期刊文献+
共找到162篇文章
< 1 2 9 >
每页显示 20 50 100
Design and simulation of fault diagnosis based on NUIO/LMI for satellite attitude control systems 被引量:2
1
作者 Yuehua Cheng Qian Hou Bin Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第4期581-587,共7页
This paper presents a scheme of fault diagnosis for flexible satellites during orbit maneuver. The main contribution of the paper is related to the design of the nonlinear input observer which can avoid false alarm ar... This paper presents a scheme of fault diagnosis for flexible satellites during orbit maneuver. The main contribution of the paper is related to the design of the nonlinear input observer which can avoid false alarm arising from the disturbance from orbit control force. The effects of orbit control force on the fault diagnosis system for satellite attitude control systems, including the disturbing torque caused by the misalignments and the model uncertainty caused by the fuel consumed, are discussed, where standard Lu- enberger observer cannot work well. Then the nonlinear unknown input observer is proposed to decouple faults from disturbance, Besides, a linear matrix inequality approach is adopted to reduce the effect of nonlinear part and model uncertainties on the observer. The numerical and semi-physical simulation demonstrates the effectiveness of the proposed observer for the fault diagnosis system of the satellite during orbit maneuver. 展开更多
关键词 orbit control flexible satellite attitude control system nonlinear unknown input observer (NUIO) fault diagnosis.
在线阅读 下载PDF
Integrated Power and Single Axis Attitude Control System with Two Flywheels 被引量:1
2
作者 HAN Bangcheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期564-575,共12页
The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tra... The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tracking.In the IPACS,the configuration design of IPACS is usually not considered,and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved.In this paper,an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed.The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved.A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed,which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table.Both DC bus and a single axis attitude are the regulation goals.An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems.The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller.The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels.The proposed research provides theory basis for design of the IPACS. 展开更多
关键词 integrated power and attitude control system(IPACS) magnetically suspended flywheel attitude control computer simulation
在线阅读 下载PDF
Framework of Combined Adaptive and Non-adaptive Attitude Control System for a Helicopter Experimental System
3
作者 Akira Inoue 《International Journal of Automation and computing》 EI 2006年第3期229-234,共6页
This paper presents a framework of a combined adaptive and non-adaptive attitude control system for a helicopter experimental system. The design method is based on a combination of adaptive nonlinear control and non-a... This paper presents a framework of a combined adaptive and non-adaptive attitude control system for a helicopter experimental system. The design method is based on a combination of adaptive nonlinear control and non-adaptive nonlinear control. With regard to detailed attitude control system design, two schemes are shown for different application cases. 展开更多
关键词 Nonlinear control adaptive nonlinear control attitude control system helicopter.
在线阅读 下载PDF
Bias Momentum Attitude Control System Using Energy/Momentum Wheels 被引量:6
4
作者 贾英宏 徐世杰 汤亮 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第4期193-199,共7页
The integrated power and attitude control for a bias momentum attitudecontrol system is investigated. A pair of counter-spinning wheels is used to provide the biasangular momentum and store/ discharge energy for power... The integrated power and attitude control for a bias momentum attitudecontrol system is investigated. A pair of counter-spinning wheels is used to provide the biasangular momentum and store/ discharge energy for power requirement of the devices on the spacecraft.The roll/yaw motion is controlled by pitch magnetic dipole moment. The torque-based control law ofthe wheels is designed, so that the desired pitch control torque is provided and the operation ofcharging/discharging energy is carried out based on the given power. System singularity in thecontrol law of wheels is fully avoided by keeping the wheels counter-spinning. A power managementscheme using kinetic energy feedback is proposed to keep energy balance, which can avoid wheelsaturation caused by superfluous energy. The minimum moment of inertia of the wheels is limited bythe maximum bias angular momentum and the minimum energy, such constrains are analyzed incombination with the geometrical method. Numerical simulation results are presented to demonstratethe effectiveness of the control scheme. 展开更多
