The microstructure evolution and bainitic transformation of an Fe-0.19C-4.03Mn-1.48Si steel subjected to near-M_(s)austempering treatment were systematically investigated by combining dilatometer,X-ray diffraction,and...The microstructure evolution and bainitic transformation of an Fe-0.19C-4.03Mn-1.48Si steel subjected to near-M_(s)austempering treatment were systematically investigated by combining dilatometer,X-ray diffraction,and electron microscopy.Three additional austempering treatments with isothermal temperatures above M_(s)were used as benchmarks.Results show that the incubation period for the bainitic transformation occurs when the medium Mn steel is treated with the austempering temperature above M_(s).However,when subjected to near-M_(s)isothermal treatment,the medium Mn steel does not show an incubation period and has the fastest bainitic transformation rate.Moreover,the largest volume fraction of bainite with a value of 74.7%is obtained on the condition of near-M_(s)austempering treatment after cooling to room temperature.Dilatometer and microstructure evolution analysis indicates that the elimination of the incubation period and the fastest rate of bainitic transformation are related to the preformed martensite.The advent of preformed martensite allows the specimen to generate more bainite in a limited time.Considering bainitic ferrite nucleation at austenite grain boundaries and through autocatalysis at ferrite/austenite interfaces,a model is established to understand the kinetics of bainite formation and it can describe the nucleation rate of bainitic transformation well when compared to the experimental results.展开更多
This study systematically investigated the effects of graphite nodule parameters,including count,average diameter,and nodularity,on microstructure and mechanical properties of austempered ductile irons(ADIs).The ADI s...This study systematically investigated the effects of graphite nodule parameters,including count,average diameter,and nodularity,on microstructure and mechanical properties of austempered ductile irons(ADIs).The ADI specimens with graphite nodule counts of 212±11 mm^(-2),308±9 mm^(-2),415±10 mm^(-2),and 589±13 mm^(-2) were designated as G-200,G-300,G-400,and G-600,respectively.Results indicate a progressive refinement of graphite with an increase in nodule counts.Specifically,the average nodule diameter decreases from 33.3±1.3μm for G-200 to 17.0±0.7μm for G-600.The nodularity of all samples is above 90%.Furthermore,the nodularity exhibits a corresponding increasing trend with the rise of graphite nodule count in ADIs.Additionally,the volume fraction of the austenite phase in ADIs decreases with an increase in graphite nodule count.The graphite nodule count changes the tensile strength and elongation of ADIs.The specimen G-400 exhibits the ultimate tensile strength of 897±11 MPa and an elongation of 9.8%±0.6%,representing 5.3%and 44.1%improvements respectively compared to G-200.To explore the wear resistance of ADIs with different graphite nodule counts,dry sliding friction and wear test of different samples was carried out at room temperature.At a high load of 25 N,G-400 exhibits superior wear resistance,achieving a 42%reduction in worn volume compared to G-200.Worn micromorphology identifies three primary wear mechanisms:microcutting-dominated abrasive wear,adhesive wear,and fatigue wear.展开更多
An alloyed cast iron was prepared by horizontal continuous casting.To study the salt bath temperature on microstructure and mechanical properties,the alloyed cast iron was firstly austenitized at 950℃for 3 h and then...An alloyed cast iron was prepared by horizontal continuous casting.To study the salt bath temperature on microstructure and mechanical properties,the alloyed cast iron was firstly austenitized at 950℃for 3 h and then austempered in salt bath at various temperatures(250℃,300℃and 350℃)for another 3 h.The scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),and X-ray diffraction(XRD)were employed to observe the microstructure and test the mechanical properties of the alloyed cast iron.Results show that the microstructure of the alloyed cast iron is mainly composed of acicular or feathery ferrite(bainite),retained austenite,carbide,and graphite.When austempered in salt bath at 250℃,300℃and 350℃for 3 h,the volume fractions of retained austenite are 33.1%,41.7%,and 57.2%,the thickness of acicular ferrite are 0.25μm,0.3μm,and 0.8μm.As the salt bath austempering temperature increases,the mechanical properties decrease due to the increase of the volume fraction of retained austenite and the thickness of acicular ferrite.The highest tensile strength of the alloyed cast iron is achieved when it is austempered at 250℃in a salt bath.Under these conditions,the tensile strength of the alloyed cast iron can reach 1,429 MPa.Tensile test results indicate that the fracture mechanism is predominantly brittle fracture.展开更多
