The MTF is extended to case of attenuating incident wave by introducing an attenuation coefficient. The reflection coefficients of this modified MTF and MTF are evaluated and compared when an attenuating wave impinges...The MTF is extended to case of attenuating incident wave by introducing an attenuation coefficient. The reflection coefficients of this modified MTF and MTF are evaluated and compared when an attenuating wave impinges on the boundary, and the results demonstrate that MTF can be used to absorb slightly attenuating waves and the modified MTF is more capable of absorbing heavily attenuating waves than MTF. The accuracy of modified MTF is also tested by numerical examples of fluid saturated porous media.展开更多
Objective: To observe and assess the efficacy enhancing and toxicity attenuating effect of Nuzhen Yangyin Granule (NYG) to the anti-parkinsonism (paralysis agitans) therapy with medopa and ar-tane. Methods: Adopting t...Objective: To observe and assess the efficacy enhancing and toxicity attenuating effect of Nuzhen Yangyin Granule (NYG) to the anti-parkinsonism (paralysis agitans) therapy with medopa and ar-tane. Methods: Adopting the randomized double-blinded method, the effect of adding NYG to 30 patients with Parkinsonism in the treated group,展开更多
Skeletal metastasis in carcinoma cervix occurs in about 0.8-23%of cases.These lesions are usually radiographically lytic.Very few cases of metastases to the skull have been identified,about 5 cases to the best of our ...Skeletal metastasis in carcinoma cervix occurs in about 0.8-23%of cases.These lesions are usually radiographically lytic.Very few cases of metastases to the skull have been identified,about 5 cases to the best of our knowledge.We present a case of adenosquamous cell carcinoma of cervix with fat attenuating skull metastases in a 38-year-old lady that is not reported till date.The lesion was lytic,expansile and with negative attenuation of-15 to-30 Hounsfield units corresponding to fat.Metastases must be included in the differentials of scalp lesions.A history of recent onset of swelling and associated lytic areas in calvarium on contrast enhanced computed tomography with multiplicity can give a clue to metastatic nature of disease.展开更多
Novel MEMS torsion-mirror actuators with monolithically integrated fiber self-holding structures are fabricated, and investigated experimentally and theoretically. Their electromechanical and optical characteristics a...Novel MEMS torsion-mirror actuators with monolithically integrated fiber self-holding structures are fabricated, and investigated experimentally and theoretically. Their electromechanical and optical characteristics are acceptable for optical switching or attenuating applications.展开更多
Artificial intelligence(AI)is revolutionizing medical imaging,particularly in chronic liver diseases assessment.AI technologies,including machine learning and deep learning,are increasingly integrated with multiparame...Artificial intelligence(AI)is revolutionizing medical imaging,particularly in chronic liver diseases assessment.AI technologies,including machine learning and deep learning,are increasingly integrated with multiparametric ultrasound(US)techniques to provide more accurate,objective,and non-invasive evaluations of liver fibrosis and steatosis.Analyzing large datasets from US images,AI enhances diagnostic precision,enabling better quantification of liver stiffness and fat content,which are essential for diagnosing and staging liver fibrosis and steatosis.Combining advanced US modalities,such as elastography and doppler imaging with AI,has demonstrated improved sensitivity in identifying different stages of liver disease and distinguishing various degrees of steatotic liver.These advancements also contribute to greater reproducibility and reduced operator dependency,addressing some of the limitations of traditional methods.The clinical implications of AI in liver disease are vast,ranging from early detection to predicting disease progression and evaluating treatment response.Despite these promising developments,challenges such as the need for large-scale datasets,algorithm transparency,and clinical validation remain.The aim of this review is to explore the current applications and future potential of AI in liver fibrosis and steatosis assessment using multiparametric US,highlighting the technological advances and clinical relevance of this emerging field.展开更多
To understand sound propagation and beam formation, the physical properties of soft tissues from the biosonar system of odontocetes should be explored. Based on the acoustic impedance distributions of biosonar systems...To understand sound propagation and beam formation, the physical properties of soft tissues from the biosonar system of odontocetes should be explored. Based on the acoustic impedance distributions of biosonar systems, these processes have been examined via numerical simulations. In this study, the images of a short-beaked common dolphin(Delphinus delphis) were obtained via computed tomography. Then, the dolphin was dissected to extract tissue samples for additional examination. In addition to the speed of sound and density measurements, the acoustic attenuation coefficients of the biosonar system in the forehead were tested. The results revealed that the inner layer of the forehead was characterized using low sound speed, low density, and high attenuation. Acoustic fields and beam patterns were then evaluated by setting acoustic attenuation coefficients at different levels. Sounds propagating along the low-attenuation path had a lesser reduction in amplitude. Beam directivities in near and far fields suggested that changes in attenuation distribution would cause beam patterns to shift. These results indicated the complexity of a dolphin’s sonar emission system and helped improve our understanding of sound energy attenuation via studies on the forehead of odontocetes.展开更多
This study proposes a numerically efficient technique for computing the far-field scattered by a spherical target placed near the seabed.The bottom is supposed to be a homogeneous liquid attenuating half-space.The tra...This study proposes a numerically efficient technique for computing the far-field scattered by a spherical target placed near the seabed.The bottom is supposed to be a homogeneous liquid attenuating half-space.The transmitter and receiver are situated at different points of a homogeneous water half-space.The distances between the transmitter,receiver,and object of interest are assumed to be much larger than the acoustic wavelength in water.The scattered far-field is ascertained using Hackman and Sammelmann’s general approach.The arising scattering coefficients of a sphere are assessed using the steepest descent approach.The branch cut contribution is also considered.The obtained formulas for the form-function can be used for acoustically rigid or soft scatterers,as well as elastic targets or spherical elastic shells.Numerical simulations are conducted for an acoustically rigid sphere.Asymptotic expressions for the scattering coefficients allow a decrease in the number of summands in the formula for the target strength and a significant reduction in computational time.展开更多
