat treatment procedure,characteristic microstructure resulting from it,and corresponding Jominy end quench curves were discussed.Furthermore,based on the continuous development of big data technology in the field of materials,the use of machine learning to predict the hardenability of steel and guide the design of steel material was also introduced.展开更多
Medium-manganese steel exhibits excellent strength and toughness,which are essential features in wear resistance applications.This study examines the impact of annealing temperature on impact abrasive wear.The results...Medium-manganese steel exhibits excellent strength and toughness,which are essential features in wear resistance applications.This study examines the impact of annealing temperature on impact abrasive wear.The results have indicated that samples annealed at different temperatures display plowing and fatigue wear effects.In the initial wear stage,the hightemperature annealed steel outperforms samples annealed at a lower temperature in terms of anti-plowing wear performance.This phenomenon is mainly due to the lower initial hardness of the samples subjected to low-temperature annealing.However,with prolonged wear time,the low-temperature annealed samples exhibit improved plowing wear performance,which is ascribed to a refinement of the lamellar microstructure and an increased residual austenite(RA),which enhances the work hardening effect,improving the hardness of the worn surface.The low-temperature annealed samples consistently delivered superior fatigue wear performance when compared with samples annealed at the higher temperature.The latter effect may be attributed to two factors.Firstly,the finer lamellar microstructure in the low-temperature annealed samples,coupled with greater RA,results in transformation-induced plasticity or twin-induced plasticity effect that hinders crack formation and propagation.Secondly,the low-temperature annealed samples form nanoscale equiaxed grains near the worn surface during the wear process.These grains can withstand crack driving forces in fine-grained regions,suppressing the formation and propagation of cracks.展开更多
The role of cerium(Ce)in enhancing the hot ductility of super austenitic stainless steel S32654 at 850–1250℃was systematically unveiled through theoretical calculations and microstructure characterization.The result...The role of cerium(Ce)in enhancing the hot ductility of super austenitic stainless steel S32654 at 850–1250℃was systematically unveiled through theoretical calculations and microstructure characterization.The results indicated that Ce microalloying improved the hot ductility of S32654 throughout the entire deformation temperature range.Specifically,the addition of Ce greatly enhanced the hot ductility in the low(850–900℃)and high(1100–1250℃)temperature ranges,but only slightly increased that in the medium temperature range(900–1100℃).At 850–900℃,Ce addition not only reduced the sulfur(S)content and suppressed the S segregation at the grain boundary,but also promoted the formation of slip bands and deformation twins,apparently improving the hot ductility.At 900–1100℃,Ce addition promoted the nucleation of intergranularσphases and dynamic recrystallization(DRX)grains,which have adverse and beneficial effects on the hot ductility,respectively.As the temperature increased,the precipitation tendency presented a first increasing and then decreasing trend around 1000℃,while the DRX gradually increased.Accordingly,the improvement degree of Ce on the hot ductility first weakened and then enhanced.At 1100–1250℃,Ce significantly promoted the DRX to form more fine and uniform deformation structure,thereby remarkably increasing the cracking resistance and then the hot ductility.展开更多
Liquefied natural gas storage and transportation as well as space propulsion systems have sparked inter-est in the martensitic transformation and behaviours of 316 L stainless steels(SS)under ultra-cryogenic deformati...Liquefied natural gas storage and transportation as well as space propulsion systems have sparked inter-est in the martensitic transformation and behaviours of 316 L stainless steels(SS)under ultra-cryogenic deformation.In this study,high-resolution transmission electron microscopy(HRTEM)and molecular dy-namics(MD)simulations were used to investigate the atomic arrangements and crystalline defects of deformation-induced γ-austenite→ε-martensite→α'-martensite and γ→α'martensitic transforma-tions in 316 L SS at 15 and 173 K.Theγ→εtransformation involves the glide of Shockley partial dislocations on(111)γplanes without a change in atomic spacing.The formation of anα'inclusion in a singleε-band is achieved by a continuous lattice distortion,accompanied by the formation of a tran-sition zone ofα'and the expansion of the average atomic spacings due to dislocation shuffling.Asα'grows further intoγ,the orientation relationship(OR)of theα'changes by lattice bending.This pro-cess follows the Bogers-Burgers-Olson-Cohen model despite it not occurring on intersecting shear bands.Stacking faults and twins can also serve as nucleation sites forα'at 173 K.We also found that direct transformation of γ→α'occurs by the glide of √6aγ[11(2)]/12 dislocations on every(111)γplane with misfit dislocations.Overall,this study provides,for the first time,insights into the atomic-scale mech-anisms of various two-step and one-step martensitic transformations induced by cryogenic deformation and corresponding local strain,enhancing our understanding of the role of martensitic transformation under ultra-cryogenic-temperature deformation in controlling the properties.展开更多
文摘The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent ductile iron (LCEDI) (CE = 3.06%, and CE represents cax- bon-equivalent) with 2.42% chromium was selected. LCEDI was austeintized at two difl'erent temperatures (900 and 975~C) a^ld soaked for 1 h and then quenched in a salt bath at 325~C for 0 to 10 h. Samples were analyzed using optical microscopy and X-ray diffraction. Wear tests were carded out on a pin-on-disk-type machine. The efl'ect of austenization temperature on the wear resistance, impact strength, and the mi- crostructure was evaluated. A stxucture-property correlation based on the observations is established.
