Background Selective attention is considered one of the main components of cognitive functioning.A number of studies have demonstrated gender differences in cognition.This study aimed to investigate the gender differe...Background Selective attention is considered one of the main components of cognitive functioning.A number of studies have demonstrated gender differences in cognition.This study aimed to investigate the gender differences in selective attention in healthy subjects.Methods The present experiment examined the gender differences associated with the efficiency of three attentional networks:alerting,orienting,and executive control attention in 73 healthy subjects (38 males).All participants performed a modified version of the Attention Network Test (ANT).Results Females had higher orienting scores than males (t=2.172,P 〈0.05).Specifically,females were faster at covert orienting of attention to a spatially cued location.There were no gender differences between males and females in alerting (t=0.813,P 〉0.05) and executive control (t=0.945,P 〉0.05) attention networks.Conclusions There was a significant gender difference between males and females associated with the orienting network.Enhanced orienting attention in females may function to motivate females to direct their attention to a spatially cued location.展开更多
A critical cognitive symptom that is commonly involved in social anxiety and depression is attentional deficit. However, the functional relationship between attentional deficit and these two disorders remains poorly u...A critical cognitive symptom that is commonly involved in social anxiety and depression is attentional deficit. However, the functional relationship between attentional deficit and these two disorders remains poorly understood. Here, we behaviorally disentangled the three key attentional components(alerting, orienting, and executive control) using the established attentional network task(ANT) to investigate how social anxiety and depression are related to deficits in these attention components. We identified a double dissociation between the symptoms of social anxiety and depression and the attentional component deficits when processing non-emotional stimuli. While individuals vulnerable to social anxiety exhibited deficits in the orienting component, individuals vulnerable to depression were impaired in the executive control component. Our findings showed that social anxiety and depression were associated with deficits in different attentional components, which are not specific to emotional information.展开更多
Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate resul...Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods.展开更多
Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and text...Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and textures found in visual images.The focus of recent studies has predominantly revolved around extracting features from diverse neural network structures,inadvertently neglecting the acquisition of semantically meaningful regions and crucial components within audio-visual data.The authors present a feature pyramid attention network(FPANet)for audio-visual scene understanding,which extracts semantically significant characteristics from audio-visual data.The authors’approach builds multi-scale hierarchical features of sound spectrograms and visual images using a feature pyramid representation and localises the semantically relevant regions with a feature pyramid attention module(FPAM).A dimension alignment(DA)strategy is employed to align feature maps from multiple layers,a pyramid spatial attention(PSA)to spatially locate essential regions,and a pyramid channel attention(PCA)to pinpoint significant temporal frames.Experiments on visual scene classification(VSC),audio scene classification(ASC),and AVSC tasks demonstrate that FPANet achieves performance on par with state-of-the-art(SOTA)approaches,with a 95.9 F1-score on the ADVANCE dataset and a relative improvement of 28.8%.Visualisation results show that FPANet can prioritise semantically meaningful areas in audio-visual signals.展开更多
Anomaly fluctuations in operating conditions, catalyst wear, crushing, and the deterioration of feedstock properties in fluid catalytic cracking (FCC) units can disrupt the normal circulating fluidization process of t...Anomaly fluctuations in operating conditions, catalyst wear, crushing, and the deterioration of feedstock properties in fluid catalytic cracking (FCC) units can disrupt the normal circulating fluidization process of the catalyst. Although several effective models have been proposed in previous research to address anomaly detection in chemical processes, most fail to adequately capture the spatial-temporal dependencies of multi-source, mixed-frequency information. In this study, an innovative multi-source mixed-frequency information fusion framework based on a spatial-temporal graph attention network (MIF-STGAT) is proposed to investigate the causes of FCC regenerator catalyst loss anomalies for guide onsite operational management, enhancing the long-term stability of FCC unit operations. First, a reconstruction-based dual-encoder-decoder framework is developed to facilitate the acquisition of mixed-frequency features and information fusion during the FCC regenerator catalyst loss process. Subsequently, a graph attention network and a multilayer long short-term memory network with a differential structure are integrated into the reconstruction-based dual-encoder-shared-decoder framework to capture the dynamic fluctuations and critical features associated with anomalies. Experimental results from the Chinese FCC industrial process demonstrate that MIF-STGAT achieves excellent accuracy and interpretability for anomaly detection.展开更多
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f...Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance.展开更多
Dear Editor,This letter proposes the graph tensor alliance attention network(GT-A^(2)T)to represent a dynamic graph(DG)precisely.Its main idea includes 1)Establishing a unified spatio-temporal message propagation fram...Dear Editor,This letter proposes the graph tensor alliance attention network(GT-A^(2)T)to represent a dynamic graph(DG)precisely.Its main idea includes 1)Establishing a unified spatio-temporal message propagation framework on a DG via the tensor product for capturing the complex cohesive spatio-temporal interdependencies precisely and 2)Acquiring the alliance attention scores by node features and favorable high-order structural correlations.展开更多