The present technical paper outlines the details of the controlled blasting techniques used to optimize blasting pattern for excavation of hard rock near the Bhira Earthen Dam in Maharashtra,India.In this connection,a...The present technical paper outlines the details of the controlled blasting techniques used to optimize blasting pattern for excavation of hard rock near the Bhira Earthen Dam in Maharashtra,India.In this connection,a series of experimental blasts were conducted by adjusting various blast design parameters at project site.The safe charge weight per delay was kept between 0.125 and 0.375 kg.The outcomes of these experimental blasts were analyzed to recommend optimized blasting patterns and methods for the overall excavation process during actual blasting operations.Blast design parameters,including the maximum quantity of explosive per delay,hole depth,burden and spacing between holes were optimized by using a site-specific attenuation equation,taking into account the proximity of the dam and tunnel from the blasting area.Peak particle velocity(PPV)level of 10 mm/s and 50 mm/s respectively were adopted as the safe vibration level for ensuring safety of the Bhira Earthen Dam and the nearby tunnel from the adverse effects of blast vibrations by analyzing the dominant frequency of ground vibrations observed and also by reviewing various international standards.Frequency of the ground vibrations observed on the dam and tunnel from majority of the blasts was found to be more than 10 Hz and 50 Hz respectively.During the entire period of blasting,the blast vibrations were recorded to be far lower than the safe vibration level set for these structures.Maximum Vibration level of about 0.8 mm/s and 35 mm/s were observed on dam and tunnel respectively which are far lower than the safe vibration level adopted for these structures.Hence,the entire excavation work was completed successfully and safely,without endangering the safety of dam or tunnel.展开更多
Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronar...Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronary artery disease(CAD).The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks(CNNs).This paper uses a SPECT classification framework with three steps:1)Image denoising,2)Attenuation correction,and 3)Image classification.Image denoising is done by a U-Net architecture that ensures effective image denoising.Attenuation correction is implemented by a convolution neural network model that can remove the attenuation that affects the feature extraction process of classification.Finally,a novel multi-scale diluted convolution(MSDC)network is proposed.It merges the features extracted in different scales and makes the model learn the features more efficiently.Three scales of filters with size 3×3 are used to extract features.All three steps are compared with state-of-the-art methods.The proposed denoising architecture ensures a high-quality image with the highest peak signal-to-noise ratio(PSNR)value of 39.7.The proposed classification method is compared with the five different CNN models,and the proposed method ensures better classification with an accuracy of 96%,precision of 87%,sensitivity of 87%,specificity of 89%,and F1-score of 87%.To demonstrate the importance of preprocessing,the classification model was analyzed without denoising and attenuation correction.展开更多
In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile traj...In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile trajectory in a fluid-filled structure.Based on the reflection and transmission phenomena of pressure waves at the gas-liquid interface and the compressibility characteristics of gases,a numerical analysis was conducted on the influence of preset bubble on projectile penetration and structural failure characteristics.The results indicate that the secondary water-entry impact phenomenon occurs when a preset bubble exists on the projectile trajectory,leading to the secondary water entry impact loads.The rarefaction waves reflected on the surface of the preset bubble cause the attenuation ratio of the initial impact pressure peak to reach 68.8%and the total specific impulse attenuation ratio to reach 48.6%.Furthermore,the larger the bubble,the faster the projectile,and the more obvious the attenuation effect.Moreover,due to the compressibility of the bubble,the global deformation attenuation ratio of the front and rear walls can reach over 80%.However,the larger the bubble size,the faster the projectile velocity,the smaller the local deformation attenuation effect of the rear wall,and the more severe the failure at the perforation of the rear wall.展开更多
Ultrasound computed tomography(USCT)is a noninvasive biomedical imaging modality that offers insights into acoustic properties such as the sound speed(SS)and acoustic attenuation(AA)of the human body,enhancing diagnos...Ultrasound computed tomography(USCT)is a noninvasive biomedical imaging modality that offers insights into acoustic properties such as the sound speed(SS)and acoustic attenuation(AA)of the human body,enhancing diagnostic accuracy and therapy planning.Full waveform inversion(FWI)is a promising USCT image reconstruction method that optimizes the parameter fields of a wave propagation model via gradient-based optimization.However,twodimensional FWI methods are limited by their inability to account for three-dimensional wave propagation in the elevation direction,resulting in image artifacts.To address this problem,we propose a three-dimensional time-domain full waveform inversion algorithm to reconstruct the SS and AA distributions on the basis of a fractional Laplacian wave equation,adjoint field formulation,and gradient descent optimization.Validated by two sets of simulations,the proposed algorithm has potential for generating high-resolution and quantitative SS and AA distributions.This approach holds promise for clinical USCT applications,assisting early disease detection,precise abnormality localization,and optimized treatment planning,thus contributing to better healthcare outcomes.展开更多