基金Item Sponsored by the CITIC-CBMM Niobium Steel Research and Development Program of China(2013-D065)
文摘The influences of nitrogen content and austenitization temperature on Nb(C, N) precipitation in niobium micro-alloyed steels were studied by different methods: optical microscopy, tensile tests, scanning electron mi- croscopy, transmission electron microscopy, physicochemical phase analysis, and small-angle X-ray scattering. The results show that the strength of the steel with high nitrogen content is slightly higher than that of the steel with low nitrogen content. The increase in the nitrogen content does not result in the increase in the amount of Nb(C,N) precipitates, which mainly depends on the niobium content in the steel. The mass fraction of small-sized Nb(C, N) precipitates (1--10 nm) in the steel with high nitrogen content is less than that in the steel with low nitrogen con- tent. After austenitized at 1 150 ℃, a number of large cuboidal and needle-shaped particles are detected in the steel with high nitrogen content, whereas they dissolve after austenitized at 1 200 ℃ and the Nb(C,N) precipitates become finer in both steels. Furthermore, the results also show that part of the nitrogen in steel involves the formation of al- loyed cementite.
基金The finiancial support of the National 973 Super-Steel Iterne1998061512 is greatly acknowledged.
文摘In this paper, the austenitization and homogenization process of Q235 plain carbon steel during reheating is predicted using a two-dimensional model which has been developed for the prediction of diffusive phase transformation (e.g. α to γ). The diffusion equations are solved within each phase (α and γ) and an explicit finite volume technique formulated for a regular hexagonal grid are used. The discrete interface is represented by special volume elements α/γ, an volume element a undergoes a transition to an interface state before it becomes γ. The procedure allows us to handle the displacement of the interface while respecting the flux condition at the interface. The simulated microstructure shows the dissolution of ferrite particles in the austenite matrix is presented at different stages of the phase transformation. Specifically, the influence of the microstructure scale and the heating rate on the phase transformation kinetics has been investigated. The experimental results agree well with the simulated ones.
基金Funded by the National High-tech Research and Development Program of China(863 Program)
文摘In order to investigate the carbide dissolution mechanism of high carbon-chromium bearing steel during the intercritical austenitization, the database of TCFE7 of Thermo-calc and MOBFE of DICTRA software were used to calculate the elements diffusion kinetic and the evolution law of volume fraction of carbide. DIL805 A dilatometer was used to simulate the intercritical heat treatment. The microstructure was observed by scanning electron microscopy(SEM), and the micro-hardness was tested. The experimental results indicate that the dissolution of carbide is composed of two stages: initial austenite growth governed by carbon diffusion which sharply moves up the micro-hardness of quenched martensite, and subsequent growth controlled by diffusion of Cr elements in M3 C. The volume fraction of M3 C decreases with the increasing holding time, and the metallographic analysis shows a great agreement with values calculated by software.
基金Item Sponsored by National Key Technologies Research and Development Program of China(2006BAE03A15)
文摘The austenitization behaviors of two high niohium-containing X80 pipeline steels with different titanium contents, including the dissolution of microalloying precipitates and the austenite grain growth, were investigated by using physical-chemical phase analysis method and microstructural observation. The results illustrated that most niobium could be dissolved into austenite during soaking at 1 180 ℃, whereas little amount of titanium could be dissolved. It was found that during soaking, the austenite grain growth rate was initially high, and then decreased after soaking for 1 h; moreover, the austenite grains grew up more rapidly at temperatures above 1 180 ℃ than below 1 180 ℃. The results show that the steel with titanium content of 0. 016% has a larger austenite grain size than that with titanium content of 0. 012% under the same soaking conditions, which is explained by considering the particle size distribution.