Austempered ductile iron(ADI) parts have a unique combination of high strength and toughness with excellent design flexibility and low cost. These excellent properties are directly related to its microstructure called...Austempered ductile iron(ADI) parts have a unique combination of high strength and toughness with excellent design flexibility and low cost. These excellent properties are directly related to its microstructure called "ausferrite" that is the result of austempering heat treatment applied to ductile irons. Alloying elements increase ADI austemperability and change speeds of austempering reactions. Thus, they can affect ADI resultant microstructure and mechanical properties. In this paper, the effects of alloying elements on ADI mechanical properties, microstructural changes, two-stage austempering reactions, processing windows, austemperability, and other aspects are reviewed.展开更多
Effect of Cu. ni. Mn and,mo on the austemperability, Inicroslruclures and Inechanlcal properlies of auslempered duclile iron(ADI) weld metal have been investigated it has been demonslrated foal Mn and.Mo obviously enh...Effect of Cu. ni. Mn and,mo on the austemperability, Inicroslruclures and Inechanlcal properlies of auslempered duclile iron(ADI) weld metal have been investigated it has been demonslrated foal Mn and.Mo obviously enhance the austemperablity of weld metal. but a exdcess of Mn or Mo impairs the mechanical properties of ADI weld metal because of the formation or carbide at cell boundaries. Cu and Ni can improve the plasticity of ADI weld metal by suppressing the formation of carbide and by increaxsing the amount of austemite,.in order to obtain the weld having both the high austemperability and exceptional combination of mechanical properties. it is advantageous that welds is alloyed withe tWo Or more elements in relalivelv.small amounts.展开更多
The integrated processing of chromizing and austempering(termed chro-austempering)treatments was proposed.The microstructure and properties of a medium-carbon high-strength bainitic steel treated by chro-austempering ...The integrated processing of chromizing and austempering(termed chro-austempering)treatments was proposed.The microstructure and properties of a medium-carbon high-strength bainitic steel treated by chro-austempering treatments were investigated by metallography,scanning vibrating electrode technique,electrochemical workstation,and microhardness test.The results show that the high-strength bainitic steel with carbide-free bainite as matrix and the chromized layers on surfaces was successfully fabricated by chro-austempering treatment.The hardness of surface layers was about 3.5 times that of the bainite matrix.Meanwhile,the corrosion started from exposed bainitic matrix and proceeded along the depth direction,testifying that the surface corrosion resistance was significantly improved by chro-austempering treatment due to the formation of Cr_(7)C_(3)and(Cr,Fe)7_(7)C_(3)on the surface.展开更多
The presence of retained austenite gives rise to deterioration of the wear resistance and fracture strength of Cr-Mo steels in many cases. Thus, the effects of heat treatments including direct quenching, martempering,...The presence of retained austenite gives rise to deterioration of the wear resistance and fracture strength of Cr-Mo steels in many cases. Thus, the effects of heat treatments including direct quenching, martempering, and austempering on the retained austenite existing in the microstrueture of these steels were investigated. Specimens were austenized at 950 ℃ followed by direct quenching using compressed and still air. The specimens were also isothermally quenched in salt bath at 200 and 300 ℃ for 2, 8, 30, and 120min. Microstructures of the specimens were studied using optical microscope (traditional black and white etching as well as color etching), scanning electron microscope (SEM), microhardness tester, and X-ray diffraction (XRD). The results showed that the lowest amount of retained austenite in the microstructure was obtained in the specimens quenched isothermally at 300 ℃ for 120 min.展开更多
In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental...In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo) which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250℃ to 400 ℃. The impact toughness is 4-11 J.cm^-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.展开更多
The effects of austempering temperature on microstructure and surface residual stress of carbidic austempered ductile iron (CADI) grinding balls were systematically investigated in this work. The microstructures we...The effects of austempering temperature on microstructure and surface residual stress of carbidic austempered ductile iron (CADI) grinding balls were systematically investigated in this work. The microstructures were oberserved by optical metallography and analyized by X-ray diffraction. The surface residual stress measured by the cutting method is mainly composed of thermal stress and phase transformation stress.The thermal stress in grinding balls was determined by ANSYS simulation technique, and the surface phase transformation stress was obtained by subtracting the simulated surface thermal stress from the measured surface residual stress. Results show that all microstructures