Semantic segmentation of remote sensing images is a critical research area in the field of remote sensing.Despite the success of Convolutional Neural Networks(CNNs),they often fail to capture inter-layer feature relat...Semantic segmentation of remote sensing images is a critical research area in the field of remote sensing.Despite the success of Convolutional Neural Networks(CNNs),they often fail to capture inter-layer feature relationships and fully leverage contextual information,leading to the loss of important details.Additionally,due to significant intraclass variation and small inter-class differences in remote sensing images,CNNs may experience class confusion.To address these issues,we propose a novel Category-Guided Feature Collaborative Learning Network(CG-FCLNet),which enables fine-grained feature extraction and adaptive fusion.Specifically,we design a Feature Collaborative Learning Module(FCLM)to facilitate the tight interaction of multi-scale features.We also introduce a Scale-Aware Fusion Module(SAFM),which iteratively fuses features from different layers using a spatial attention mechanism,enabling deeper feature fusion.Furthermore,we design a Category-Guided Module(CGM)to extract category-aware information that guides feature fusion,ensuring that the fused featuresmore accurately reflect the semantic information of each category,thereby improving detailed segmentation.The experimental results show that CG-FCLNet achieves a Mean Intersection over Union(mIoU)of 83.46%,an mF1 of 90.87%,and an Overall Accuracy(OA)of 91.34% on the Vaihingen dataset.On the Potsdam dataset,it achieves a mIoU of 86.54%,an mF1 of 92.65%,and an OA of 91.29%.These results highlight the superior performance of CG-FCLNet compared to existing state-of-the-art methods.展开更多
Intelligent fault recognition techniques are essential to ensure the long-term reliability of manufacturing.Due to the variations in material,equipment and environment,the process variables monitored by sensors contai...Intelligent fault recognition techniques are essential to ensure the long-term reliability of manufacturing.Due to the variations in material,equipment and environment,the process variables monitored by sensors contain diverse data characteristics at different time scales or in multiple operating modes.Despite much progress in statistical learning and deep learning for fault recognition,most models are constrained by abundant diagnostic expertise,inefficient multiscale feature extraction and unruly multimode condition.To overcome the above issues,a novel fault diagnosis model called adaptive multiscale convolutional neural network(AMCNN)is developed in this paper.A new multiscale convolutional learning structure is designed to automatically mine multiple-scale features from time-series data,embedding the adaptive attention module to adjust the selection of relevant fault pattern information.The triplet loss optimization is adopted to increase the discrimination capability of the model under the multimode condition.The benchmarks CSTR simulation and Tennessee Eastman process are utilized to verify and illustrate the feasibility and efficiency of the proposed method.Compared with other common models,AMCNN shows its outstanding fault diagnosis performance and great generalization ability.展开更多
基金funded by National Natural Science Foundation of China(61603245).
文摘Semantic segmentation of remote sensing images is a critical research area in the field of remote sensing.Despite the success of Convolutional Neural Networks(CNNs),they often fail to capture inter-layer feature relationships and fully leverage contextual information,leading to the loss of important details.Additionally,due to significant intraclass variation and small inter-class differences in remote sensing images,CNNs may experience class confusion.To address these issues,we propose a novel Category-Guided Feature Collaborative Learning Network(CG-FCLNet),which enables fine-grained feature extraction and adaptive fusion.Specifically,we design a Feature Collaborative Learning Module(FCLM)to facilitate the tight interaction of multi-scale features.We also introduce a Scale-Aware Fusion Module(SAFM),which iteratively fuses features from different layers using a spatial attention mechanism,enabling deeper feature fusion.Furthermore,we design a Category-Guided Module(CGM)to extract category-aware information that guides feature fusion,ensuring that the fused featuresmore accurately reflect the semantic information of each category,thereby improving detailed segmentation.The experimental results show that CG-FCLNet achieves a Mean Intersection over Union(mIoU)of 83.46%,an mF1 of 90.87%,and an Overall Accuracy(OA)of 91.34% on the Vaihingen dataset.On the Potsdam dataset,it achieves a mIoU of 86.54%,an mF1 of 92.65%,and an OA of 91.29%.These results highlight the superior performance of CG-FCLNet compared to existing state-of-the-art methods.
基金support from the National Science and Technology Innovation 2030 Major Project of the Ministry of Science and Technology of China(2018AAA0101605)the National Natural Science Foundation of China(21878171)。
文摘Intelligent fault recognition techniques are essential to ensure the long-term reliability of manufacturing.Due to the variations in material,equipment and environment,the process variables monitored by sensors contain diverse data characteristics at different time scales or in multiple operating modes.Despite much progress in statistical learning and deep learning for fault recognition,most models are constrained by abundant diagnostic expertise,inefficient multiscale feature extraction and unruly multimode condition.To overcome the above issues,a novel fault diagnosis model called adaptive multiscale convolutional neural network(AMCNN)is developed in this paper.A new multiscale convolutional learning structure is designed to automatically mine multiple-scale features from time-series data,embedding the adaptive attention module to adjust the selection of relevant fault pattern information.The triplet loss optimization is adopted to increase the discrimination capability of the model under the multimode condition.The benchmarks CSTR simulation and Tennessee Eastman process are utilized to verify and illustrate the feasibility and efficiency of the proposed method.Compared with other common models,AMCNN shows its outstanding fault diagnosis performance and great generalization ability.