基金financially supported by the National Natural Science Foundation of China (Nos. 51371169 and 51401214)
文摘A modified cellular automaton model is developed to depict the interface evolution inside the cementite plus ferrite lamellar microstructures during the reaustenitization of a pearlite steel. In this model, migrations of both the austenite- ferrite and austenite-cementite interfaces coupled with the carbon diffusion and redistribution are integrated. The capil- laxity effect derived from local interface curvatures is also carefully considered by involving the concentration given by the phase diagram modified by the Gibbs-Thomson effect. This allows the interface evolution from a transient state to a steady state under different annealing conditions and various interlamellar spacings to be simulated. The proposed cellular automaton approach could be readily used to describe the kinetics of austenite formation from the lamellar pearlites and virtually reveal the kinematics of the moving interfaces from the microstructural aspect.
文摘The effect of austenitization heat treatment on magnetic properties was examined by means of M6ssbauer spectroscopy on an Fe-40wt%Ni-2wt%Mn alloy. The morphology of the alloy was obtained by using scanning electron microscopy (SEM) under different heat treatment conditions. The magnetic behavior of the non heat-treated alloy is ferromagnetic. A mixed magnetic structure including both paramagnetic and ferromagnetic states was obtained at 800℃ after 6 and 12 h heat treatments. In addition, the magnetic structure of the heat-treated alloy at 1150~C for 12 h was ferromagnetic. With the volume fraction changing, the effective hyperfine field of the ferromagnetic austenite phase and isomery shift values were also determined by Mtssbauer spectroscopy.
基金supported by the National Key R&D Program of China(No.2017YFB0304402)。
文摘The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase.
基金financially supported by the National Natural Science Foundation of China(Nos.52293395 and 52293393)the Xiongan Science and Technology Innovation Talent Project of MOST,China(No.2022XACX0500).
文摘Producing steel requires large amounts of energy to convert iron ores into steel,which often comes from fossil fuels,leading to carbon emissions and other pollutants.Increasing scrap usage emerges as one of the most effective strategies for addressing these issues.However,typical residual elements(Cu,As,Sn,Sb,Bi,etc.)inherited from scrap could significantly influence the mechanical properties of steel.In this work,we investigate the effects of residual elements on the microstructure evolution and mechanical properties of a quenching and partitioning(Q&P)steel by comparing a commercial QP1180 steel(referred to as QP)to the one containing typical residual elements(Cu+As+Sn+Sb+Bi<0.3wt%)(referred to as QP-R).The results demonstrate that in comparison with the QP steel,the residual elements significantly refine the prior austenite grain(9.7μm vs.14.6μm)due to their strong solute drag effect,leading to a higher volume fraction(13.0%vs.11.8%),a smaller size(473 nm vs.790 nm)and a higher average carbon content(1.26 wt%vs.0.99 wt%)of retained austenite in the QP-R steel.As a result,the QP-R steel exhibits a sustained transformation-induced plasticity(TRIP)effect,leading to an enhanced strain hardening effect and a simultaneous improvement of strength and ductility.Grain boundary segregation of residual elements was not observed at prior austenite grain boundaries in the QP-R steel,primarily due to continuous interface migration during austenitization.This study demonstrates that the residual elements with concentrations comparable to that in scrap result in significant microstructural refinement,causing retained austenite with relatively higher stability and thus offering promising mechanical properties and potential applications.
基金support of the Research Project Supported by Shanxi Scholarship Council of China(2022-040)"Chunhui Plan"Collaborative Research Project by the Ministry of Education of China(HZKY20220507)+2 种基金National Natural Science Foundation of China(52104338)Applied Fundamental Research Programs of Shanxi Province(202303021221036)Shandong Postdoctoral Science Foundation(SDCX-ZG-202303027,SDBX2023054).
文摘In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ).
基金sponsored by the National Natural Science Foun-dation of China(Grant Nos.52271122,52203384).
文摘A cyclic quenching treatment(CQT)succeeded in turning a 2.3 GPa maraging steel with a Charpy impact energy of 9 J into a new grade with the same strength but a Charpy impact energy of 20 J upon 4 cyclic treatments.The improvement of mechanical properties is attributed to the refinement and increased chemical heterogeneity of the martensitic substructure,rather than the refinement of prior austenite grain(PAG),as well as the Transformation-Induced Plasticity(TRIP)effect facilitated by small austenite grains.The role of local segregation of Ni during CQT in the formation of Ni-rich austenite grains,Ni-rich martensite laths and Ni-poor martensite laths,was investigated and verified by DICTRA simulations.This study highlights the important influence of Ni partitioning behavior during CQT,providing insights into microstructural evolution and mechanical properties.