关键词 attitude control integrated power and attitude control bias momentum energy/momentum wheel
在线阅读 下载PDF
A comparing design of satellite attitude control system based on reaction wheel
5
作者 程颢 葛升民 沈毅 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第5期638-642,共5页
The disturbance caused by the reaction wheel with a current controller greatly influences the accuracy and stability of the satellite attitude control system. To solve this problem, the idea of speed feedback compensa... The disturbance caused by the reaction wheel with a current controller greatly influences the accuracy and stability of the satellite attitude control system. To solve this problem, the idea of speed feedback compensation control reaction wheel is put forward. This paper introduces the comparison on design and performance of two satellite attitude control systems, which are separately based on the current control reaction wheel and the speed feedback compensation control reaction wheel. Analysis shows that the speed feedback compensation control flywheel system may effectively suppress the torque fluctuation. Simulation results indicate that the satellite attitude control system with the speed feedback compensation control flywheel has improved performance. 展开更多
关键词 compensation control reaction wheel attitude control
在线阅读 下载PDF
Neural Network Based Diagnostics of Actuator for an Attitude Control System
6
作者 SALOMON Montenegro 《Computer Aided Drafting,Design and Manufacturing》 2010年第2期59-67,共9页
The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic ... The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, these neurons correspond to a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed. 展开更多
关键词 SATELLITE attitude control momentum wheel neural network fault detection
在线阅读 下载PDF
New Approach of Hybrid Momentum Exchange Devices for Spacecraft Attitude Control System
7
作者 Haytham M.Gamal Mohammed A.A.Desouky +1 位作者 Mahmoud Ashry Ahmed Esmat Hussien 《Guidance, Navigation and Control》 2025年第1期115-137,共23页
Control moment gyroscopes(CMGs)are a favorable choice for spacecraft attitude control systems thanks to their torque amplification capability.However,their performance is hindered by geometric singularities,which can ... Control moment gyroscopes(CMGs)are a favorable choice for spacecraft attitude control systems thanks to their torque amplification capability.However,their performance is hindered by geometric singularities,which can severely limit control capabilities during attitude maneuvers.This paper proposes a hybrid attitude control system incorporating a single reaction wheel into the standard minimum redundant four-CMG pyramid configuration,providing an additional degree-of-freedom to avoid and escape singularities effectively.A comprehensive mathematical analysis of the system's Jacobian matrix,using row echelon form,is performed alongside a geometrical analysis of the hybrid configuration's momentum envelope.These analyses demonstrate the reflection of a reaction wheel inclusion into the system of four CMGs in the improvement of the system's capacity to avoid/escape singularity.Additionally,an asymptotic control law and an adapted steering law are developed to optimize control performance.The effectiveness of the proposed hybrid system is validated through simulation,which includes a comparative analysis with traditional CMG-only system.The results highlight the superiority of the hybrid system in handling singularities. 展开更多
关键词 control moment gyro SINGULARITY reaction wheel attitude control system
在线阅读 下载PDF
Attitude control of flexible satellite via three-dimensional magnetically suspended wheel
8
作者 J.TAYEBI Yingjie CHEN +1 位作者 Ti CHEN Shiyuan JIA 《Applied Mathematics and Mechanics(English Edition)》 2025年第3期555-572,共18页
This paper proposes an attitude control strategy for a flexible satellite equipped with an orthogonal cluster of three-dimensional(3D)magnetically suspended wheels(MSWs).The mathematical model for the satellite incorp... This paper proposes an attitude control strategy for a flexible satellite equipped with an orthogonal cluster of three-dimensional(3D)magnetically suspended wheels(MSWs).The mathematical model for the satellite incorporating flexible appendages and an orthogonal cluster of magnetically suspended reaction wheel actuators is initially developed.After that,an adaptive attitude controller is designed with a switching surface of variable structure,an adaptive law for estimating inertia matrix uncertainty,and a fuzzy disturbance observer for estimating disturbance torques.Additionally,a Moore-Penrose-based steering law is proposed to derive the tilt angle commands of the orthogonal configuration of the 3D MSW to follow the designed control signal.Finally,numerical simulations are presented to validate the effectiveness of the proposed control strategy. 展开更多