Precise traffic flow forecasting is essential for mitigating urban traffic congestion.However,it is difficult for existing methods to adequately capture the dynamic spatio-temporal characteristics and multiscale tempo...Precise traffic flow forecasting is essential for mitigating urban traffic congestion.However,it is difficult for existing methods to adequately capture the dynamic spatio-temporal characteristics and multiscale temporal dependencies of traffic flow.A traffic flow prediction model with multiscale temporal awareness and graph diffusion attention networks(MT-GDAN)is proposed to address these issues.Specifically,a graph diffusion attention module is constructed,which dynamically adjusts and calculates the weights of neighboring nodes in the graph structure using a random graph attention network(GAT)and captures the spatial characteristics of hidden nodes through an adaptive adjacency matrix,thus better exploiting the dynamic spatio-temporal properties of traffic flow.Secondly,a multiscale isometric convolutional network and bi-level routing attention are used to construct a multiscale temporal awareness module.The former extracts local information of traffic flow segments by convolution with different sizes of convolution kernels and then introduces isometric convolution to obtain the global temporal relationship between local features of traffic flow segments;the latter filters irrelevant spatio-temporal features at a coarse regional level and focuses locally on key points to more accurately capture the multiscale temporal dependencies of traffic flows.Experimental results reveal that the MT-GDAN model surpasses the mainstream baseline model in terms of forecasting accuracy and exhibits good prediction performance.展开更多
It is known that long non-coding RNAs(lncRNAs)play vital roles in biological processes and contribute to the progression,development,and treatment of various diseases.Obviously,understanding associations between disea...It is known that long non-coding RNAs(lncRNAs)play vital roles in biological processes and contribute to the progression,development,and treatment of various diseases.Obviously,understanding associations between diseases and lncRNAs significantly enhances our ability to interpret disease mechanisms.Nevertheless,the process of determining lncRNA-disease associations is costly,labor-intensive,and time-consuming.Hence,it is expected to foster computational strategies to uncover lncRNA-disease relationships for further verification to save time and resources.In this study,a collaborative filtering and graph attention network-based LncRNA-Disease Association(CFGANLDA)method was nominated to expose potential lncRNA-disease associations.First,it takes into account the advantages of using biological information from multiple sources.Next,it uses a collaborative filtering technique in order to address the sparse data problem.It also employs a graph attention network to reinforce both linear and non-linear features of the associations to advance prediction performance.The computational results indicate that CFGANLDA gains better prediction performance compared to other state-of-the-art approaches.The CFGANLDA’s area under the receiver operating characteristic curve(AUC)metric is 0.9835,whereas its area under the precision-recall curve(AUPR)metric is 0.9822.Statistical analysis using 10-fold cross-validation experiments proves that these metrics are significant.Furthermore,three case studies on prostate,liver,and stomach cancers attest to the validity of CFGANLDA performance.As a result,CFGANLDA method proves to be a valued tool for lncRNA-disease association prediction.展开更多
Most existing knowledge graph relationship prediction methods are unable to capture the complex information of multi-relational knowledge graphs,thus overlooking key details contained in different entity pairs and mak...Most existing knowledge graph relationship prediction methods are unable to capture the complex information of multi-relational knowledge graphs,thus overlooking key details contained in different entity pairs and making it difficult to aggregate more complex relational features.Moreover,the insufficient capture of multi-hop relational information limits the processing capability of the global structure of the graph and reduces the accuracy of the knowledge graph completion task.This paper uses graph neural networks to construct new message functions for different relations,which can be defined as the rotation from the source entity to the target entity in the complex vector space for each relation,thereby improving the relation perception.To further enrich the relational diversity of different entities,we capture themulti-hop structural information in complex graph structure relations by incorporating two-hop relations for each entity and adding auxiliary edges to various relation combinations in the knowledge graph,thereby aggregating more complex relations and improving the reasoning ability of complex relational information.To verify the effectiveness of the proposed method,we conducted experiments on the WN18RR and FB15k-237 standard datasets.The results show that the method proposed in this study outperforms most existing methods.展开更多
BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes i...BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes in network functional connectivity(FC)in patients with OCD with GCBT remain unclear.AIM To investigate inter-and intra-network resting-state FC(rs-FC)abnormalities before and after GCBT in unmedicated patients with OCD and validate the efficacy of GCBT.METHODS Overall,33 individuals with OCD and 26 healthy controls underwent resting-state functional magnetic resonance imaging.The patients were rescanned 12 weeks after GCBT.Four cognition-related networks-default mode network(DMN),dorsal attention network(DAN),salience network(SAN),and frontoparietal network(FPN)-were selected to examine FC abnormalities within and between OCD networks before and after GCBT.Neuropsychological assessments including memory,executive function,speech,attention,and visuospatial ability were reassessed following GCBT.Pearson’s correlations were used to analyze the relationship between aberrant FC in cognition-related networks and altered neuropsychological assessments in patients.RESULTS Rs-FC within the DMN and DAN decreased significantly.Additionally,rs-FC between the DMN-DAN,DMNFPN,DMN-SAN,and DAN-SAN also decreased.Significant improvements were observed in cognitive functions,such as memory,executive function,attention,and visuospatial ability.Furthermore,reduced rs-FC within the DMN correlated with visuospatial ability and executive function;DAN positively correlated with Shape Trails Test(STT)-A test elapsed time;DMN-DAN negatively correlated with Rey-Osterrieth Complex Figure(Rey-O)mimicry time and the three elapsed times of the tower of Hanoi;DMN-SAN negatively correlated with Rey-O imitation time and positively correlated with STT-A test elapsed time;and DMN-FPN negatively correlated with Auditory Word Learning Test N1 and N4 scores.CONCLUSION Decreased rs-FC within the DMN and DAN,which correlated with executive function post-treatment,has potential as a neuroimaging marker to predict treatment response to GCBT in patients with OCD.展开更多
Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual inte...Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability.展开更多
In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with l...In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with large-scale knowledge graphs that contain vast numbers of entities and relations.In particular,resource-intensive embeddings often lead to increased computational costs,and may limit scalability and adaptability in practical environ-ments,such as in low-resource settings or real-world applications.This paper explores an approach to knowledge graph representation learning that leverages small,reserved entities and relation sets for parameter-efficient embedding.We introduce a hierarchical attention network designed to refine and maximize the representational quality of embeddings by selectively focusing on these reserved sets,thereby reducing model complexity.Empirical assessments validate that our model achieves high performance on the benchmark dataset with fewer parameters and smaller embedding dimensions.The ablation studies further highlight the impact and contribution of each component in the proposed hierarchical attention structure.展开更多
Counterfeit agricultural products pose a significant challenge to global food security and economic stability, necessitating advanced detection mechanisms to ensure authenticity and quality. To address this pressing i...Counterfeit agricultural products pose a significant challenge to global food security and economic stability, necessitating advanced detection mechanisms to ensure authenticity and quality. To address this pressing issue, we introduce iGFruit, an innovative model designed to enhance the detection of counterfeit agricultural products by integrating multimodal data processing. Our approach utilizes both image and text data for comprehensive feature extraction, employing advanced backbone models such as Vision Transformer (ViT), Normalizer-Free Network (NFNet), and Bidirectional Encoder Representations from Transformers (BERT). These extracted features are fused and processed using a Graph Attention Network (GAT) to capture intricate relationships within the multimodal data. The resulting fused representation is subsequently classified to detect counterfeit products with high precision. We validate the effectiveness of iGFruit through extensive experiments on two datasets: the publicly available MIT-States dataset and the proprietary TLU-States dataset, achieving state-of-the-art performance on both benchmarks. Specifically, iGFruit demonstrates an improvement of over 3% in average accuracy compared to baseline models, all while maintaining computational efficiency during inference. This work underscores the necessity and innovativeness of integrating graph-based feature learning to tackle the critical issue of counterfeit agricultural product detection.展开更多
Objective:To explore the effect differences between moxibustion and donepezil hydrochloride on the attention network function of patients with mild cognitive impairment(MCI).Methods:A total of 64 patients of MCI were ...Objective:To explore the effect differences between moxibustion and donepezil hydrochloride on the attention network function of patients with mild cognitive impairment(MCI).Methods:A total of 64 patients of MCI were randomly divided into the moxibustion group and donepezil hydrochloride group,32 cases in each one.On the basis of conventional treatment,the patients in the moxibustion group were given moxibustion,6 times a week,and the patients in the donepezil hydrochloride group were given donepezil hydrochloride orally,5 mg/day.The course of treatment was 60 days for both of the groups.Cognitive attention network function and activities of daily living(ADL)score were examined before and after treatment.Results:The differences of alerting reaction time(RT),executive control RT,overall mean RT and accuracy of the moxibustion group after treatment were significantly higher than those of the donepezil hydrochloride group[alert:(60.3±3.3)ms vs(48.3±3.7)ms,P<0.05;executive control:(81.2±3.2)ms vs(91.7±4.2)ms,P<0.05;total reaction time:(500.4±17.2)ms vs(536.2±20.1)ms.P<0.05;accuracy:(83.7±4.6)%vs(77.4±4.3)%,P<0.05].After treatment,the ADL scores of the both groups were significantly higher than those before treatment[the moxibustion group:(56.47±4.02)points vs(41.53±4.06)points,P<0.05;the donepezil hydrochloride group:(50.75±4.05)points vs(40.84±3.67)points,P<0.05],and the ADL score of the moxibustion group was significantly higher than that of the donepezil hydrochloride group[(56.47±4.02)points vs(50.75±4.05)points,P<0.05].Conclusion:Compared with donepezil hydrochloride,moxibustion has a better effect on the cognitive function of MCI patients.展开更多
Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network...Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network. Since traffic flow data has complex spatio-temporal correlation and non-linearity, existing prediction methods are mainly accomplished through a combination of a Graph Convolutional Network (GCN) and a recurrent neural network. The combination strategy has an excellent performance in traffic prediction tasks. However, multi-step prediction error accumulates with the predicted step size. Some scholars use multiple sampling sequences to achieve more accurate prediction results. But it requires high hardware conditions and multiplied training time. Considering the spatiotemporal correlation of traffic flow and influence of external factors, we propose an Attention Based Spatio-Temporal Graph Convolutional Network considering External Factors (ABSTGCN-EF) for multi-step traffic flow prediction. This model models the traffic flow as diffusion on a digraph and extracts the spatial characteristics of traffic flow through GCN. We add meaningful time-slots attention to the encoder-decoder to form an Attention Encoder Network (AEN) to handle temporal correlation. The attention vector is used as a competitive choice to draw the correlation between predicted states and historical states. We considered the impact of three external factors (daytime, weekdays, and traffic accident markers) on the traffic flow prediction tasks. Experiments on two public data sets show that it makes sense to consider external factors. The prediction performance of our ABSTGCN-EF model achieves 7.2%–8.7% higher than the state-of-the-art baselines.展开更多
Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph ...Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships,which makes it difficult to accurately describe the difference between the topological relations of nodes,resulting in low detection accuracy of social robots.This paper proposes a social robot detection method with the use of an improved neural network.First,social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social relationships effectively.Then,a linear modulated graph attention residual network model is devised to extract the node and network topology features of the social relation subgraph,thereby generating comprehensive social relation subgraph features,and the feature-wise linear modulation module of the model can better learn the differences between the nodes.Next,user text content and behavioral gene sequences are extracted to construct social behavioral features combined with the social relationship subgraph features.Finally,social robots can be more accurately identified by combining user behavioral and relationship features.By carrying out experimental studies based on the publicly available datasets TwiBot-20 and Cresci-15,the suggested method’s detection accuracies can achieve 86.73%and 97.86%,respectively.Compared with the existing mainstream approaches,the accuracy of the proposed method is 2.2%and 1.35%higher on the two datasets.The results show that the method proposed in this paper can effectively detect social robots and maintain a healthy ecological environment of social networks.展开更多
Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtempora...Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset.展开更多
Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing...Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing DL methods have difficulty in achieving good performance in identifying leakage types due to the complex time dynamics of pipeline data.On the other hand,the initial parameter selection in the detection model is generally random,which may lead to unstable recognition performance.For this reason,a hybrid DL framework referred to as parameter-optimized recurrent attention network(PRAN)is presented in this paper to improve the accuracy of PLD.First,a parameter-optimized long short-term memory(LSTM)network is introduced to extract effective and robust features,which exploits a particle swarm optimization(PSO)algorithm with cross-entropy fitness function to search for globally optimal parameters.With this framework,the learning representation capability of the model is improved and the convergence rate is accelerated.Moreover,an anomaly-attention mechanism(AM)is proposed to discover class discriminative information by weighting the hidden states,which contributes to amplifying the normalabnormal distinguishable discrepancy,further improving the accuracy of PLD.After that,the proposed PRAN not only implements the adaptive optimization of network parameters,but also enlarges the contribution of normal-abnormal discrepancy,thereby overcoming the drawbacks of instability and poor generalization.Finally,the experimental results demonstrate the effectiveness and superiority of the proposed PRAN for PLD.展开更多
Recent advances in spatially resolved transcriptomic technologies have enabled unprecedented opportunities to elucidate tissue architecture and function in situ.Spatial transcriptomics can provide multimodal and compl...Recent advances in spatially resolved transcriptomic technologies have enabled unprecedented opportunities to elucidate tissue architecture and function in situ.Spatial transcriptomics can provide multimodal and complementary information simultaneously,including gene expression profiles,spatial locations,and histology images.However,most existing methods have limitations in efficiently utilizing spatial information and matched high-resolution histology images.To fully leverage the multi-modal information,we propose a SPAtially embedded Deep Attentional graph Clustering(SpaDAC)method to identify spatial domains while reconstructing denoised gene expression profiles.This method can efficiently learn the low-dimensional embeddings for spatial transcriptomics data by constructing multi-view graph modules to capture both spatial location connectives and morphological connectives.Benchmark results demonstrate that SpaDAC outperforms other algorithms on several recent spatial transcriptomics datasets.SpaDAC is a valuable tool for spatial domain detection,facilitating the comprehension of tissue architecture and cellular microenvironment.The source code of SpaDAC is freely available at Github(https://github.com/huoyuying/SpaDAC.git).展开更多
基金This work was supported by grants from the National Natural Science Foundation of China (No. 30870766), the National Basic Research Program of China (973 Program) (No. 2011CB707805), and International Program of Anhui Province (No. 10080703040). Conflict of interest: None.
文摘Background Selective attention is considered one of the main components of cognitive functioning.A number of studies have demonstrated gender differences in cognition.This study aimed to investigate the gender differences in selective attention in healthy subjects.Methods The present experiment examined the gender differences associated with the efficiency of three attentional networks:alerting,orienting,and executive control attention in 73 healthy subjects (38 males).All participants performed a modified version of the Attention Network Test (ANT).Results Females had higher orienting scores than males (t=2.172,P 〈0.05).Specifically,females were faster at covert orienting of attention to a spatially cued location.There were no gender differences between males and females in alerting (t=0.813,P 〉0.05) and executive control (t=0.945,P 〉0.05) attention networks.Conclusions There was a significant gender difference between males and females associated with the orienting network.Enhanced orienting attention in females may function to motivate females to direct their attention to a spatially cued location.