基金financially supported by the National Natural Science Foundation of China(Nos.52271089 and 52001023)the Basic Research and Application Basic Research Foundation of Guangdong Province(Nos.2022A1515240016 and 2023B1515250006)the Fundamental Research Funds for the Central Universities(No.FRF-BD-23-01).
文摘The austenite(γ)reversely transformed from lath martensite(LM),lath bainite(LB),granular bainite(GB)and pearlite+ferrite(P+F)in a high-strength steel was studied at high temperatures using in-situ electron backscatter diffraction(EBSD).The memory effect of initial γ significantly affects the nucleation of the reverted γ in LM and GB structures,while a weak influence on that of LB and P+F structures.This results in a significant difference in γ grain size after complete austenitization,with the first two obtaining larger γ grains while the latter two are relatively small.Crystallographic analysis revealed that the reverted γ with acicular morphology(γA),most of which maintained the same orientation with the prior γ,dominated the reaustenitization behavior of LM and GB structures through preferential nucleation within γ grains and coalesced growth modes.Although globular reverted γ(γ_(G))with random orientation or large deviation from the prior γ can nucleate at the grain boundaries or within the grains,it is difficult for it to grow and play a role in segmenting and refining the prior γ due to the inhibition of γ_(A) coalescing.For LB and P+F structures,the nucleation rate of intragranular γ_(G) increases with increasing temperature,and always shows a random orientation.These γ_(G) grains can coarsen simultaneously with the intergranular γ_(G),ultimately playing a role in jointly dividing and refining the finalγgrains.Research also found that the differences in the effects of four different microstructures on revertedγnucleation are closely related to the variant selection of the matrix structure,as well as the content and size of cementite(θ).High density of block boundaries induced by weakening of variant selection and many fineθformed in the lath are the key to promoting LB structure to obtain more intragranular γ_(G) formation,as well as the important role of the large-sized θ in P+F structure.
基金financially supported by the National Key K&D Program of China(No.2023YFE0200300)the National Natural Science Foundation of China(Nos.52174303and 51874084)the Program of Introducing Talents of Discipline to Universities(No.B21001)。
文摘Multistage heat treatment involving quenching(Q),lamellarizing(L),and tempering(T)is applied to marine 10Ni5CrMoV steel.The microstructure and mechanical properties were studied by multiscale characterizations,and the kinetics of reverse austenite transformation,strain hardening behavior,and toughening mechanism were further investigated.The lamellarized specimens possess low yield strength but high toughness,especially cryogenic toughness.Lamellarization leads to the development of film-like reversed austenite at the martensite block and lath boundaries,refining the martensite structure and lowering the equivalent grain size.Kinetic analysis of austenite reversion based on the JMAK model shows that the isothermal transformation is dominated by the growth of reversed austenite,and the maximum transformation of reversed austenite is reached at the peak temperature(750℃).The strain hardening behavior based on the modified Crussard-Jaoul analysis indicates that the reversed austenite obtained from lamellarization reduces the proportion of martensite,significantly hindering crack propagation via martensitic transformation during the deformation.As a consequence,the QLT specimens exhibit high machinability and low yield strength.Compared with the QT specimen,the ductile-brittle transition temperature of the QLT specimens decreases from-116 to-130℃due to the low equivalent grain size and reversed austenite,which increases the cleavage force required for crack propagation and absorbs the energy of external load,respectively.This work provides an idea to improve the cryogenic toughness of marine 10Ni5CrMoV steel and lays a theoretical foundation for its industrial application and comprehensive performance improvement.
基金support from the National Natural Science Foundation of China(Grant Nos.52321001 and 52071322).
文摘In the present study,a simple but effective two-step annealing processing strategy via manipulating the austenite reversion path is proposed to obtain a large fraction of retained austenite in low-Mn medium-Mn steels.Initially,the Fe-3Mn-0.2C-1.5Si(wt%)steel is intercritically annealed to form Mn-enriched lamellar martensite precursors.Subsequently,the austenite reversion transformation is manipulated to occur within the martensite lamellae during the second annealing process,resulting in an ultra-fine duplex microstructure of laminated austenite and ferrite.This process can not only allow a large fraction of austenite to be retained in low-Mn medium-Mn steels,but also increase the elongation by up to 41%without sacrificing the strength level compared to the conventional annealing.