关键词 flexible satellite three-dimensional(3D)magnetically suspended wheel(MSW) attitude control adaptive control disturbance observer
在线阅读 下载PDF
Effect of operational condition of rotational subsystem on attitude control for space solar power station 被引量:3
9
作者 Xiangfei JI Baoyan DUAN +3 位作者 Yiqun ZHANG Guanheng FAN Meng LI Yang YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期289-297,共9页
Space Solar Power Station(SSPS)is a giant spacecraft to collect space solar energy and transmit electric energy to the ground by using the wireless transmission technology.As a concentrated space solar power station,S... Space Solar Power Station(SSPS)is a giant spacecraft to collect space solar energy and transmit electric energy to the ground by using the wireless transmission technology.As a concentrated space solar power station,SSPS via the Orb-shape Membrane Energy Gathering Array(OMEGA)system is comprised of the concentrator subsystem,the photovoltaic array subsystem and the transmitting antenna subsystem.In this manuscript,the comprehensive study on the coordinate kinematic among subsystems is carried out.Firstly,kinematic analysis and dynamic analysis are conducted.Secondly,under the condition of ideal attitude,the influence of the moving condition of the Photovoltaic(PV)array on the overall system is studied.Finally,the control ability for the deviation attitude caused by the acceleration process of the photovoltaic array is studied.The simulation results demonstrate the serious influence of the angular acceleration of the photovoltaic array on the system’s attitude and the validity of the designed attitude control system. 展开更多
关键词 Space solar power station SSPS-OMEGA Kinematic analysis Dynamic analysis attitude control system
原文传递
Guaranteed Cost Attitude Tracking Control for Uncertain Quadrotor Unmanned Aerial Vehicle Under Safety Constraints 被引量:1
10
作者 Qian Ma Peng Jin Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1447-1457,共11页
In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system a... In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system and reference system.This transformation aims to convert the tracking control prob-lem into a stabilization control problem.Then,control barrier function and disturbance attenuation function are designed to characterize the violations of safety constraints and tolerance of uncertain disturbances,and they are incorporated into the reward function as penalty items.Based on the modified reward function,the problem is simplified as the optimal regulation problem of the nominal augmented system,and a new Hamilton-Jacobi-Bellman equation is developed.Finally,critic-only rein-forcement learning algorithm with a concurrent learning tech-nique is employed to solve the Hamilton-Jacobi-Bellman equa-tion and obtain the optimal controller.The proposed algorithm can not only ensure the reward function within an upper bound in the presence of uncertain disturbances,but also enforce safety constraints.The performance of the algorithm is evaluated by the numerical simulation. 展开更多
关键词 attitude tracking control quadrotor unmanned aerial vehicle(QUAV) reinforcement learning safety constraints uncertain disturbances.
在线阅读 下载PDF
Review on Attitude Determination and Control Methods for Satellite Emergency Recovery 被引量:1
11
作者 WANG Zhenhua YANG Sen +1 位作者 ZHOU Zeya HE Yikang 《Transactions of Nanjing University of Aeronautics and Astronautics》 CSCD 2024年第6期675-688,共14页
Once a satellite experiences extreme abnormal conditions,it may face serious consequences such as structural damages,material low-temperature failures,propellant freezing,and even whole satellite failures if it is not... Once a satellite experiences extreme abnormal conditions,it may face serious consequences such as structural damages,material low-temperature failures,propellant freezing,and even whole satellite failures if it is not rescued in time.Therefore,it is significantly important to study emergency recovery technologies for satellites.The research progress on attitude determination and control technologies during satellite emergency recovery is reviewed in detail.Moreover,the research achievements in the design and implementation of satellite emergency modes are summarized.By synthesizing and analyzing relevant literature,this paper aims to provide reference and guidance for emergency recovery technologies in response to extremely abnormal satellite states. 展开更多
关键词 satellite emergency recovery attitude determination attitude control
在线阅读 下载PDF
Attitude tracking control for variable structure near space vehicles based on switched nonlinear systems 被引量:22
12
作者 Wang Yufei Jiang Changsheng Wu Qingxian 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第1期186-193,共8页