consist of ausferrite, white-bright zones (mixture of martensite and austenite), nodular graphite, and carbides. The distribution of ausferrite shows uniform. With the increase of austempering temperature, the volume fraction and carbon content of austenite increase, whereas the amount of white-bright zone decreases. In addition, the surface residual stress increases with the increase of austempering temperature. Only the tension exists at the austempering temperature of 200 ℃, and the pressure exists at the austempering temperature of 220-260 °C. The thermal stress changes from the tension on the inside with the radius of 0-35 mm to the pressure on the outside with the radius of 35-62.5 mm, and the stress balance state presents at the radius of 35 mm. It is also found that the transformation stress is related to the content of carbon-rich austenite, and will reduce by 5.03 MPa accompanied with 1vol.% increase of the austenite.The thermal compressive stress and the transformation tensile stress on the surface both decrease with the increase of the austempering temperature.展开更多
Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory ...Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, where three different kinds of finishing rolling reduction, and austemperings with various isothermal holding duration were applied. The results have shown that a multiphase microstructure consisting of polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. Mechanical properties increase with increasing the amount of deformation because of the stabilization of retained austenite. Ultimate tensile strength (σb), total elongation (σ) and the product of ultimate tensile strength and total elongation (σb-σ) reach the maximum values (791 MPa, 36% and 28476 MPa%, respectively) at optimal processes.展开更多
The austempering after hot roiling in hot roiled Si-Mn TRIP (transformation-induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanic...The austempering after hot roiling in hot roiled Si-Mn TRIP (transformation-induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanical properties of this kind of steel. The results showed that the strain induced transformation to martensite of retained austenite occurs in hot rolled Si-Mn TRIP steels. The sample exhibited a good combination of ultimate tensile strength and total elongation when it was held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase in isothermal holding time, and a further increase in the hold- ing duration resulted in the decrease of stability. The mechanical properties were optimal when holding for 25 min, and tensile strength and total elongation reached the maximum values (774 MPa and 33 ;, respectively).展开更多
Boronizing and austempering were successively applied to a GGG-40 grade ductile iron in order to combine the advantages of both process in a single treatment. This new procedure formed a 30 μm thick boride layer on t...Boronizing and austempering were successively applied to a GGG-40 grade ductile iron in order to combine the advantages of both process in a single treatment. This new procedure formed a 30 μm thick boride layer on the surface with subsurface matrix structure consisted of acicular ferrite and retained austenite. Reciprocating wear tests showed that successive boronizing and austempering exhibited considerably higher wear resistance than conventional boronizing having a subsurface matrix structure consisting of ferrite and pearlite.展开更多
In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and ...In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.展开更多
The equilibrium partition ratio, k, has been measured for Mn, Mo, Si, Ni and Cu in a ductile iron with composition(wt.%): 3.45 C, 0.25 Mn, 0.25 Mo, 2.45 Si, 0.5Ni and 0.5Cu with different nodule counts obtained from d...The equilibrium partition ratio, k, has been measured for Mn, Mo, Si, Ni and Cu in a ductile iron with composition(wt.%): 3.45 C, 0.25 Mn, 0.25 Mo, 2.45 Si, 0.5Ni and 0.5Cu with different nodule counts obtained from different section sizes of13, 25, 75 mm in the as cast, austenitized(at 870 °C for times 1, 4 and 6 hours) and austempered(at 375 °C for times 1 to 1,440 min) samples. Results show that Mn and Mo segregate positively at cell boundaries, but Si, Ni and Cu concentrate in an inverse manner in the vicinity ofgraphite nodules and there is a depletion ofthese elements at cell boundaries. Segregation curves for Ni and Cu are more smooth than for Si. Carbide formation has been observed at cell boundaries. Based on the results, the partition ratios for all elements decrease with increasing the nodule count. More carbide with coarser morphology has been observed in the microstructure with a lower nodule count. Austenitization for a longer time can decrease partition ratio, but cannot eliminate it entirely. Increasing the austenitization temperature has the same effect. Austenitizing parameters have no significant effect on carbides volume fraction. The kinetics ofaustempering is faster in higher nodule counts and subsequently better mechanical properties including higher ductility, strength and toughness have been observed for all austempering conditions studied.展开更多