基金financially supported by the National Key R&D program(No.2022YFB3707501)the GDAS’Project of Science and Technology(No.2022GDASZH-2022010202)the Guangdong Provincial Project(Nos.2022A0505050053,2021B1515120071,and 2020B1515130007)。
文摘Austenitic stainless steels(ASSs)are widely used in various in-dustries such as aerospace,nuclear energy,food,and biotechnol-ogy owing to their exceptional combination of corrosion resistance,weldability,toughness,and formability[1,2].However,a signifi-cant drawback of ASSs is their low yield strength,which limits their applications in extreme environments[3].Grain boundary(GB)engineering plays a crucial role in enhancing the strength of ASSs[4,5].For instance,grain refinement techniques such as cold rolling followed by annealing[6],severe plastic deformation(SPD)[7],and surface mechanical attrition/rolling treatments[8,9]introduce high-angle GBs(HAGBs)into ASSs,thereby improving their strength.However,the high density of HAGBs limits their ca-pacity for dislocation storage and multiplication,leading to a sig-nificant loss of ductility[10,11].Additionally,several studies have shown that twin boundaries(TBs)can simultaneously enhance the strength,toughness,and corrosion resistance of ASSs[12,13].
基金the National Natural Science Foundation of China(Grant Nos.52325406,52374331,and U1960203)the Program of Introducing Talents of Discipline to Universities(Grant No.B21001).
文摘In this study, novel reconstruction methods, including grain graph and variant graph, were established to reconstruct parent austenite on the basis of electron backscatter diffraction (EBSD) data. The evaluation indicators included boundary identification and variant distribution. Moreover, an innovative variant pair analysis method was proposed. The results indicated that the Kurdjumov-Sachs orientation relationship was the most appropriate because it had the smallest refinement error and deviation. In addition, the variant graph reconstruction was more effective in reducing mis-indexing areas than the grain graph, exhibiting a robust capacity to accurately identify austenite grain boundaries. Additionally, the variant graph reconstruction induced the transformation of variants, variant pairs, close-packed plane (CP) groups, and Bain groups. Moreover, various reconstructed datasets (calc-grain data and EBSD data) affected the distribution of variants. The austenite grains reconstructed from the calc-grain data featured two or more variants clustered within the same region due to the preprocessing (calculating, filtering, and smoothing) of the EBSD data. These variations did not impede the microstructural analysis when consistent original data and reconstruction methods were used. The reconstruction of parent austenite grains holds promise for providing a fresh perspective and a deeper understanding of strengthening and toughening mechanisms in the future.
基金supported by the National Natural Science Foundation of China(Nos.52122408 and 52071023)Hong-hui Wu also thanks the financial support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing,Nos.FRF-TP-2021-04C1 and 06500135)supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering.
文摘The hardenability of steel is crucial for its durability and performance in engineering applications,significantly influencing mechanical properties such as hardness,strength,and wear resistance.As the engineering field continuously demands higher-performance steel materials,a deep understanding of the key influencing factors on hardenability is crucial for developing quality steel that meets stringent application requirements.The effects of some specific elements,including carbon(C),vanadium(V),molybdenum(Mo),and boron(B),as well as heat treatment process parameters such as austenitizing temperature,austenitizing holding time,and cooling rate,were examined.It aims to elucidate the interactions among these factors and their influence on steel hardenability.For each influencing factor,the heat treatment procedure,characteristic microstructure resulting from it,and corresponding Jominy end quench curves were discussed.Furthermore,based on the continuous development of big data technology in the field of materials,the use of machine learning to predict the hardenability of steel and guide the design of steel material was also introduced.