An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive f... An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive fuzzy systems are employed for approximating unknown functions in the flight dynamic model and their parameters are updated online. To improve the flight robust performance, robust controllers with adaptive gains are designed to compensate for the approximation errors and thus they have less design conservation. Moreover, a systematic procedure is developed for the synthesis of adaptive fuzzy dynamic surface control (DSC) approach. According to the common Lyapunov function theory, it is proved that all signals of the closed-loop system are uniformly ultimately bounded by the continuous controller. The simulation results demonstrate the effectiveness and robustness of the proposed control scheme. 展开更多
关键词 attitude control Fuzzy control Robust control Switched nonlinear systems Variable structure near space vehicle
原文传递
Reentry Attitude Tracking Control for Hypersonic Vehicle with Reaction Control Systems via Improved Model Predictive Control Approach 被引量:4
13
作者 Kai Liu Zheng Hou +2 位作者 Zhiyong She Jian Guo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第1期131-148,共18页
This paper studies the reentry attitude tracking control problem for hypersonic vehicles(HSV)equipped with reaction control systems(RCS)and aerodynamic surfaces.The attitude dynamical model of the hypersonic vehicles ... This paper studies the reentry attitude tracking control problem for hypersonic vehicles(HSV)equipped with reaction control systems(RCS)and aerodynamic surfaces.The attitude dynamical model of the hypersonic vehicles is established,and the simplified longitudinal and lateral dynamic models are obtained,respectively.Then,the compound control allocation strategy is provided and the model predictive controller is designed for the pitch channel.Furthermore,considering the complicated jet interaction effect of HSV during RCS is working,an improved model predictive control approach is presented by introducing the online parameter estimation of the jet interaction coefficient for dealing with the uncertainty and disturbance.Moreover,considering the strong coupling effect between the yaw channel and roll channel,a coupled model predictive controller is designed by introducing the feedback of sideslip angle into the roll control channel to eliminate the coupling effect.Finally,the comparison simulations using the classical control method,MPC and IMPC approach are given to demonstrate the effectiveness and efficiency of the presented IMPC scheme. 展开更多
关键词 Hypersonic vehicle reentry attitude control mode predictive control jet interference factor reaction control systems
在线阅读 下载PDF
Design of an Executable ANFIS-based Control System to Improve the Attitude and Altitude Performances of a Quadcopter Drone 被引量:3
14
作者 Mohammad Al-Fetyani Mohammad Hayajneh Adham Alsharkawi 《International Journal of Automation and computing》 EI CSCD 2021年第1期124-140,共17页
Nowadays,quadcopters are presented in many life applications which require the performance of automatic takeoff,trajectory tracking,and automatic landing.Thus,researchers are aiming to enhance the performance of these... Nowadays,quadcopters are presented in many life applications which require the performance of automatic takeoff,trajectory tracking,and automatic landing.Thus,researchers are aiming to enhance the performance of these vehicles through low-cost sensing solutions and the design of executable and robust control techniques.Due to high nonlinearities,strong couplings and under-actuation,the control design process of a quadcopter is a rather challenging task.Therefore,the main objective of this work is demonstrated through two main aspects.The first is the design of an adaptive neuro-fuzzy inference system(ANFIS)controller to develop the attitude and altitude of a quadcopter.The second is to create a systematic framework for implementing flight controllers in embedded systems.A suitable model of the quadcopter is also developed by taking into account aerodynamics effects.To show the effectiveness of the ANFIS approach,the performance of a well-trained ANFIS controller is compared to a classical proportional-derivative(PD)controller and a properly tuned fuzzy logic controller.The controllers are compared and tested under several different flight conditions including the capability to reject external disturbances.In the first stage,performance evaluation takes place in a nonlinear simulation environment.Then,the ANFIS-based controllers alongside attitude and position estimators,and precision landing algorithms are implemented for executions in a real-time autopilot.In precision landing systems,an IR-camera is used to detect an IR-beacon on the ground for precise positioning.Several flight tests of a quadcopter are conducted for results validation.Both simulations and experiments demonstrated superior results for quadcopter stability in different flight scenarios. 展开更多
关键词 Quadcopter proportional integral derivate(PID)control fuzzy control adaptive neuro-fuzzy altitude control attitude control
原文传递
Adaptive Predefined-Time Attitude Tracking Control for Quadrotor Using a Novel Terminal Sliding Mode Approach