The fracture characteristics of austempered spheroidal graphite aluminum cast iron had been investigated. The chemical content of the alloy was C3.2, Al2.2, Ni0.8 and Mg0.05 (in mass percent, %). Impact test samples...The fracture characteristics of austempered spheroidal graphite aluminum cast iron had been investigated. The chemical content of the alloy was C3.2, Al2.2, Ni0.8 and Mg0.05 (in mass percent, %). Impact test samples were produced from keel blocks cast in CO2 molding process. The oversized impact samples were austenitized at 850 and 950 ℃ for 2h followed by austempering at 300 and 400 ℃ for 30, 60, 120 and 180min. The austempered samples were machined and tested at room temperature. The impact strength values for those samples austempered at 400 ℃ varied between 90 and 110J. Lower bainitie structures showed impact strength values of 22 to 50J. The fractures of the samples were examined using SEM. The results showed that the upper bainitic fracture revealed a honey Comb-like topography, which confirmed the ductile fracture behavior. The lower bainitic fractures of those samples austempered for short times revealed brittle fracture.展开更多
Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is ...Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.展开更多
The effect of austempering temperature on the microstructure and properties of a high chromium white cast iron was investigated with the Rietveld refinement method. The result shows that the upper bainite exists in th...The effect of austempering temperature on the microstructure and properties of a high chromium white cast iron was investigated with the Rietveld refinement method. The result shows that the upper bainite exists in the sampie austempered at 623 K and the martensite, lower bainite, M7C3, and retained austenite exist in the samples austempered at 563 K and 593 K. The relative content of the retained austenite increases with increasing the austemper- ing temperature from 563 K to 623 K. The higher hardness, impact toughness and impact abrasive wear resistance can be obtained for the specimen austempered at 593 K.展开更多
The mechanical properties and wear resistance of the ultrafine bainitic steel austempered at various temperatures were investigated.Scanning electron microscopy(SEM)and X-ray diffraction were used to analyze the micro...The mechanical properties and wear resistance of the ultrafine bainitic steel austempered at various temperatures were investigated.Scanning electron microscopy(SEM)and X-ray diffraction were used to analyze the microstructure.The worn surfaces were observed via laser scanning confocal microscopy and SEM.Results indicated that,under low austempering temperatures,the mechanical properties differed,and the wear resistance remained basically unchanged.The tensile strength of the samples was above 1800 MPa,but only one sample austempered at 230°C had an elongation of more than 10%.The weight loss of samples was approximately linear with the cycles of wear and nonlinear with the loads.The samples showed little difference in wear resistance at different isothermal temperatures,whereas the thickness of their deformed layers varied greatly.The results are related to the initial hardness of the sample and the stability of the retained austenite.Meanwhile,the experimental results showed that the effect of austempering temperature on the wear resistance of ultrafine bainitic steel can be neglected under low applied loads and low austempering temperature.展开更多
The effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron has been investigated. Austempering of samples was performed at 325℃and 400℃after austenitizing at...The effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron has been investigated. Austempering of samples was performed at 325℃and 400℃after austenitizing at 875℃and 950℃. The sub-zero treatments were carried out by cooling down the samples to -30℃, -70℃and -196℃. The changes in volume fraction of austenite and mechanical properties were determined after cooling to each temperature. The austenite volume fraction of samples which were austenitized at 875℃and austempered at 325℃remained unchanged, whilst it reduced in samples austenitized at 950℃and 875℃for austempering temperature of 400℃. In these specimens, some austenite transformed to martensite after subzero cooling. Mechanical property measurements showed a slight increase in strength and hardness and decrease in elongation and toughness due to this transformation behavior.展开更多
Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could ...Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could be obtained in the hot rolled multiphase steel. Strain induced martensite transformation (SIMT) of retained austenite and TRIP effectively occur under straining owing to austempering after hot rolling, and mechanical properties of the present steel remain at a relatively high constant value for austempering at 400℃. The mechanical properties of the steel exhibited a good combination of tensile strength (791MPa) and total elongation (36%) because the stability of retained austenite is optimal when the steel is held for 20min.展开更多