基金supported by the National Natural Science Foundation of China (31930053, 31671168, 31421003)Beijing Municipal Science and Technology Commission (Z181100001518002)。
文摘A critical cognitive symptom that is commonly involved in social anxiety and depression is attentional deficit. However, the functional relationship between attentional deficit and these two disorders remains poorly understood. Here, we behaviorally disentangled the three key attentional components(alerting, orienting, and executive control) using the established attentional network task(ANT) to investigate how social anxiety and depression are related to deficits in these attention components. We identified a double dissociation between the symptoms of social anxiety and depression and the attentional component deficits when processing non-emotional stimuli. While individuals vulnerable to social anxiety exhibited deficits in the orienting component, individuals vulnerable to depression were impaired in the executive control component. Our findings showed that social anxiety and depression were associated with deficits in different attentional components, which are not specific to emotional information.
基金This research is partially supported by grant from the National Natural Science Foundation of China(No.72071019)grant from the Natural Science Foundation of Chongqing(No.cstc2021jcyj-msxmX0185)grant from the Chongqing Graduate Education and Teaching Reform Research Project(No.yjg193096).
文摘Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods.
基金Shenzhen Institute of Artificial Intelligence and Robotics for Society,Grant/Award Number:AC01202201003-02GuangDong Basic and Applied Basic Research Foundation,Grant/Award Number:2024A1515010252Longgang District Shenzhen's“Ten Action Plan”for Supporting Innovation Projects,Grant/Award Number:LGKCSDPT2024002。
文摘Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and textures found in visual images.The focus of recent studies has predominantly revolved around extracting features from diverse neural network structures,inadvertently neglecting the acquisition of semantically meaningful regions and crucial components within audio-visual data.The authors present a feature pyramid attention network(FPANet)for audio-visual scene understanding,which extracts semantically significant characteristics from audio-visual data.The authors’approach builds multi-scale hierarchical features of sound spectrograms and visual images using a feature pyramid representation and localises the semantically relevant regions with a feature pyramid attention module(FPAM).A dimension alignment(DA)strategy is employed to align feature maps from multiple layers,a pyramid spatial attention(PSA)to spatially locate essential regions,and a pyramid channel attention(PCA)to pinpoint significant temporal frames.Experiments on visual scene classification(VSC),audio scene classification(ASC),and AVSC tasks demonstrate that FPANet achieves performance on par with state-of-the-art(SOTA)approaches,with a 95.9 F1-score on the ADVANCE dataset and a relative improvement of 28.8%.Visualisation results show that FPANet can prioritise semantically meaningful areas in audio-visual signals.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(22021004)Sinopec Major Science and Technology Projects(321123-1).
文摘Anomaly fluctuations in operating conditions, catalyst wear, crushing, and the deterioration of feedstock properties in fluid catalytic cracking (FCC) units can disrupt the normal circulating fluidization process of the catalyst. Although several effective models have been proposed in previous research to address anomaly detection in chemical processes, most fail to adequately capture the spatial-temporal dependencies of multi-source, mixed-frequency information. In this study, an innovative multi-source mixed-frequency information fusion framework based on a spatial-temporal graph attention network (MIF-STGAT) is proposed to investigate the causes of FCC regenerator catalyst loss anomalies for guide onsite operational management, enhancing the long-term stability of FCC unit operations. First, a reconstruction-based dual-encoder-decoder framework is developed to facilitate the acquisition of mixed-frequency features and information fusion during the FCC regenerator catalyst loss process. Subsequently, a graph attention network and a multilayer long short-term memory network with a differential structure are integrated into the reconstruction-based dual-encoder-shared-decoder framework to capture the dynamic fluctuations and critical features associated with anomalies. Experimental results from the Chinese FCC industrial process demonstrate that MIF-STGAT achieves excellent accuracy and interpretability for anomaly detection.
基金supported by the National Natural Science Foundation of China(No.62103298)。
文摘Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance.
基金supported in part by the National Natural Science Foundation of China(62372385).
文摘Dear Editor,This letter proposes the graph tensor alliance attention network(GT-A^(2)T)to represent a dynamic graph(DG)precisely.Its main idea includes 1)Establishing a unified spatio-temporal message propagation framework on a DG via the tensor product for capturing the complex cohesive spatio-temporal interdependencies precisely and 2)Acquiring the alliance attention scores by node features and favorable high-order structural correlations.
基金Supported by the by Key R&D Program of Gansu Province(No.23YFGA0063)the Key Talent Project of Gansu Province(No.2024RCXM57,2024RCXM22)the Major Science and Technology Special Program of Gansu Province(No.25ZYJA037).