BACKGROUND Hepatic steatosis,characterized by fat accumulation in hepatocytes,can result from metabolic dysfunction-associated steatotic liver disease(MASLD),infections,alcoholism,chemotherapy,and toxins.MASLD is diag...BACKGROUND Hepatic steatosis,characterized by fat accumulation in hepatocytes,can result from metabolic dysfunction-associated steatotic liver disease(MASLD),infections,alcoholism,chemotherapy,and toxins.MASLD is diagnosed via imaging or biopsy with metabolic criteria and may progress to metabolic dysfunction–asso-ciated steatohepatitis,potentially leading to fibrosis,cirrhosis,or cancer.The coexistence of hepatic steatosis with chronic hepatitis B(CHB)is mainly related to metabolic factors and increases mortality and cancer risks.As a noninvasive method,attenuation imaging(ATI)shows promise in quantifying liver fat,demonstrating strong correlation with liver biopsy.AIM To investigate the disparity of ATI for assessing biopsy-based hepatic steatosis in CHB patients and MASLD patients.METHODS The study enrolled 249 patients who underwent both ATI and liver biopsy,including 78 with CHB and 171 with MASLD.Hepatic steatosis was classified into grades S0 to S3 according to the proportion of fat cells present.Liver fibrosis was staged from 0 to 4 according to the meta-analysis of histological data in viral hepatitis scoring system.The diagnostic performance of attenuation coefficient(AC)values across different groups was compared for each grade of steatosis.Factors associated with the AC values were determined through linear regression analysis.A multivariate logistic regression model was established to predict≥S2 within the MASLD group.RESULTS In both the CHB and the MASLD groups,AC values increased significantly with higher steatosis grade(P<0.001).In the CHB group,the areas under the curve(AUCs)of AC for predicting steatosis grades≥S1,≥S2 and S3 were 0.918,0.960 and 0.987,respectively.In contrast,the MASLD group showed AUCs of 0.836,0.774,and 0.688 for the same steatosis grades.The diagnostic performance of AC for detecting≥S2 and S3 indicated significant differences between the two groups(both P<0.001).Multivariate linear regression analysis identified body mass index,trigly-cerides,and steatosis grade as significant factors for AC.When the steatosis grade is≥S2,it can progress to more serious liver conditions.A clinical model integrating blood biochemical parameters and AC was developed in the MASLD group to enhance the prediction of≥S2,achieving an AUC of 0.848.CONCLUSION The AC could effectively discriminate the degree of steatosis in both the CHB and MASLD groups.In the MASLD group,when combined with blood biochemical parameters,AC exhibited better predictive ability for moderate to severe steatosis.展开更多
The attenuation and anisotropy characteristics of real earth media give rise to amplitude loss and phase dispersion during seismic wave propagation.To address these effects on seismic imaging,viscoacoustic anisotropic...The attenuation and anisotropy characteristics of real earth media give rise to amplitude loss and phase dispersion during seismic wave propagation.To address these effects on seismic imaging,viscoacoustic anisotropic wave equations expressed by the fractional Laplacian have been derived.However,the huge computational expense associated with multiple Fast Fourier transforms for solving these wave equations makes them unsuitable for industrial applications,especially in three dimensions.Therefore,we first derived a cost-effective pure-viscoacoustic wave equation expressed by the memory-variable in tilted transversely isotropic(TTI)media,based on the standard linear solid model.The newly derived wave equation featuring decoupled amplitude dissipation and phase dispersion terms,can be easily solved using the finite-difference method(FDM).Computational efficiency analyses demonstrate that wavefields simulated by our newly derived wave equation are more efficient compared to the previous pure-viscoacoustic TTI wave equations.The decoupling characteristics of the phase dispersion and amplitude dissipation of the proposed wave equation are illustrated in numerical tests.Additionally,we extend the newly derived wave equation to implement Q-compensated reverse time migration(RTM)in attenuating TTI media.Synthetic examples and field data test demonstrate that the proposed Qcompensated TTI RTM effectively migrate the effects of anisotropy and attenuation,providing highquality imaging results.展开更多
Imagine a future where a single vaccine could protect you from a multitude of influenza strains,offering broad immunity with minimal risk.This vision is now closer to reality,thanks to a recent study that harnesses th...Imagine a future where a single vaccine could protect you from a multitude of influenza strains,offering broad immunity with minimal risk.This vision is now closer to reality,thanks to a recent study that harnesses the power of cellular proteins to create a new generation of live attenuated vaccines that outsmart flu’s relentless mutations.展开更多
In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve ...In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve the softening nonlinear stiffness of the local oscillators.Firstly,based on Hamilton's principle and the Galerkin method,the control equations for the coupled system are established.The theoretical band gap boundary is then derived with the modal analysis method.The theoretical results reveal that the band gap of the meta-beam shifts towards lower frequencies due to the presence of a softening nonlinear factor,distinguishing it from both linear metamaterials and those with hardening nonlinear characteristics.Then,the vibration attenuation characteristics of a finite size meta-beam are investigated through numerical calculation,and are verified by the theoretical results.Furthermore,parameter studies indicate that the reasonable design of the local oscillator parameters based on lightweight principles helps to achieve further broadband and efficient vibration reduction in the low-frequency region.Finally,a prototype of the meta-beam is fabricated and assembled,and the formations of the low-frequency band gap and the amplitude-induced band gap phenomenon are verified through experiments.展开更多
The surface of a high-speed vehicle reentering the atmosphere is surrounded by plasma sheath.Due to the influence of the inhomogeneous flow field around the vehicle,understanding the electromagnetic properties of the ...The surface of a high-speed vehicle reentering the atmosphere is surrounded by plasma sheath.Due to the influence of the inhomogeneous flow field around the vehicle,understanding the electromagnetic properties of the plasma sheath can be challenging.Obtaining the electron density of the plasma sheath is crucial for understanding and achieving plasma stealth of vehicles.In this work,the relationship between electromagnetic wave attenuation and electron density is deduced theoretically.The attenuation distribution along the propagation path is found to be proportional to the integral of the plasma electron density.This result is used to predict the electron density profile.Furthermore,the average electron density is obtained using a back-propagation neural network algorithm.Finally,the spatial distribution of the electron density can be determined from the average electron density and the normalized derivative of attenuation with respect to the propagation depth.Compared to traditional probe measurement methods,the proposed approach not only improves efficiency but also preserves the integrity of the plasma environment.展开更多