15
作者 Tianshuo Ge Tengshuo Dong +1 位作者 Baihai Zhang Fenxi Yao 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期530-546,共17页
This paper proposes an adaptive predefined-time terminal sliding mode control(APTSMC)scheme for attitude tracking control of a quadrotor.To create this,an adaptive predefined-time stability controller based on a termi... This paper proposes an adaptive predefined-time terminal sliding mode control(APTSMC)scheme for attitude tracking control of a quadrotor.To create this,an adaptive predefined-time stability controller based on a terminal sliding mode is constructed.The upper bound of convergence time in the proposed scheme can be adjusted by the explicit parameters during the design process of the controller.In addition,it is proved that the attitude tracking error will converge within two periods of the preset time.These two periods are set between two ranges:From the initial values to the sliding mode surface and from the sliding mode surface to the region near the origin.Furthermore,an adaptive law is adopted to eliminate unknown external disturbances and the effects of the uncertainties in the quadrotor model,so it is unnecessary to require the prior knowledge of the upper bound of the perturbations.Simulation results are produced and comparative case studies are carried out to demonstrate that the proposed scheme has faster convergence speed and smaller tracking errors. 展开更多
关键词 predefined-time QUADROTOR attitude tracking control adaptive terminal sliding mode
在线阅读 下载PDF
ROBUST H_∞ DESIGN OF THE ATTITUDE CONTROL/MOMENTUM MANAGEMENT SYSTEM FOR A SPACE STATION 被引量:1
16
作者 周凤岐 赵超 周军 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1999年第4期227-230,共4页
Through input-output decom position of structured param eter uncertainties of the con- trolled plant, the robustcontrolproblem ofspace station attitude system w ith param eteruncertainties is converted to a conventi... Through input-output decom position of structured param eter uncertainties of the con- trolled plant, the robustcontrolproblem ofspace station attitude system w ith param eteruncertainties is converted to a conventionaldisturbance rejection H∞ controller design problem , then a full-state feedback H∞ robustcontrollerisform ulated, w hich can be solved using the Glover-Doyle algorithm . The proposed m ethod w asapplied to the attitude control/m om entum m anagem ent (ACMM) system ofa space station, and tw o kinds of param eter uncertainties w hich appear m ost frequently in space- craftengineering w ere considered. Sim ulation results show ed efficiency ofthe given m ethod. 展开更多
关键词 space station attitude control param eteruncertainty ROBUSTNESS
在线阅读 下载PDF
Control synthesis for polynomial nonlinear systems and application in attitude control 被引量:1
17
作者 Chang-fei TONG Hui ZHANG You-xian SUN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第6期833-839,共7页
A method for positive polynomial validation based on polynomial decomposition is proposed to deal with control synthesis problems. Detailed algorithms for decomposition are given which mainly consider how to convert c... A method for positive polynomial validation based on polynomial decomposition is proposed to deal with control synthesis problems. Detailed algorithms for decomposition are given which mainly consider how to convert coefficients of a polynomial to a matrix with free variables. Then, the positivity of a polynomial is checked by the decomposed matrix with semidefinite programming solvers. A nonlinear control law is presented for single input polynomial systems based on the Lyapunov stability theorem. The control synthesis method is advanced to multi-input systems further. An application in attitude control is finally presented. The proposed control law achieves effective performance as illustrated by the numerical example. 展开更多
关键词 Nonlinear control attitude control Polynomial systems
在线阅读 下载PDF
Nonlinear dynamic model and control of three-axis stabilized liquid-filled spacecraft attitude system
18
作者 张龙 段广仁 张永安 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第5期107-112,共6页
The fuel slosh in the storage tanks affects the attitude dynamics of the liquid-filled spacecraft during orbit transferring. To describe the interactions between the fuel slosh dynamics and the spacecraft attitude dyn... The fuel slosh in the storage tanks affects the attitude dynamics of the liquid-filled spacecraft during orbit transferring. To describe the interactions between the fuel slosh dynamics and the spacecraft attitude dynamics, a novel nonlinear dynamic model for three-axis liquid-filled spacecraft is presented, and in this paper, the multi-body dynamics method is utilized. In this model, the fuel slosh is represented by the motions of an equivalent sphere pendulum, and the fuel slosh is underactuated. The proposed dynamics model meets the demand of attitude controller design of liquid-filled spacecraft. Then, a nonlinear proportional-plus-derivative (PD) type controller is designed for the proposed model based on the Lyapunov direct approach. This controller can suppress the fuel slosh and stabilize the attitude of the liquid-filled spacecraft. Numerical simulations are presented to verify the effectiveness of the proposed nonlinear dynamic model and the designed underactuated controller when compared with the conventional control scheme. 展开更多