基金support from the National Natural Science Foundation of China(Grant Nos.52201101 and 52274372)the National Key R&D Program of China(2021YFB3702404)the Fundamental Research Funds for the Central Universities(FRF-TP-22-013A1)。
文摘The microstructure evolution and bainitic transformation of an Fe-0.19C-4.03Mn-1.48Si steel subjected to near-M_(s)austempering treatment were systematically investigated by combining dilatometer,X-ray diffraction,and electron microscopy.Three additional austempering treatments with isothermal temperatures above M_(s)were used as benchmarks.Results show that the incubation period for the bainitic transformation occurs when the medium Mn steel is treated with the austempering temperature above M_(s).However,when subjected to near-M_(s)isothermal treatment,the medium Mn steel does not show an incubation period and has the fastest bainitic transformation rate.Moreover,the largest volume fraction of bainite with a value of 74.7%is obtained on the condition of near-M_(s)austempering treatment after cooling to room temperature.Dilatometer and microstructure evolution analysis indicates that the elimination of the incubation period and the fastest rate of bainitic transformation are related to the preformed martensite.The advent of preformed martensite allows the specimen to generate more bainite in a limited time.Considering bainitic ferrite nucleation at austenite grain boundaries and through autocatalysis at ferrite/austenite interfaces,a model is established to understand the kinetics of bainite formation and it can describe the nucleation rate of bainitic transformation well when compared to the experimental results.
基金supported by the Science and Technology Project of Hebei Education Department(Grant No.BJK2023075)the Science and Technology Project of Tianjin Education Department(Grant No.2022K1087)the Chunhui Project Foundation of the Education Department of China(Grant No.HZKY20220264).
文摘This study systematically investigated the effects of graphite nodule parameters,including count,average diameter,and nodularity,on microstructure and mechanical properties of austempered ductile irons(ADIs).The ADI specimens with graphite nodule counts of 212±11 mm^(-2),308±9 mm^(-2),415±10 mm^(-2),and 589±13 mm^(-2) were designated as G-200,G-300,G-400,and G-600,respectively.Results indicate a progressive refinement of graphite with an increase in nodule counts.Specifically,the average nodule diameter decreases from 33.3±1.3μm for G-200 to 17.0±0.7μm for G-600.The nodularity of all samples is above 90%.Furthermore,the nodularity exhibits a corresponding increasing trend with the rise of graphite nodule count in ADIs.Additionally,the volume fraction of the austenite phase in ADIs decreases with an increase in graphite nodule count.The graphite nodule count changes the tensile strength and elongation of ADIs.The specimen G-400 exhibits the ultimate tensile strength of 897±11 MPa and an elongation of 9.8%±0.6%,representing 5.3%and 44.1%improvements respectively compared to G-200.To explore the wear resistance of ADIs with different graphite nodule counts,dry sliding friction and wear test of different samples was carried out at room temperature.At a high load of 25 N,G-400 exhibits superior wear resistance,achieving a 42%reduction in worn volume compared to G-200.Worn micromorphology identifies three primary wear mechanisms:microcutting-dominated abrasive wear,adhesive wear,and fatigue wear.
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20235,52171127)Guangdong East Northwest New R&D Institution Construction(No.2019B090905009)Guangdong Aluminum Strip and Foil Processing Enterprise Research Institute(No.2014B090903012).
文摘An alloyed cast iron was prepared by horizontal continuous casting.To study the salt bath temperature on microstructure and mechanical properties,the alloyed cast iron was firstly austenitized at 950℃for 3 h and then austempered in salt bath at various temperatures(250℃,300℃and 350℃)for another 3 h.The scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),and X-ray diffraction(XRD)were employed to observe the microstructure and test the mechanical properties of the alloyed cast iron.Results show that the microstructure of the alloyed cast iron is mainly composed of acicular or feathery ferrite(bainite),retained austenite,carbide,and graphite.When austempered in salt bath at 250℃,300℃and 350℃for 3 h,the volume fractions of retained austenite are 33.1%,41.7%,and 57.2%,the thickness of acicular ferrite are 0.25μm,0.3μm,and 0.8μm.As the salt bath austempering temperature increases,the mechanical properties decrease due to the increase of the volume fraction of retained austenite and the thickness of acicular ferrite.The highest tensile strength of the alloyed cast iron is achieved when it is austempered at 250℃in a salt bath.Under these conditions,the tensile strength of the alloyed cast iron can reach 1,429 MPa.Tensile test results indicate that the fracture mechanism is predominantly brittle fracture.