Amplitude dissipation and phase dispersion occur when seismic waves propagate in attenuated anisotropic media,affecting the quality of migration imaging.To compensate and correct for these effects,the fractional Lapla...Amplitude dissipation and phase dispersion occur when seismic waves propagate in attenuated anisotropic media,affecting the quality of migration imaging.To compensate and correct for these effects,the fractional Laplacian pure viscoacoustic wave equation capable of producing stable and noise-free wavefields has been proposed and implemented in the Q-compensated reverse time migration(RTM).In addition,the second-order Taylor series expansion is usually adopted in the hybrid finite-difference/pseudo-spectral(HFDPS)strategy to solve spatially variable fractional Laplacian.However,during forward modeling and Q-compensated RTM,this HFDPS strategy requires 11 and 17 fast Fourier transforms(FFTs)per time step,respectively,leading to computational inefficiency.To improve computational efficiency,we introduce two high-efficiency HFDPS numerical modeling strategies based on asymptotic approximation and algebraic methods.Through the two strategies,the number of FFTs decreased from 11 to 6 and 5 per time step during forward modeling,respectively.Numerical examples demonstrate that wavefields simulated using the new numerical modeling strategies are accurate and highly efficient.Finally,these strategies are employed for implementing high-efficiency and stable Q-compensated RTM techniques in tilted transversely isotropic media,reducing the number of FFTs from 17 to 9 and 8 per time step,respectively,significantly improving computational efficiency.Synthetic data examples illustrate the effectiveness of the proposed Q-compensated RTM scheme in compensating amplitude dissipation and correcting phase distortion.展开更多
In this paper,we theoretically study the Lamb wave in a multilayered piezoelectric semiconductor(PSC)plate,where each layer is an n-type PSC with the symmetry of transverse isotropy.Based on the extended Stroh formali...In this paper,we theoretically study the Lamb wave in a multilayered piezoelectric semiconductor(PSC)plate,where each layer is an n-type PSC with the symmetry of transverse isotropy.Based on the extended Stroh formalism and dual-variable and position(DVP)method,the general solution of the coupled fields for the Lamb wave is derived,and then the dispersion equation is obtained by the application of the boundary conditions.First,the influence of semiconducting properties on the dispersion behavior of the Lamb wave in a single-layer PSC plate is analyzed.Then,the propagation characteristics of the Lamb wave in a sandwich plate are investigated in detail.The numerical results show that the wave speed and attenuation depend on the stacking sequence,layer thickness,and initial carrier density,the Lamb wave can propagate without a cut-off frequency in both the homogeneous and multilayer PSC plates due to the semiconducting properties,and the Lamb wave without attenuation can be achieved by carefully selecting the semiconductor property in the upper and lower layers.These new features could be very helpful as theoretical guidance for the design and performance optimization of PSC devices.展开更多
Seismic wavefields propagate through three-dimensional(3D)space,and their precise characterization is crucial for understanding subsurface structures.Traditional 2D algorithms,due to their limitations,are insufficient...Seismic wavefields propagate through three-dimensional(3D)space,and their precise characterization is crucial for understanding subsurface structures.Traditional 2D algorithms,due to their limitations,are insufficient to fully represent three-dimensional wavefields.The classic 3D Radon transform algorithm assumes that the wavefield's propagation characteristics are consistent in all directions,which often does not hold true in complex underground media.To address this issue,we present an improved 3D three-parameter Radon algorithm that considers the wavefield variation with azimuth and provides a more accurate wavefield description.However,introducing new parameters to describe the azimuthal varia-tion also poses computational challenges.The new Radon transform operator involves five variables and cannot be simply decomposed into small matrices for efficient computation;instead,it requires large matrix multiplication and inversion operations,significantly increasing the computational load.To overcome this challenge,we have integrated the curvature and frequency parameters,simplifying all frequency operators to the same,thereby significantly improving computation efficiency.Furthermore,existing transform algorithms neglect the lateral variation of seismic amplitudes,leading to discrepancies between the estimated multiples and those in the data.To enhance the amplitude preservation of the algorithm,we employ orthogonal polynomial fitting to capture the amplitude spatial variation in 3D seismic data.Combining these improvements,we propose a fast,amplitude-preserving,3D three-parameter Radon transform algorithm.This algorithm not only enhances computational efficiency while maintaining the original wavefield characteristics,but also improves the representation of seismic data by increasing amplitude fidelity.We validated the algorithm in multiple attenuation using both synthetic and real seismic data.The results demonstrate that the new algorithm significantly improves both accuracy and computational efficiency,providing an effective tool for analyzing seismic wavefields in complex subsurface structures.展开更多
Multiphase flow in porous rock is of great importance in the application of many industrial processes,including reservoir delineation,enhanced oil recovery,and CO_(2) sequestration.However,previous research typically ...Multiphase flow in porous rock is of great importance in the application of many industrial processes,including reservoir delineation,enhanced oil recovery,and CO_(2) sequestration.However,previous research typically investigated the dispersive behaviors when rock saturated with single or two-phase fluids and conducted limited studies on three-phase immiscible fluids.This study investigated the seismic dispersion,attenuation,and reflection features of seismic waves in three-phase immiscible fluidsaturated porous rocks.First,we proposed the calculation formulas of effective fluid modulus and effective fluid viscosity of multiphase immiscible fluids by taking into account the capillary pressure,reservoir wettability,and relative permeability simultaneously.Then,we analysed the frequencydependent behaviors of three-phase immiscible fluid-saturated porous rock under different fluid proportion cases using the Chapman multi-scale model.Next,the seismic responses are analysed using a four-layer model.The results indicate that the relative permeability,capillary pressure parameter,and fluid proportions are all significantly affect dispersion and attenuation.Comparative analyses demonstrate that dispersion and attenuation can be observed within the frequency range of seismic exploration for a lower capillary parameter a3 and higher oil content.Seismic responses reveal that the reflection features,such as travel time,seismic amplitude,and waveform of the bottom reflections of saturated rock and their underlying reflections are significantly dependent on fluid proportions and capillary parameters.For validation,the numerical results are further verified using the log data and real seismic data.This numerical analysis helps to further understand the wave propagation characteristics for a porous rock saturated with multiphase immiscible fluids.展开更多
基金China Joint Seismological Science Foundation (95-07-442).
