期刊文献+
共找到38,629篇文章
< 1 2 250 >
每页显示 20 50 100
Attention U-Net for Precision Skeletal Segmentation in Chest X-Ray Imaging:Advancing Person Identification Techniques in Forensic Science
1
作者 Hazem Farah Akram Bennour +3 位作者 Hama Soltani Mouaaz Nahas Rashiq Rafiq Marie Mohammed Al-Sarem 《Computers, Materials & Continua》 2025年第11期3335-3348,共14页
This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhance... This study presents an advanced method for post-mortem person identification using the segmentation of skeletal structures from chest X-ray images.The proposed approach employs the Attention U-Net architecture,enhanced with gated attention mechanisms,to refine segmentation by emphasizing spatially relevant anatomical features while suppressing irrelevant details.By isolating skeletal structures which remain stable over time compared to soft tissues,this method leverages bones as reliable biometric markers for identity verification.The model integrates custom-designed encoder and decoder blocks with attention gates,achieving high segmentation precision.To evaluate the impact of architectural choices,we conducted an ablation study comparing Attention U-Net with and without attentionmechanisms,alongside an analysis of data augmentation effects.Training and evaluation were performed on a curated chest X-ray dataset,with segmentation performance measured using Dice score,precision,and loss functions,achieving over 98% precision and 94% Dice score.The extracted bone structures were further processed to derive unique biometric patterns,enabling robust and privacy-preserving person identification.Our findings highlight the effectiveness of attentionmechanisms in improving segmentation accuracy and underscore the potential of chest bonebased biometrics in forensic and medical imaging.This work paves the way for integrating artificial intelligence into real-world forensic workflows,offering a non-invasive and reliable solution for post-mortem identification. 展开更多
关键词 Bone extraction segmentation of skeletal structures chest X-ray images person identification deep learning attention mechanisms u-net
在线阅读 下载PDF
结合Attention U-Net与瓶颈检测的肺部细胞图像分割方法 被引量:4
2
作者 邵虹 左常升 张萍 《智能科学与技术学报》 2022年第4期610-616,共7页
肺部病理图像具有边界模糊、细胞重叠交织等特点,为了解决细胞分割问题,提出结合Attention U-Net与瓶颈检测的肺部细胞图像分割方法。首先对采集到的图像进行双边滤波和拉普拉斯锐化处理,在去除噪声的同时突出细胞边缘细节,加大目标物... 肺部病理图像具有边界模糊、细胞重叠交织等特点,为了解决细胞分割问题,提出结合Attention U-Net与瓶颈检测的肺部细胞图像分割方法。首先对采集到的图像进行双边滤波和拉普拉斯锐化处理,在去除噪声的同时突出细胞边缘细节,加大目标物与背景的对比;然后对Attention U-Net进行训练,利用训练的模型对病理图像进行分割,得到细胞区域;在模型分割结果的基础上,以面积、周长、圆度为筛选条件建立判别模型,区分单个细胞和重叠细胞;对细胞重叠区域采用瓶颈检测方法确定分离点,采用椭圆拟合方法进行边界修正,得到最终分割结果。实验结果表明,该方法能够对复杂的肺部细胞病理图像进行分割(包括单个细胞与重叠细胞),取得了较好的分割结果。 展开更多
关键词 肺部病理图像 细胞分割 attention u-net 瓶颈检测 椭圆拟合
原文传递
基于改进I-Attention U-Net的锌浮选泡沫图像分割算法 被引量:5
3
作者 唐朝晖 郭俊岑 +2 位作者 张虎 谢永芳 钟宇泽 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第2期12-22,共11页
针对泡沫图像的高度复杂性导致其难以被准确分割的难题,本文提出了一种新的I-Attention U-Net网络用于泡沫图像分割.该算法以U-Net网络作为主干网络,使用Inception模块替换第一卷积池化层来提取泡沫图像的多尺度、多层次浅层特征信息;... 针对泡沫图像的高度复杂性导致其难以被准确分割的难题,本文提出了一种新的I-Attention U-Net网络用于泡沫图像分割.该算法以U-Net网络作为主干网络,使用Inception模块替换第一卷积池化层来提取泡沫图像的多尺度、多层次浅层特征信息;引入金字塔池化模块,通过对不同尺度的特征图求和来提升分割效果;并对自注意力门控单元进行改进,使注意力单元更适合于浮选泡沫图像的分割,强化深层特征的重要性并对不同尺寸的泡沫边界进行强化学习.研究结果表明:本文所提出算法的Jaccard系数为91.73%,Dice系数为95.66%.与同类其他分割算法结果相比,Jaccard系数及Dice系数分别提高了1.59%、0.88%.该模型能够较好地对锌浮选泡沫图像进行分割,解决欠分割与过分割的问题,为后续的泡沫特征提取奠定基础.此外,该方法检测时间和模型参数少,具备可以部署在工业现场计算机的能力,有一定的实际应用价值. 展开更多
关键词 泡沫浮选 泡沫图像分割 u-net Inception模块 增强注意力机制
在线阅读 下载PDF
SAR image water extraction using the attention U-net and multi-scale level set method:flood monitoring in South China in 2020 as a test case 被引量:1
4
作者 Chuan Xu Shanshan Zhang +4 位作者 Bofei Zhao Chang Liu Haigang Sui Wei Yang Liye Mei 《Geo-Spatial Information Science》 SCIE EI CSCD 2022年第2期155-168,共14页