文摘Precise traffic flow forecasting is essential for mitigating urban traffic congestion.However,it is difficult for existing methods to adequately capture the dynamic spatio-temporal characteristics and multiscale temporal dependencies of traffic flow.A traffic flow prediction model with multiscale temporal awareness and graph diffusion attention networks(MT-GDAN)is proposed to address these issues.Specifically,a graph diffusion attention module is constructed,which dynamically adjusts and calculates the weights of neighboring nodes in the graph structure using a random graph attention network(GAT)and captures the spatial characteristics of hidden nodes through an adaptive adjacency matrix,thus better exploiting the dynamic spatio-temporal properties of traffic flow.Secondly,a multiscale isometric convolutional network and bi-level routing attention are used to construct a multiscale temporal awareness module.The former extracts local information of traffic flow segments by convolution with different sizes of convolution kernels and then introduces isometric convolution to obtain the global temporal relationship between local features of traffic flow segments;the latter filters irrelevant spatio-temporal features at a coarse regional level and focuses locally on key points to more accurately capture the multiscale temporal dependencies of traffic flows.Experimental results reveal that the MT-GDAN model surpasses the mainstream baseline model in terms of forecasting accuracy and exhibits good prediction performance.
基金supported by the Vietnam Ministry of Education and Training under project code B2023-SPH-14。
文摘It is known that long non-coding RNAs(lncRNAs)play vital roles in biological processes and contribute to the progression,development,and treatment of various diseases.Obviously,understanding associations between diseases and lncRNAs significantly enhances our ability to interpret disease mechanisms.Nevertheless,the process of determining lncRNA-disease associations is costly,labor-intensive,and time-consuming.Hence,it is expected to foster computational strategies to uncover lncRNA-disease relationships for further verification to save time and resources.In this study,a collaborative filtering and graph attention network-based LncRNA-Disease Association(CFGANLDA)method was nominated to expose potential lncRNA-disease associations.First,it takes into account the advantages of using biological information from multiple sources.Next,it uses a collaborative filtering technique in order to address the sparse data problem.It also employs a graph attention network to reinforce both linear and non-linear features of the associations to advance prediction performance.The computational results indicate that CFGANLDA gains better prediction performance compared to other state-of-the-art approaches.The CFGANLDA’s area under the receiver operating characteristic curve(AUC)metric is 0.9835,whereas its area under the precision-recall curve(AUPR)metric is 0.9822.Statistical analysis using 10-fold cross-validation experiments proves that these metrics are significant.Furthermore,three case studies on prostate,liver,and stomach cancers attest to the validity of CFGANLDA performance.As a result,CFGANLDA method proves to be a valued tool for lncRNA-disease association prediction.
文摘Most existing knowledge graph relationship prediction methods are unable to capture the complex information of multi-relational knowledge graphs,thus overlooking key details contained in different entity pairs and making it difficult to aggregate more complex relational features.Moreover,the insufficient capture of multi-hop relational information limits the processing capability of the global structure of the graph and reduces the accuracy of the knowledge graph completion task.This paper uses graph neural networks to construct new message functions for different relations,which can be defined as the rotation from the source entity to the target entity in the complex vector space for each relation,thereby improving the relation perception.To further enrich the relational diversity of different entities,we capture themulti-hop structural information in complex graph structure relations by incorporating two-hop relations for each entity and adding auxiliary edges to various relation combinations in the knowledge graph,thereby aggregating more complex relations and improving the reasoning ability of complex relational information.To verify the effectiveness of the proposed method,we conducted experiments on the WN18RR and FB15k-237 standard datasets.The results show that the method proposed in this study outperforms most existing methods.
基金Supported by the Pharmaceutical Science and Technology Project of Zhejiang Province,No.2023RC266the Natural Science Foundation of Ningbo,No.202003N4266.
文摘BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes in network functional connectivity(FC)in patients with OCD with GCBT remain unclear.AIM To investigate inter-and intra-network resting-state FC(rs-FC)abnormalities before and after GCBT in unmedicated patients with OCD and validate the efficacy of GCBT.METHODS Overall,33 individuals with OCD and 26 healthy controls underwent resting-state functional magnetic resonance imaging.The patients were rescanned 12 weeks after GCBT.Four cognition-related networks-default mode network(DMN),dorsal attention network(DAN),salience network(SAN),and frontoparietal network(FPN)-were selected to examine FC abnormalities within and between OCD networks before and after GCBT.Neuropsychological assessments including memory,executive function,speech,attention,and visuospatial ability were reassessed following GCBT.Pearson’s correlations were used to analyze the relationship between aberrant FC in cognition-related networks and altered neuropsychological assessments in patients.RESULTS Rs-FC within the DMN and DAN decreased significantly.Additionally,rs-FC between the DMN-DAN,DMNFPN,DMN-SAN,and DAN-SAN also decreased.Significant improvements were observed in cognitive functions,such as memory,executive function,attention,and visuospatial ability.Furthermore,reduced rs-FC within the DMN correlated with visuospatial ability and executive function;DAN positively correlated with Shape Trails Test(STT)-A test elapsed time;DMN-DAN negatively correlated with Rey-Osterrieth Complex Figure(Rey-O)mimicry time and the three elapsed times of the tower of Hanoi;DMN-SAN negatively correlated with Rey-O imitation time and positively correlated with STT-A test elapsed time;and DMN-FPN negatively correlated with Auditory Word Learning Test N1 and N4 scores.CONCLUSION Decreased rs-FC within the DMN and DAN,which correlated with executive function post-treatment,has potential as a neuroimaging marker to predict treatment response to GCBT in patients with OCD.