文摘The MTF is extended to case of attenuating incident wave by introducing an attenuation coefficient. The reflection coefficients of this modified MTF and MTF are evaluated and compared when an attenuating wave impinges on the boundary, and the results demonstrate that MTF can be used to absorb slightly attenuating waves and the modified MTF is more capable of absorbing heavily attenuating waves than MTF. The accuracy of modified MTF is also tested by numerical examples of fluid saturated porous media.
文摘Objective: To observe and assess the efficacy enhancing and toxicity attenuating effect of Nuzhen Yangyin Granule (NYG) to the anti-parkinsonism (paralysis agitans) therapy with medopa and ar-tane. Methods: Adopting the randomized double-blinded method, the effect of adding NYG to 30 patients with Parkinsonism in the treated group,
文摘Skeletal metastasis in carcinoma cervix occurs in about 0.8-23%of cases.These lesions are usually radiographically lytic.Very few cases of metastases to the skull have been identified,about 5 cases to the best of our knowledge.We present a case of adenosquamous cell carcinoma of cervix with fat attenuating skull metastases in a 38-year-old lady that is not reported till date.The lesion was lytic,expansile and with negative attenuation of-15 to-30 Hounsfield units corresponding to fat.Metastases must be included in the differentials of scalp lesions.A history of recent onset of swelling and associated lytic areas in calvarium on contrast enhanced computed tomography with multiplicity can give a clue to metastatic nature of disease.
文摘Novel MEMS torsion-mirror actuators with monolithically integrated fiber self-holding structures are fabricated, and investigated experimentally and theoretically. Their electromechanical and optical characteristics are acceptable for optical switching or attenuating applications.
文摘Artificial intelligence(AI)is revolutionizing medical imaging,particularly in chronic liver diseases assessment.AI technologies,including machine learning and deep learning,are increasingly integrated with multiparametric ultrasound(US)techniques to provide more accurate,objective,and non-invasive evaluations of liver fibrosis and steatosis.Analyzing large datasets from US images,AI enhances diagnostic precision,enabling better quantification of liver stiffness and fat content,which are essential for diagnosing and staging liver fibrosis and steatosis.Combining advanced US modalities,such as elastography and doppler imaging with AI,has demonstrated improved sensitivity in identifying different stages of liver disease and distinguishing various degrees of steatotic liver.These advancements also contribute to greater reproducibility and reduced operator dependency,addressing some of the limitations of traditional methods.The clinical implications of AI in liver disease are vast,ranging from early detection to predicting disease progression and evaluating treatment response.Despite these promising developments,challenges such as the need for large-scale datasets,algorithm transparency,and clinical validation remain.The aim of this review is to explore the current applications and future potential of AI in liver fibrosis and steatosis assessment using multiparametric US,highlighting the technological advances and clinical relevance of this emerging field.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2018YFC1407504, and 2018YFC1407505)National Natural Science Foundation of China (Grant No. 12074323)+3 种基金Special Fund for Marine and Fishery Development of Xiamen (Grant No.20CZB015HJ01)Water Conservancy Science and Technology Innovation Project of Guangdong (Grant No. 2020-16)China Postdoctoral Science Foundation (Grant No. 2020M682086)China National Postdoctoral Program for Innovative Talents (Grant No. BX2021168)。
文摘To understand sound propagation and beam formation, the physical properties of soft tissues from the biosonar system of odontocetes should be explored. Based on the acoustic impedance distributions of biosonar systems, these processes have been examined via numerical simulations. In this study, the images of a short-beaked common dolphin(Delphinus delphis) were obtained via computed tomography. Then, the dolphin was dissected to extract tissue samples for additional examination. In addition to the speed of sound and density measurements, the acoustic attenuation coefficients of the biosonar system in the forehead were tested. The results revealed that the inner layer of the forehead was characterized using low sound speed, low density, and high attenuation. Acoustic fields and beam patterns were then evaluated by setting acoustic attenuation coefficients at different levels. Sounds propagating along the low-attenuation path had a lesser reduction in amplitude. Beam directivities in near and far fields suggested that changes in attenuation distribution would cause beam patterns to shift. These results indicated the complexity of a dolphin’s sonar emission system and helped improve our understanding of sound energy attenuation via studies on the forehead of odontocetes.
基金Supported by the Ministry of Science and Higher Education of the Russian Federation as a part of World-class Research Center Program:Advanced Digital Technologies(contract No.075-15-2022-312 dated 20 April 2022).
文摘This study proposes a numerically efficient technique for computing the far-field scattered by a spherical target placed near the seabed.The bottom is supposed to be a homogeneous liquid attenuating half-space.The transmitter and receiver are situated at different points of a homogeneous water half-space.The distances between the transmitter,receiver,and object of interest are assumed to be much larger than the acoustic wavelength in water.The scattered far-field is ascertained using Hackman and Sammelmann’s general approach.The arising scattering coefficients of a sphere are assessed using the steepest descent approach.The branch cut contribution is also considered.The obtained formulas for the form-function can be used for acoustically rigid or soft scatterers,as well as elastic targets or spherical elastic shells.Numerical simulations are conducted for an acoustically rigid sphere.Asymptotic expressions for the scattering coefficients allow a decrease in the number of summands in the formula for the target strength and a significant reduction in computational time.
文摘The present technical paper outlines the details of the controlled blasting techniques used to optimize blasting pattern for excavation of hard rock near the Bhira Earthen Dam in Maharashtra,India.In this connection,a series of experimental blasts were conducted by adjusting various blast design parameters at project site.The safe charge weight per delay was kept between 0.125 and 0.375 kg.The outcomes of these experimental blasts were analyzed to recommend optimized blasting patterns and methods for the overall excavation process during actual blasting operations.Blast design parameters,including the maximum quantity of explosive per delay,hole depth,burden and spacing between holes were optimized by using a site-specific attenuation equation,taking into account the proximity of the dam and tunnel from the blasting area.Peak particle velocity(PPV)level of 10 mm/s and 50 mm/s respectively were adopted as the safe vibration level for ensuring safety of the Bhira Earthen Dam and the nearby tunnel from the adverse effects of blast vibrations by analyzing the dominant frequency of ground vibrations observed and also by reviewing various international standards.Frequency of the ground vibrations observed on the dam and tunnel from majority of the blasts was found to be more than 10 Hz and 50 Hz respectively.During the entire period of blasting,the blast vibrations were recorded to be far lower than the safe vibration level set for these structures.Maximum Vibration level of about 0.8 mm/s and 35 mm/s were observed on dam and tunnel respectively which are far lower than the safe vibration level adopted for these structures.Hence,the entire excavation work was completed successfully and safely,without endangering the safety of dam or tunnel.