关键词 liquid-filled spacecraft nonlinear dynamics fuel slosh underactuated control attitude control
在线阅读 下载PDF
Research on Optimal Attitude of Large Deformation Airplane in Full-Scale Aircraft Static Test
19
作者 ZHENG Jianjun JIN Feng +2 位作者 LIU Wei ZHANG Yiming GUO Qiong 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第3期354-367,共14页
The accuracy of the full-scale aircraft static tests is greatly influenced by the aircraft attitude.This paper proposes an aircraft attitude optimization method based on the characteristics of the test.The aim is to a... The accuracy of the full-scale aircraft static tests is greatly influenced by the aircraft attitude.This paper proposes an aircraft attitude optimization method based on the characteristics of the test.The aim is to address three typical problems of ttitude control in the full-scale aircraft static tests:(1)The coupling of rigid-body displacement and elastic deformation after large deformation,(2)the difficulty of characterizing the aircraft attitude by measurable structure,and(3)the insufficient adaptability of the center of gravity reference to complex loading conditions.The methodology involves the establishment of two observation coordinate systems,a ground coordinate system and an airframe coordinate system,and two deformation states,before and after airframe deformation.A subsequent analysis of the parameter changes of these two states under different coordinate systems is then undertaken,with the objective being to identify the key parameters affecting the attitude control accuracy of large deformation aircraft.Three optimization objective functions are established according to the test loading characteristics and the purpose of the test:(1)To minimize the full-scale aircraft loading angle error,(2)to minimize the full-scale aircraft loading additional load,and(3)to minimize the full-scale aircraft loading wing root additional bending moment.The optimization calculation results are obtained by using the particle swarm optimization algorithm,and the typical full-scale aircraft static test load condition of large passenger aircraft is taken as an example.The analysis of the results demonstrates that by customizing the measurable structure of the aircraft as the observation point for the aircraft attitude,and by obtaining the translational and rotational control parameters of the observation point during the test based on the optimization objective function,the results are reasonable,and the project can be implemented and used to control the aircraft's attitude more accurately in complex force test conditions. 展开更多
关键词 full-scale aircraft static test large deformation position optimization attitude control
在线阅读 下载PDF
IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM FOR INTELLIGENTLY SETTING UAV ATTITUDE CONTROLLER PARAMETERS
20
作者 浦黄忠 甄子洋 +1 位作者 王道波 胡勇 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第1期52-57,共6页
An improved particle swarm optimization (PSO) algorithm is investigated in the optimization of the attitude controller parameters of unmanned aerial vehicle (UAV). Considering the stagnation phenomenon in the late... An improved particle swarm optimization (PSO) algorithm is investigated in the optimization of the attitude controller parameters of unmanned aerial vehicle (UAV). Considering the stagnation phenomenon in the later phase of the basic PSO algorithm caused by the diversity scarcity of particles, a modified PSO algorithm is presented. For the basic PSO algorithm, the velocity of each particle is adjusted according to the inertia motion, the swarm previous best position and its own previous best position. However, in the improved PSO algorithm, each particle only learns from another randomly selected particle with higher performance, besides keeping the inertia motion. The inertia weight of the improved PSO algorithm is a random number. The modification decreases the uncertain parameters of the algorithm, simplifies the learning mechanism of the particle, and enhances the diversity of the swarm. Furthermore, a UAV attitude control system is built, and the improved PSO algorithm is applied in the optimized tuning of four controller parameters. Simulation results show that the improved PSO algorithm has stronger global searching ability than the common PSO algorithms, and obtains better UAV attitude control parameters. 展开更多
关键词 unmanned aerial vehicle attitude control particle swarm optimization
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部