Coulomb potential may induce a significant angular offset to the two-dimensional photoelectron momentum distributions for atoms subject to strong elliptically polarized laser fields.In the attoclock experiment,this of...Coulomb potential may induce a significant angular offset to the two-dimensional photoelectron momentum distributions for atoms subject to strong elliptically polarized laser fields.In the attoclock experiment,this offset usually cannot be easily disentangled from the contribution of tunneling delay and poses a main obstacle to the precise measurement of tunneling delay.Based on semiclassical calculations,here,we propose a method to extract the equivalent temporal offset induced solely by Coulomb potential(TOCP)in an attoclock experiment.Our calculations indicate that,at constant laser intensity,the TOCP shows distinctive wavelength dependence laws for different model atoms,and the ratio of the target atom’s TOCP to that of H becomes insensitive to wavelength and linearly proportional to(2Ip)?3/2,where Ip is the ionization potential of the target atom.This wavelength and Ip dependence of TOCP can be further applied to extract the Coulomb potential influence.Our work paves the way for an accurate measurement of the tunneling delay in the tunneling ionization of atoms subject to intense elliptically polarized laser fields.展开更多
This study analytically examines the ionization of atoms in strong near-circular laser fields.The classic Keldysh-Rutherford(KR)Coulomb-scattering(CS)model[Phys.Rev.Lett.121123201(2018)]successfully explained the atto...This study analytically examines the ionization of atoms in strong near-circular laser fields.The classic Keldysh-Rutherford(KR)Coulomb-scattering(CS)model[Phys.Rev.Lett.121123201(2018)]successfully explained the attoclock experimental curve for the H atom at lower laser intensities.Here,we develop a semiclassical model that includes the initial conditions related to the quantum properties of tunneling in the KR model at the beginning of the scattering process.This model is able to explain recent attoclock experimental curves over a wider range of laser and atomic parameters.Our results show the importance of system symmetry and quantum effects in attoclock measurements,suggesting the complex role of the Coulomb potential in strong-field ionization.展开更多
Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast ele...Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2019YFA0307702,2019YFA0307704,and 2016YFA0401100)the National Natural Science Foundation of China(Nos.11974383,11834015,11847243,11804374,11874392,11774387,11527807,and 11425414)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB21010400)。
文摘Coulomb potential may induce a significant angular offset to the two-dimensional photoelectron momentum distributions for atoms subject to strong elliptically polarized laser fields.In the attoclock experiment,this offset usually cannot be easily disentangled from the contribution of tunneling delay and poses a main obstacle to the precise measurement of tunneling delay.Based on semiclassical calculations,here,we propose a method to extract the equivalent temporal offset induced solely by Coulomb potential(TOCP)in an attoclock experiment.Our calculations indicate that,at constant laser intensity,the TOCP shows distinctive wavelength dependence laws for different model atoms,and the ratio of the target atom’s TOCP to that of H becomes insensitive to wavelength and linearly proportional to(2Ip)?3/2,where Ip is the ionization potential of the target atom.This wavelength and Ip dependence of TOCP can be further applied to extract the Coulomb potential influence.Our work paves the way for an accurate measurement of the tunneling delay in the tunneling ionization of atoms subject to intense elliptically polarized laser fields.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174239,12347165,and 12404330)Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.23JSY022)+2 种基金Natural Science Basic Research Program of Shaanxi(Grant No.2022JM-015)Hebei Natural Science Foundation(Grant No.A2022205002)Science and Technology Project of Hebei Education Department(Grant No.QN2022143)。
文摘This study analytically examines the ionization of atoms in strong near-circular laser fields.The classic Keldysh-Rutherford(KR)Coulomb-scattering(CS)model[Phys.Rev.Lett.121123201(2018)]successfully explained the attoclock experimental curve for the H atom at lower laser intensities.Here,we develop a semiclassical model that includes the initial conditions related to the quantum properties of tunneling in the KR model at the beginning of the scattering process.This model is able to explain recent attoclock experimental curves over a wider range of laser and atomic parameters.Our results show the importance of system symmetry and quantum effects in attoclock measurements,suggesting the complex role of the Coulomb potential in strong-field ionization.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.92150105,11834004,12227807,and 12241407)the Science and Technology Commission of Shanghai Municipality (Grant No.21ZR1420100)。
文摘Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.