基金the Research Grant of Kwangwoon University in 2024.
文摘Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronary artery disease(CAD).The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks(CNNs).This paper uses a SPECT classification framework with three steps:1)Image denoising,2)Attenuation correction,and 3)Image classification.Image denoising is done by a U-Net architecture that ensures effective image denoising.Attenuation correction is implemented by a convolution neural network model that can remove the attenuation that affects the feature extraction process of classification.Finally,a novel multi-scale diluted convolution(MSDC)network is proposed.It merges the features extracted in different scales and makes the model learn the features more efficiently.Three scales of filters with size 3×3 are used to extract features.All three steps are compared with state-of-the-art methods.The proposed denoising architecture ensures a high-quality image with the highest peak signal-to-noise ratio(PSNR)value of 39.7.The proposed classification method is compared with the five different CNN models,and the proposed method ensures better classification with an accuracy of 96%,precision of 87%,sensitivity of 87%,specificity of 89%,and F1-score of 87%.To demonstrate the importance of preprocessing,the classification model was analyzed without denoising and attenuation correction.
文摘In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile trajectory in a fluid-filled structure.Based on the reflection and transmission phenomena of pressure waves at the gas-liquid interface and the compressibility characteristics of gases,a numerical analysis was conducted on the influence of preset bubble on projectile penetration and structural failure characteristics.The results indicate that the secondary water-entry impact phenomenon occurs when a preset bubble exists on the projectile trajectory,leading to the secondary water entry impact loads.The rarefaction waves reflected on the surface of the preset bubble cause the attenuation ratio of the initial impact pressure peak to reach 68.8%and the total specific impulse attenuation ratio to reach 48.6%.Furthermore,the larger the bubble,the faster the projectile,and the more obvious the attenuation effect.Moreover,due to the compressibility of the bubble,the global deformation attenuation ratio of the front and rear walls can reach over 80%.However,the larger the bubble size,the faster the projectile velocity,the smaller the local deformation attenuation effect of the rear wall,and the more severe the failure at the perforation of the rear wall.
基金supported by the National Key Research and Development Program of China(2022YFA1404400)the National Natural Science Foundation of China(62122072,12174368,61705216,62405306)+4 种基金Anhui Provincial Department of Science and Technology(202203a07020020,18030801138)Anhui Provincial Natural Science Foundation(2308085QA21,2408085QF187)the USTC Research Funds of the Double First-Class Initiative(YD2090002015)the Institute of Artificial Intelligence at Hefei Comprehensive National Science Center(23YGXT005)the Fundamental Research Funds for the Central Universities(WK2090000083).
文摘Ultrasound computed tomography(USCT)is a noninvasive biomedical imaging modality that offers insights into acoustic properties such as the sound speed(SS)and acoustic attenuation(AA)of the human body,enhancing diagnostic accuracy and therapy planning.Full waveform inversion(FWI)is a promising USCT image reconstruction method that optimizes the parameter fields of a wave propagation model via gradient-based optimization.However,twodimensional FWI methods are limited by their inability to account for three-dimensional wave propagation in the elevation direction,resulting in image artifacts.To address this problem,we propose a three-dimensional time-domain full waveform inversion algorithm to reconstruct the SS and AA distributions on the basis of a fractional Laplacian wave equation,adjoint field formulation,and gradient descent optimization.Validated by two sets of simulations,the proposed algorithm has potential for generating high-resolution and quantitative SS and AA distributions.This approach holds promise for clinical USCT applications,assisting early disease detection,precise abnormality localization,and optimized treatment planning,thus contributing to better healthcare outcomes.
基金Supported by the National Natural Science Foundation of China,No.82202185and Shanghai Science and Technology Development Foundation,No.22Y11911500.
文摘BACKGROUND Hepatic steatosis,characterized by fat accumulation in hepatocytes,can result from metabolic dysfunction-associated steatotic liver disease(MASLD),infections,alcoholism,chemotherapy,and toxins.MASLD is diagnosed via imaging or biopsy with metabolic criteria and may progress to metabolic dysfunction–asso-ciated steatohepatitis,potentially leading to fibrosis,cirrhosis,or cancer.The coexistence of hepatic steatosis with chronic hepatitis B(CHB)is mainly related to metabolic factors and increases mortality and cancer risks.As a noninvasive method,attenuation imaging(ATI)shows promise in quantifying liver fat,demonstrating strong correlation with liver biopsy.AIM To investigate the disparity of ATI for assessing biopsy-based hepatic steatosis in CHB patients and MASLD patients.METHODS The study enrolled 249 patients who underwent both ATI and liver biopsy,including 78 with CHB and 171 with MASLD.Hepatic steatosis was classified into grades S0 to S3 according to the proportion of fat cells present.Liver fibrosis was staged from 0 to 4 according to the meta-analysis of histological data in viral hepatitis scoring system.The diagnostic performance of attenuation coefficient(AC)values across different groups was compared for each grade of steatosis.Factors associated with the AC values were determined through linear regression analysis.A multivariate logistic regression model was established to predict≥S2 within the MASLD group.RESULTS In both the CHB and the MASLD groups,AC values increased significantly with higher steatosis grade(P<0.001).In the CHB group,the areas under the curve(AUCs)of AC for predicting steatosis grades≥S1,≥S2 and S3 were 0.918,0.960 and 0.987,respectively.In contrast,the MASLD group showed AUCs of 0.836,0.774,and 0.688 for the same steatosis grades.The diagnostic performance of AC for detecting≥S2 and S3 indicated significant differences between the two groups(both P<0.001).Multivariate linear regression analysis identified body mass index,trigly-cerides,and steatosis grade as significant factors for AC.When the steatosis grade is≥S2,it can progress to more serious liver conditions.A clinical model integrating blood biochemical parameters and AC was developed in the MASLD group to enhance the prediction of≥S2,achieving an AUC of 0.848.CONCLUSION The AC could effectively discriminate the degree of steatosis in both the CHB and MASLD groups.In the MASLD group,when combined with blood biochemical parameters,AC exhibited better predictive ability for moderate to severe steatosis.