文摘Austempered ductile iron(ADI) parts have a unique combination of high strength and toughness with excellent design flexibility and low cost. These excellent properties are directly related to its microstructure called "ausferrite" that is the result of austempering heat treatment applied to ductile irons. Alloying elements increase ADI austemperability and change speeds of austempering reactions. Thus, they can affect ADI resultant microstructure and mechanical properties. In this paper, the effects of alloying elements on ADI mechanical properties, microstructural changes, two-stage austempering reactions, processing windows, austemperability, and other aspects are reviewed.
文摘Effect of Cu. ni. Mn and,mo on the austemperability, Inicroslruclures and Inechanlcal properlies of auslempered duclile iron(ADI) weld metal have been investigated it has been demonslrated foal Mn and.Mo obviously enhance the austemperablity of weld metal. but a exdcess of Mn or Mo impairs the mechanical properties of ADI weld metal because of the formation or carbide at cell boundaries. Cu and Ni can improve the plasticity of ADI weld metal by suppressing the formation of carbide and by increaxsing the amount of austemite,.in order to obtain the weld having both the high austemperability and exceptional combination of mechanical properties. it is advantageous that welds is alloyed withe tWo Or more elements in relalivelv.small amounts.
基金The National Natural Science Foundation of China(NSFC)(51874216 and 52104381)the Key Project of Hebei Iron and Steel Group(HG219313)+2 种基金the Open Fund of Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking(KF-20-4)Natural Science Foundation of Hubei(2021CFB127)China Postdoctoral Science Foundation(2021M702539).
文摘The integrated processing of chromizing and austempering(termed chro-austempering)treatments was proposed.The microstructure and properties of a medium-carbon high-strength bainitic steel treated by chro-austempering treatments were investigated by metallography,scanning vibrating electrode technique,electrochemical workstation,and microhardness test.The results show that the high-strength bainitic steel with carbide-free bainite as matrix and the chromized layers on surfaces was successfully fabricated by chro-austempering treatment.The hardness of surface layers was about 3.5 times that of the bainite matrix.Meanwhile,the corrosion started from exposed bainitic matrix and proceeded along the depth direction,testifying that the surface corrosion resistance was significantly improved by chro-austempering treatment due to the formation of Cr_(7)C_(3)and(Cr,Fe)7_(7)C_(3)on the surface.
文摘The presence of retained austenite gives rise to deterioration of the wear resistance and fracture strength of Cr-Mo steels in many cases. Thus, the effects of heat treatments including direct quenching, martempering, and austempering on the retained austenite existing in the microstrueture of these steels were investigated. Specimens were austenized at 950 ℃ followed by direct quenching using compressed and still air. The specimens were also isothermally quenched in salt bath at 200 and 300 ℃ for 2, 8, 30, and 120min. Microstructures of the specimens were studied using optical microscope (traditional black and white etching as well as color etching), scanning electron microscope (SEM), microhardness tester, and X-ray diffraction (XRD). The results showed that the lowest amount of retained austenite in the microstructure was obtained in the specimens quenched isothermally at 300 ℃ for 120 min.
基金supported by the National Natural Science Foundation of China(No.50974080)
文摘In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo) which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250℃ to 400 ℃. The impact toughness is 4-11 J.cm^-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.