基金financial support to the Application Foundation Frontier Project of the Major Program(JD)of Hubei Province(2023BAA019-4)the National Natural Science Foundation of China(U20A20279,12072245,52071238)+2 种基金the Science and Technology Program of Guangxi Province(AA22068080)the Key Research and Development Program of Hubei Province(2021BAA057)the Taishan Industry-Leading Talent Project Special Funding and Subject Innovation and Talent Introduction Program in Colleges and Universities(111 programs No.D18018)。
文摘Medium-manganese steel exhibits excellent strength and toughness,which are essential features in wear resistance applications.This study examines the impact of annealing temperature on impact abrasive wear.The results have indicated that samples annealed at different temperatures display plowing and fatigue wear effects.In the initial wear stage,the hightemperature annealed steel outperforms samples annealed at a lower temperature in terms of anti-plowing wear performance.This phenomenon is mainly due to the lower initial hardness of the samples subjected to low-temperature annealing.However,with prolonged wear time,the low-temperature annealed samples exhibit improved plowing wear performance,which is ascribed to a refinement of the lamellar microstructure and an increased residual austenite(RA),which enhances the work hardening effect,improving the hardness of the worn surface.The low-temperature annealed samples consistently delivered superior fatigue wear performance when compared with samples annealed at the higher temperature.The latter effect may be attributed to two factors.Firstly,the finer lamellar microstructure in the low-temperature annealed samples,coupled with greater RA,results in transformation-induced plasticity or twin-induced plasticity effect that hinders crack formation and propagation.Secondly,the low-temperature annealed samples form nanoscale equiaxed grains near the worn surface during the wear process.These grains can withstand crack driving forces in fine-grained regions,suppressing the formation and propagation of cracks.
基金financially supported by National Natural Science Foundation of China(grant nos.52325406,52374334,and U1860204)Joint Program of Science and Technology Plans in Liaoning Province(grant nos.2023JH2/101700244 and 2023JH2/101800045)+1 种基金Fundamental Research Funds for the Central Universities(grant no.N2430002)Program of Introducing Talents of Discipline to Universities(grant no.B21001).
文摘The role of cerium(Ce)in enhancing the hot ductility of super austenitic stainless steel S32654 at 850–1250℃was systematically unveiled through theoretical calculations and microstructure characterization.The results indicated that Ce microalloying improved the hot ductility of S32654 throughout the entire deformation temperature range.Specifically,the addition of Ce greatly enhanced the hot ductility in the low(850–900℃)and high(1100–1250℃)temperature ranges,but only slightly increased that in the medium temperature range(900–1100℃).At 850–900℃,Ce addition not only reduced the sulfur(S)content and suppressed the S segregation at the grain boundary,but also promoted the formation of slip bands and deformation twins,apparently improving the hot ductility.At 900–1100℃,Ce addition promoted the nucleation of intergranularσphases and dynamic recrystallization(DRX)grains,which have adverse and beneficial effects on the hot ductility,respectively.As the temperature increased,the precipitation tendency presented a first increasing and then decreasing trend around 1000℃,while the DRX gradually increased.Accordingly,the improvement degree of Ce on the hot ductility first weakened and then enhanced.At 1100–1250℃,Ce significantly promoted the DRX to form more fine and uniform deformation structure,thereby remarkably increasing the cracking resistance and then the hot ductility.
基金supported by the Henry Royce Institute for Advanced Materials,funded through Engineering and Physical Sciences Research Council(EPSRC)grants EP/R00661X/1,EP/S019367/1,EP/P025021/1,and EP/P025498/1.
文摘Liquefied natural gas storage and transportation as well as space propulsion systems have sparked inter-est in the martensitic transformation and behaviours of 316 L stainless steels(SS)under ultra-cryogenic deformation.In this study,high-resolution transmission electron microscopy(HRTEM)and molecular dy-namics(MD)simulations were used to investigate the atomic arrangements and crystalline defects of deformation-induced γ-austenite→ε-martensite→α'-martensite and γ→α'martensitic transforma-tions in 316 L SS at 15 and 173 K.Theγ→εtransformation involves the glide of Shockley partial dislocations on(111)γplanes without a change in atomic spacing.The formation of anα'inclusion in a singleε-band is achieved by a continuous lattice distortion,accompanied by the formation of a tran-sition zone ofα'and the expansion of the average atomic spacings due to dislocation shuffling.Asα'grows further intoγ,the orientation relationship(OR)of theα'changes by lattice bending.This pro-cess follows the Bogers-Burgers-Olson-Cohen model despite it not occurring on intersecting shear bands.Stacking faults and twins can also serve as nucleation sites forα'at 173 K.We also found that direct transformation of γ→α'occurs by the glide of √6aγ[11(2)]/12 dislocations on every(111)γplane with misfit dislocations.Overall,this study provides,for the first time,insights into the atomic-scale mech-anisms of various two-step and one-step martensitic transformations induced by cryogenic deformation and corresponding local strain,enhancing our understanding of the role of martensitic transformation under ultra-cryogenic-temperature deformation in controlling the properties.