基金supported by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2021QNLM020001)the Major Scientificand Technological Projects of Shandong Energy Group(No.SNKJ2022A06-R23)+1 种基金the National Natural Science Foundation of China(No.42374164)the basic theoretical research of seismic wave imaging technology in complex oilfield of Changqing Oilfield Company(No.2023-10502)。
文摘The attenuation and anisotropy characteristics of real earth media give rise to amplitude loss and phase dispersion during seismic wave propagation.To address these effects on seismic imaging,viscoacoustic anisotropic wave equations expressed by the fractional Laplacian have been derived.However,the huge computational expense associated with multiple Fast Fourier transforms for solving these wave equations makes them unsuitable for industrial applications,especially in three dimensions.Therefore,we first derived a cost-effective pure-viscoacoustic wave equation expressed by the memory-variable in tilted transversely isotropic(TTI)media,based on the standard linear solid model.The newly derived wave equation featuring decoupled amplitude dissipation and phase dispersion terms,can be easily solved using the finite-difference method(FDM).Computational efficiency analyses demonstrate that wavefields simulated by our newly derived wave equation are more efficient compared to the previous pure-viscoacoustic TTI wave equations.The decoupling characteristics of the phase dispersion and amplitude dissipation of the proposed wave equation are illustrated in numerical tests.Additionally,we extend the newly derived wave equation to implement Q-compensated reverse time migration(RTM)in attenuating TTI media.Synthetic examples and field data test demonstrate that the proposed Qcompensated TTI RTM effectively migrate the effects of anisotropy and attenuation,providing highquality imaging results.
文摘Imagine a future where a single vaccine could protect you from a multitude of influenza strains,offering broad immunity with minimal risk.This vision is now closer to reality,thanks to a recent study that harnesses the power of cellular proteins to create a new generation of live attenuated vaccines that outsmart flu’s relentless mutations.
基金supported by the National Natural Science Foundation of China(Nos.12172014,U224126412332001)。
文摘In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve the softening nonlinear stiffness of the local oscillators.Firstly,based on Hamilton's principle and the Galerkin method,the control equations for the coupled system are established.The theoretical band gap boundary is then derived with the modal analysis method.The theoretical results reveal that the band gap of the meta-beam shifts towards lower frequencies due to the presence of a softening nonlinear factor,distinguishing it from both linear metamaterials and those with hardening nonlinear characteristics.Then,the vibration attenuation characteristics of a finite size meta-beam are investigated through numerical calculation,and are verified by the theoretical results.Furthermore,parameter studies indicate that the reasonable design of the local oscillator parameters based on lightweight principles helps to achieve further broadband and efficient vibration reduction in the low-frequency region.Finally,a prototype of the meta-beam is fabricated and assembled,and the formations of the low-frequency band gap and the amplitude-induced band gap phenomenon are verified through experiments.
基金Project supported by the Natural Science Foundation of Henan Province,China(Grant No.242300420634)the Cultivative Plan of Henan University of Technology(Grant No.2024PYJH035)+3 种基金the Research Foundation for Advanced Talents of Henan University of Technology(Grant Nos.2022BS067 and 2022BS068)the National Natural Science Foundation of China(Grant No.62301211)the Key Research and Development and Promotion Special Project(Science and Technology Research)in Henan Province,China(Grant No.232102211068)the Innovative Funds Plan of Henan University of Technology(Grant No.2022ZKCJ15)。
文摘The surface of a high-speed vehicle reentering the atmosphere is surrounded by plasma sheath.Due to the influence of the inhomogeneous flow field around the vehicle,understanding the electromagnetic properties of the plasma sheath can be challenging.Obtaining the electron density of the plasma sheath is crucial for understanding and achieving plasma stealth of vehicles.In this work,the relationship between electromagnetic wave attenuation and electron density is deduced theoretically.The attenuation distribution along the propagation path is found to be proportional to the integral of the plasma electron density.This result is used to predict the electron density profile.Furthermore,the average electron density is obtained using a back-propagation neural network algorithm.Finally,the spatial distribution of the electron density can be determined from the average electron density and the normalized derivative of attenuation with respect to the propagation depth.Compared to traditional probe measurement methods,the proposed approach not only improves efficiency but also preserves the integrity of the plasma environment.
基金support this research during the 14th Fiveyear Plan period under contract number 2021QNLM020001the Major Scientific and Technological Projects of Shandong Energy Group under contract number SNKJ2022A06-R23+2 种基金the National Natural Science Foundation of China under contract number 42374164the Funds for Creative Research Groups of China under contract number 41821002the basic theoretical research of seismic wave imaging technology in complex oilfield of Changqing Oilfield Company under contract number 2023e10502.