基金financially supported by the National Natural Science Foundation of China(NSFC)(Grant No.51601054)the Natural Science Foundation of Hebei Province of China(Grant Nos.E2017202095 and E2016202100)+1 种基金the Plan Program for International S&T Cooperation Projects of Hebei Province of China(Grant No.17391004D)the Tianjin Science and Technology Support Program(Grant No.16YFZCGX00140)
文摘The effects of austempering temperature on microstructure and surface residual stress of carbidic austempered ductile iron (CADI) grinding balls were systematically investigated in this work. The microstructures were oberserved by optical metallography and analyized by X-ray diffraction. The surface residual stress measured by the cutting method is mainly composed of thermal stress and phase transformation stress.The thermal stress in grinding balls was determined by ANSYS simulation technique, and the surface phase transformation stress was obtained by subtracting the simulated surface thermal stress from the measured surface residual stress. Results show that all microstructures consist of ausferrite, white-bright zones (mixture of martensite and austenite), nodular graphite, and carbides. The distribution of ausferrite shows uniform. With the increase of austempering temperature, the volume fraction and carbon content of austenite increase, whereas the amount of white-bright zone decreases. In addition, the surface residual stress increases with the increase of austempering temperature. Only the tension exists at the austempering temperature of 200 ℃, and the pressure exists at the austempering temperature of 220-260 °C. The thermal stress changes from the tension on the inside with the radius of 0-35 mm to the pressure on the outside with the radius of 35-62.5 mm, and the stress balance state presents at the radius of 35 mm. It is also found that the transformation stress is related to the content of carbon-rich austenite, and will reduce by 5.03 MPa accompanied with 1vol.% increase of the austenite.The thermal compressive stress and the transformation tensile stress on the surface both decrease with the increase of the austempering temperature.
基金This work was supported by the National Natural Science Foundation of China(No.50334010)The author(Zhuang LI)also acknowledges the support of the Doctor Degree Thesis Subsidization Item of Northeastern University(No.200302).
文摘Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, where three different kinds of finishing rolling reduction, and austemperings with various isothermal holding duration were applied. The results have shown that a multiphase microstructure consisting of polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. Mechanical properties increase with increasing the amount of deformation because of the stabilization of retained austenite. Ultimate tensile strength (σb), total elongation (σ) and the product of ultimate tensile strength and total elongation (σb-σ) reach the maximum values (791 MPa, 36% and 28476 MPa%, respectively) at optimal processes.
基金Item Sponsored by National Natural Science Foundation of China (50334010)
文摘The austempering after hot roiling in hot roiled Si-Mn TRIP (transformation-induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanical properties of this kind of steel. The results showed that the strain induced transformation to martensite of retained austenite occurs in hot rolled Si-Mn TRIP steels. The sample exhibited a good combination of ultimate tensile strength and total elongation when it was held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase in isothermal holding time, and a further increase in the hold- ing duration resulted in the decrease of stability. The mechanical properties were optimal when holding for 25 min, and tensile strength and total elongation reached the maximum values (774 MPa and 33 ;, respectively).
文摘Boronizing and austempering were successively applied to a GGG-40 grade ductile iron in order to combine the advantages of both process in a single treatment. This new procedure formed a 30 μm thick boride layer on the surface with subsurface matrix structure consisted of acicular ferrite and retained austenite. Reciprocating wear tests showed that successive boronizing and austempering exhibited considerably higher wear resistance than conventional boronizing having a subsurface matrix structure consisting of ferrite and pearlite.
基金financially supported by the fund of the Key Projects of Shaanxi Provincial International Technology Cooperation Plan(2013KW16)the Scientific Research Program funded by Shaanxi Provincial Education Department(2013JK0914)+2 种基金the State Key Laboratory of Solidifi cation Processing in NWPU(SKLSP201115)the Scientific Research Project of Xi'an University of Technology(2013CX004)the fund of the Key Laboratory of Electrical Materials and Infi ltration Technology of Shaanxi Province,China(2014)
文摘In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.
基金the Sahand University of Technology for providing the research facilities and financial support
文摘The equilibrium partition ratio, k, has been measured for Mn, Mo, Si, Ni and Cu in a ductile iron with composition(wt.%): 3.45 C, 0.25 Mn, 0.25 Mo, 2.45 Si, 0.5Ni and 0.5Cu with different nodule counts obtained from different section sizes of13, 25, 75 mm in the as cast, austenitized(at 870 °C for times 1, 4 and 6 hours) and austempered(at 375 °C for times 1 to 1,440 min) samples. Results show that Mn and Mo segregate positively at cell boundaries, but Si, Ni and Cu concentrate in an inverse manner in the vicinity ofgraphite nodules and there is a depletion ofthese elements at cell boundaries. Segregation curves for Ni and Cu are more smooth than for Si. Carbide formation has been observed at cell boundaries. Based on the results, the partition ratios for all elements decrease with increasing the nodule count. More carbide with coarser morphology has been observed in the microstructure with a lower nodule count. Austenitization for a longer time can decrease partition ratio, but cannot eliminate it entirely. Increasing the austenitization temperature has the same effect. Austenitizing parameters have no significant effect on carbides volume fraction. The kinetics ofaustempering is faster in higher nodule counts and subsequently better mechanical properties including higher ductility, strength and toughness have been observed for all austempering conditions studied.