基金funded by the National Natural Science Foundation of China,grant number 624010funded by the Natural Science Foundation of Anhui Province,grant number 2408085QF202+1 种基金funded by the Anhui Future Technology Research Institute Industry Guidance Fund Project,grant number 2023cyyd04funded by the Project of Research of Anhui Polytechnic University,grant number Xjky2022150.
文摘Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability.
基金supported by the National Science and Technology Council(NSTC),Taiwan,under Grants Numbers 112-2622-E-029-009 and 112-2221-E-029-019.
文摘In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with large-scale knowledge graphs that contain vast numbers of entities and relations.In particular,resource-intensive embeddings often lead to increased computational costs,and may limit scalability and adaptability in practical environ-ments,such as in low-resource settings or real-world applications.This paper explores an approach to knowledge graph representation learning that leverages small,reserved entities and relation sets for parameter-efficient embedding.We introduce a hierarchical attention network designed to refine and maximize the representational quality of embeddings by selectively focusing on these reserved sets,thereby reducing model complexity.Empirical assessments validate that our model achieves high performance on the benchmark dataset with fewer parameters and smaller embedding dimensions.The ablation studies further highlight the impact and contribution of each component in the proposed hierarchical attention structure.
文摘Counterfeit agricultural products pose a significant challenge to global food security and economic stability, necessitating advanced detection mechanisms to ensure authenticity and quality. To address this pressing issue, we introduce iGFruit, an innovative model designed to enhance the detection of counterfeit agricultural products by integrating multimodal data processing. Our approach utilizes both image and text data for comprehensive feature extraction, employing advanced backbone models such as Vision Transformer (ViT), Normalizer-Free Network (NFNet), and Bidirectional Encoder Representations from Transformers (BERT). These extracted features are fused and processed using a Graph Attention Network (GAT) to capture intricate relationships within the multimodal data. The resulting fused representation is subsequently classified to detect counterfeit products with high precision. We validate the effectiveness of iGFruit through extensive experiments on two datasets: the publicly available MIT-States dataset and the proprietary TLU-States dataset, achieving state-of-the-art performance on both benchmarks. Specifically, iGFruit demonstrates an improvement of over 3% in average accuracy compared to baseline models, all while maintaining computational efficiency during inference. This work underscores the necessity and innovativeness of integrating graph-based feature learning to tackle the critical issue of counterfeit agricultural product detection.
基金Supported by National natural science foundation:81574075Natural Science Foundation of Anhui Province:1608085MH184。
文摘Objective:To explore the effect differences between moxibustion and donepezil hydrochloride on the attention network function of patients with mild cognitive impairment(MCI).Methods:A total of 64 patients of MCI were randomly divided into the moxibustion group and donepezil hydrochloride group,32 cases in each one.On the basis of conventional treatment,the patients in the moxibustion group were given moxibustion,6 times a week,and the patients in the donepezil hydrochloride group were given donepezil hydrochloride orally,5 mg/day.The course of treatment was 60 days for both of the groups.Cognitive attention network function and activities of daily living(ADL)score were examined before and after treatment.Results:The differences of alerting reaction time(RT),executive control RT,overall mean RT and accuracy of the moxibustion group after treatment were significantly higher than those of the donepezil hydrochloride group[alert:(60.3±3.3)ms vs(48.3±3.7)ms,P<0.05;executive control:(81.2±3.2)ms vs(91.7±4.2)ms,P<0.05;total reaction time:(500.4±17.2)ms vs(536.2±20.1)ms.P<0.05;accuracy:(83.7±4.6)%vs(77.4±4.3)%,P<0.05].After treatment,the ADL scores of the both groups were significantly higher than those before treatment[the moxibustion group:(56.47±4.02)points vs(41.53±4.06)points,P<0.05;the donepezil hydrochloride group:(50.75±4.05)points vs(40.84±3.67)points,P<0.05],and the ADL score of the moxibustion group was significantly higher than that of the donepezil hydrochloride group[(56.47±4.02)points vs(50.75±4.05)points,P<0.05].Conclusion:Compared with donepezil hydrochloride,moxibustion has a better effect on the cognitive function of MCI patients.
基金supported by the Nation Natural Science Foundation of China(NSFC)under Grant No.61462042 and No.61966018.