文摘Amplitude dissipation and phase dispersion occur when seismic waves propagate in attenuated anisotropic media,affecting the quality of migration imaging.To compensate and correct for these effects,the fractional Laplacian pure viscoacoustic wave equation capable of producing stable and noise-free wavefields has been proposed and implemented in the Q-compensated reverse time migration(RTM).In addition,the second-order Taylor series expansion is usually adopted in the hybrid finite-difference/pseudo-spectral(HFDPS)strategy to solve spatially variable fractional Laplacian.However,during forward modeling and Q-compensated RTM,this HFDPS strategy requires 11 and 17 fast Fourier transforms(FFTs)per time step,respectively,leading to computational inefficiency.To improve computational efficiency,we introduce two high-efficiency HFDPS numerical modeling strategies based on asymptotic approximation and algebraic methods.Through the two strategies,the number of FFTs decreased from 11 to 6 and 5 per time step during forward modeling,respectively.Numerical examples demonstrate that wavefields simulated using the new numerical modeling strategies are accurate and highly efficient.Finally,these strategies are employed for implementing high-efficiency and stable Q-compensated RTM techniques in tilted transversely isotropic media,reducing the number of FFTs from 17 to 9 and 8 per time step,respectively,significantly improving computational efficiency.Synthetic data examples illustrate the effectiveness of the proposed Q-compensated RTM scheme in compensating amplitude dissipation and correcting phase distortion.
基金Project supported by the National Natural Science Foundation of China(Nos.U21A20430 and 12302202)the Hebei Natural Science Foundation of China(No.A2023210040)+1 种基金the Science and Technology Project of Hebei Education Department of China(No.BJ2025005)the Hebei Provincial Department of Human Resources and Social Security of China(No.C20220324)。
文摘In this paper,we theoretically study the Lamb wave in a multilayered piezoelectric semiconductor(PSC)plate,where each layer is an n-type PSC with the symmetry of transverse isotropy.Based on the extended Stroh formalism and dual-variable and position(DVP)method,the general solution of the coupled fields for the Lamb wave is derived,and then the dispersion equation is obtained by the application of the boundary conditions.First,the influence of semiconducting properties on the dispersion behavior of the Lamb wave in a single-layer PSC plate is analyzed.Then,the propagation characteristics of the Lamb wave in a sandwich plate are investigated in detail.The numerical results show that the wave speed and attenuation depend on the stacking sequence,layer thickness,and initial carrier density,the Lamb wave can propagate without a cut-off frequency in both the homogeneous and multilayer PSC plates due to the semiconducting properties,and the Lamb wave without attenuation can be achieved by carefully selecting the semiconductor property in the upper and lower layers.These new features could be very helpful as theoretical guidance for the design and performance optimization of PSC devices.
基金supported in part by National Natural Science Foundation of China(NSFC)under grant 42274139in part by the R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications,2022DQ0604-03).
文摘Seismic wavefields propagate through three-dimensional(3D)space,and their precise characterization is crucial for understanding subsurface structures.Traditional 2D algorithms,due to their limitations,are insufficient to fully represent three-dimensional wavefields.The classic 3D Radon transform algorithm assumes that the wavefield's propagation characteristics are consistent in all directions,which often does not hold true in complex underground media.To address this issue,we present an improved 3D three-parameter Radon algorithm that considers the wavefield variation with azimuth and provides a more accurate wavefield description.However,introducing new parameters to describe the azimuthal varia-tion also poses computational challenges.The new Radon transform operator involves five variables and cannot be simply decomposed into small matrices for efficient computation;instead,it requires large matrix multiplication and inversion operations,significantly increasing the computational load.To overcome this challenge,we have integrated the curvature and frequency parameters,simplifying all frequency operators to the same,thereby significantly improving computation efficiency.Furthermore,existing transform algorithms neglect the lateral variation of seismic amplitudes,leading to discrepancies between the estimated multiples and those in the data.To enhance the amplitude preservation of the algorithm,we employ orthogonal polynomial fitting to capture the amplitude spatial variation in 3D seismic data.Combining these improvements,we propose a fast,amplitude-preserving,3D three-parameter Radon transform algorithm.This algorithm not only enhances computational efficiency while maintaining the original wavefield characteristics,but also improves the representation of seismic data by increasing amplitude fidelity.We validated the algorithm in multiple attenuation using both synthetic and real seismic data.The results demonstrate that the new algorithm significantly improves both accuracy and computational efficiency,providing an effective tool for analyzing seismic wavefields in complex subsurface structures.
基金supported in part by the National Natural Science Foundation of China under Grant 41874143 and Grant 42374163in part by the Key Program of Natural Science Foundation of Sichuan Province of China under Grant 2023NSFSC0019in part by the Central Funds Guiding the Local Science and Technology Development under Grant 2024ZYD0124.
文摘Multiphase flow in porous rock is of great importance in the application of many industrial processes,including reservoir delineation,enhanced oil recovery,and CO_(2) sequestration.However,previous research typically investigated the dispersive behaviors when rock saturated with single or two-phase fluids and conducted limited studies on three-phase immiscible fluids.This study investigated the seismic dispersion,attenuation,and reflection features of seismic waves in three-phase immiscible fluidsaturated porous rocks.First,we proposed the calculation formulas of effective fluid modulus and effective fluid viscosity of multiphase immiscible fluids by taking into account the capillary pressure,reservoir wettability,and relative permeability simultaneously.Then,we analysed the frequencydependent behaviors of three-phase immiscible fluid-saturated porous rock under different fluid proportion cases using the Chapman multi-scale model.Next,the seismic responses are analysed using a four-layer model.The results indicate that the relative permeability,capillary pressure parameter,and fluid proportions are all significantly affect dispersion and attenuation.Comparative analyses demonstrate that dispersion and attenuation can be observed within the frequency range of seismic exploration for a lower capillary parameter a3 and higher oil content.Seismic responses reveal that the reflection features,such as travel time,seismic amplitude,and waveform of the bottom reflections of saturated rock and their underlying reflections are significantly dependent on fluid proportions and capillary parameters.For validation,the numerical results are further verified using the log data and real seismic data.This numerical analysis helps to further understand the wave propagation characteristics for a porous rock saturated with multiphase immiscible fluids.