文摘The fracture characteristics of austempered spheroidal graphite aluminum cast iron had been investigated. The chemical content of the alloy was C3.2, Al2.2, Ni0.8 and Mg0.05 (in mass percent, %). Impact test samples were produced from keel blocks cast in CO2 molding process. The oversized impact samples were austenitized at 850 and 950 ℃ for 2h followed by austempering at 300 and 400 ℃ for 30, 60, 120 and 180min. The austempered samples were machined and tested at room temperature. The impact strength values for those samples austempered at 400 ℃ varied between 90 and 110J. Lower bainitie structures showed impact strength values of 22 to 50J. The fractures of the samples were examined using SEM. The results showed that the upper bainitic fracture revealed a honey Comb-like topography, which confirmed the ductile fracture behavior. The lower bainitic fractures of those samples austempered for short times revealed brittle fracture.
基金supported by Swedish Institute of Sweden (No. 200/01954/2007/China Bilateral programme)
文摘Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.
基金Item Sponsored by Key Project on Natural Science for the Education Department of Anhui Province (2006KJ080A)
文摘The effect of austempering temperature on the microstructure and properties of a high chromium white cast iron was investigated with the Rietveld refinement method. The result shows that the upper bainite exists in the sampie austempered at 623 K and the martensite, lower bainite, M7C3, and retained austenite exist in the samples austempered at 563 K and 593 K. The relative content of the retained austenite increases with increasing the austemper- ing temperature from 563 K to 623 K. The higher hardness, impact toughness and impact abrasive wear resistance can be obtained for the specimen austempered at 593 K.
基金the National Key Research and Development Plan of China(No.2016YFB0300205)the National Natural Science Foundation of China(Nos.U1810207 and 51601174).
文摘The mechanical properties and wear resistance of the ultrafine bainitic steel austempered at various temperatures were investigated.Scanning electron microscopy(SEM)and X-ray diffraction were used to analyze the microstructure.The worn surfaces were observed via laser scanning confocal microscopy and SEM.Results indicated that,under low austempering temperatures,the mechanical properties differed,and the wear resistance remained basically unchanged.The tensile strength of the samples was above 1800 MPa,but only one sample austempered at 230°C had an elongation of more than 10%.The weight loss of samples was approximately linear with the cycles of wear and nonlinear with the loads.The samples showed little difference in wear resistance at different isothermal temperatures,whereas the thickness of their deformed layers varied greatly.The results are related to the initial hardness of the sample and the stability of the retained austenite.Meanwhile,the experimental results showed that the effect of austempering temperature on the wear resistance of ultrafine bainitic steel can be neglected under low applied loads and low austempering temperature.
文摘The effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron has been investigated. Austempering of samples was performed at 325℃and 400℃after austenitizing at 875℃and 950℃. The sub-zero treatments were carried out by cooling down the samples to -30℃, -70℃and -196℃. The changes in volume fraction of austenite and mechanical properties were determined after cooling to each temperature. The austenite volume fraction of samples which were austenitized at 875℃and austempered at 325℃remained unchanged, whilst it reduced in samples austenitized at 950℃and 875℃for austempering temperature of 400℃. In these specimens, some austenite transformed to martensite after subzero cooling. Mechanical property measurements showed a slight increase in strength and hardness and decrease in elongation and toughness due to this transformation behavior.
基金supported by the National Natural Science Foundation of China(No.50334010)the Doctor Degree Thesis Subsidization Item of Northeastern University(No.200302).
文摘Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could be obtained in the hot rolled multiphase steel. Strain induced martensite transformation (SIMT) of retained austenite and TRIP effectively occur under straining owing to austempering after hot rolling, and mechanical properties of the present steel remain at a relatively high constant value for austempering at 400℃. The mechanical properties of the steel exhibited a good combination of tensile strength (791MPa) and total elongation (36%) because the stability of retained austenite is optimal when the steel is held for 20min.