文摘Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network. Since traffic flow data has complex spatio-temporal correlation and non-linearity, existing prediction methods are mainly accomplished through a combination of a Graph Convolutional Network (GCN) and a recurrent neural network. The combination strategy has an excellent performance in traffic prediction tasks. However, multi-step prediction error accumulates with the predicted step size. Some scholars use multiple sampling sequences to achieve more accurate prediction results. But it requires high hardware conditions and multiplied training time. Considering the spatiotemporal correlation of traffic flow and influence of external factors, we propose an Attention Based Spatio-Temporal Graph Convolutional Network considering External Factors (ABSTGCN-EF) for multi-step traffic flow prediction. This model models the traffic flow as diffusion on a digraph and extracts the spatial characteristics of traffic flow through GCN. We add meaningful time-slots attention to the encoder-decoder to form an Attention Encoder Network (AEN) to handle temporal correlation. The attention vector is used as a competitive choice to draw the correlation between predicted states and historical states. We considered the impact of three external factors (daytime, weekdays, and traffic accident markers) on the traffic flow prediction tasks. Experiments on two public data sets show that it makes sense to consider external factors. The prediction performance of our ABSTGCN-EF model achieves 7.2%–8.7% higher than the state-of-the-art baselines.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 62273272,62303375 and 61873277in part by the Key Research and Development Program of Shaanxi Province under Grant 2023-YBGY-243+2 种基金in part by the Natural Science Foundation of Shaanxi Province under Grants 2022JQ-606 and 2020-JQ758in part by the Research Plan of Department of Education of Shaanxi Province under Grant 21JK0752in part by the Youth Innovation Team of Shaanxi Universities.
文摘Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships,which makes it difficult to accurately describe the difference between the topological relations of nodes,resulting in low detection accuracy of social robots.This paper proposes a social robot detection method with the use of an improved neural network.First,social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social relationships effectively.Then,a linear modulated graph attention residual network model is devised to extract the node and network topology features of the social relation subgraph,thereby generating comprehensive social relation subgraph features,and the feature-wise linear modulation module of the model can better learn the differences between the nodes.Next,user text content and behavioral gene sequences are extracted to construct social behavioral features combined with the social relationship subgraph features.Finally,social robots can be more accurately identified by combining user behavioral and relationship features.By carrying out experimental studies based on the publicly available datasets TwiBot-20 and Cresci-15,the suggested method’s detection accuracies can achieve 86.73%and 97.86%,respectively.Compared with the existing mainstream approaches,the accuracy of the proposed method is 2.2%and 1.35%higher on the two datasets.The results show that the method proposed in this paper can effectively detect social robots and maintain a healthy ecological environment of social networks.
基金supported by the Key Research&Development Plan Project of Shandong Province,China(No.2017GGX10127).
文摘Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset.
基金This work was supported in part by the National Natural Science Foundation of China(U21A2019,61873058),Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the Alexander von Humboldt Foundation of Germany.
文摘Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing DL methods have difficulty in achieving good performance in identifying leakage types due to the complex time dynamics of pipeline data.On the other hand,the initial parameter selection in the detection model is generally random,which may lead to unstable recognition performance.For this reason,a hybrid DL framework referred to as parameter-optimized recurrent attention network(PRAN)is presented in this paper to improve the accuracy of PLD.First,a parameter-optimized long short-term memory(LSTM)network is introduced to extract effective and robust features,which exploits a particle swarm optimization(PSO)algorithm with cross-entropy fitness function to search for globally optimal parameters.With this framework,the learning representation capability of the model is improved and the convergence rate is accelerated.Moreover,an anomaly-attention mechanism(AM)is proposed to discover class discriminative information by weighting the hidden states,which contributes to amplifying the normalabnormal distinguishable discrepancy,further improving the accuracy of PLD.After that,the proposed PRAN not only implements the adaptive optimization of network parameters,but also enlarges the contribution of normal-abnormal discrepancy,thereby overcoming the drawbacks of instability and poor generalization.Finally,the experimental results demonstrate the effectiveness and superiority of the proposed PRAN for PLD.
基金supported by National Natural Science Foundation of China(62003028).X.L.was supported by a Scholarship from the China Scholarship Council.
文摘Recent advances in spatially resolved transcriptomic technologies have enabled unprecedented opportunities to elucidate tissue architecture and function in situ.Spatial transcriptomics can provide multimodal and complementary information simultaneously,including gene expression profiles,spatial locations,and histology images.However,most existing methods have limitations in efficiently utilizing spatial information and matched high-resolution histology images.To fully leverage the multi-modal information,we propose a SPAtially embedded Deep Attentional graph Clustering(SpaDAC)method to identify spatial domains while reconstructing denoised gene expression profiles.This method can efficiently learn the low-dimensional embeddings for spatial transcriptomics data by constructing multi-view graph modules to capture both spatial location connectives and morphological connectives.Benchmark results demonstrate that SpaDAC outperforms other algorithms on several recent spatial transcriptomics datasets.SpaDAC is a valuable tool for spatial domain detection,facilitating the comprehension of tissue architecture and cellular microenvironment.The source code of SpaDAC is freely available at Github(https://github.com/huoyuying/SpaDAC.git).