Level set method has been extensively used for image segmentation,which is a key technology of water extraction.However,one of the problems of the level-set method is how to find the appropriate initial surface parame... Level set method has been extensively used for image segmentation,which is a key technology of water extraction.However,one of the problems of the level-set method is how to find the appropriate initial surface parameters,which will affect the accuracy and speed of level set evolution.Recently,the semantic segmentation based on deep learning has opened the exciting research possibilities.In addition,the Convolutional Neural Network(CNN)has shown a strong feature representation capability.Therefore,in this paper,the CNN method is used to obtain the initial SAR image segmentation map to provide deep a priori information for the zero-level set curve,which only needs to describe the general outline of the water body,rather than the accurate edges.Compared with the traditional circular and rectangular zero-level set initialization method,this method can converge to the edge of the water body faster and more precisely;it will not fall into the local minimum value and be able to obtain accurate segmentation results.The effectiveness of the proposed method is demonstrated by the experimental results of flood disaster monitoring in South China in 2020. 展开更多
关键词 Water extraction flood monitoring level set attention u-net Convolutional Neural Network(CNN)
原文传递
基于改进Attention U-Net的胆囊自动分割模型研究 被引量:1
5
作者 尹梓名 孙大运 +7 位作者 任泰 周雷 李永盛 王广义 王传磊 曹宏 刘颖斌 束翌俊 《北京生物医学工程》 2021年第4期346-353,376,共9页
目的基于多尺度融合注意力机制,提出改进Attention U-Net的胆囊自动分割模型,提高胆囊自动分割模型的性能,以辅助医生进行临床诊断。方法首先选取2017年1月—2019年12月上海交通大学医学院附属新华医院普外科、吉林大学白求恩第一医院... 目的基于多尺度融合注意力机制,提出改进Attention U-Net的胆囊自动分割模型,提高胆囊自动分割模型的性能,以辅助医生进行临床诊断。方法首先选取2017年1月—2019年12月上海交通大学医学院附属新华医院普外科、吉林大学白求恩第一医院肝胆胰外一科和吉林大学中日联谊医院普外科收治的88例病理诊断明确的胆囊癌患者、28例慢性胆囊炎胆囊结石患者和29例健康对照,构建胆囊分割数据集,然后通过对医学常用深度学习图像分割方法U-Net和Attention U-Net进行分析,提出基于多尺度融合注意力机制改进的Attention U-Net方法,并设计实验对3种方法进行对比评估。结果提出的改进Attention U-Net方法在验证集上的交并比阈值(IoU)分数、Dice系数、检测精度(Precision)和召回率(Recall)分别为0.72、0.84、0.92、0.79,全部优于传统U-Net和Attention U-Net方法。结论本文提出了基于多尺度融合注意力机制改进的Attention U-Net模型,其性能优于U-Net和Attention U-Net,证明了本方法中改进的注意力机制可以很好地改善U-Net模型在胆囊影像上的分割结果。 展开更多
关键词 深度学习 胆囊 图像分割 u-net 注意力机制
在线阅读 下载PDF
基于Attention U-Net的陆地卫星影像云检测 被引量:1
6
作者 刘飞 李欣 《应用科学学报》 CAS CSCD 北大核心 2022年第6期906-917,共12页
云检测是提高遥感影像利用率和应用范围的有效措施。然而,现有云检测算法大多存在以下两个问题:冰、雪等复杂下垫面与云不易区分;需要大量人工标记好的云样本对模型进行训练。为提高影像云识别精度,提出了一种基于Attention U-Net的陆... 云检测是提高遥感影像利用率和应用范围的有效措施。然而,现有云检测算法大多存在以下两个问题:冰、雪等复杂下垫面与云不易区分;需要大量人工标记好的云样本对模型进行训练。为提高影像云识别精度,提出了一种基于Attention U-Net的陆地卫星影像云检测算法。首先,利用卷积操作在编码模块提取云的浅层特征;然后,利用反卷积、跳跃连接和注意力机制在解码模块进一步挖掘云特征;最后,利用少量公开的陆地卫星影像云样本数据进行训练,实现端到端的陆地卫星影像像素级云检测。实验结果表明,与传统的机器学习算法相比,所提算法的总体检测精度更高,薄云和云阴影的误检率和漏检率更低。 展开更多
关键词 陆地卫星影像 云检测 u-net网络 注意力机制 端到端
在线阅读 下载PDF
Attention U-Net with Multilevel Fusion for License Plate Detection
7
作者 YAO Yao XIONG Yujie +1 位作者 HUANG Bo YANG Jing 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2021年第3期227-234,共8页
In recent years,license plate recognition system(LPRS)is widely used in various places.Fast and accurate license plate detection is the first and critical step in LPRS.In order to improve the performance of license pl... In recent years,license plate recognition system(LPRS)is widely used in various places.Fast and accurate license plate detection is the first and critical step in LPRS.In order to improve the performance of license plate detection in complex environment,we propose a novel attention U-net with multilevel fusion(AUMF).At first,input images are fed to the network.Then,the feature maps of each level are generated by convolution operations of the original images.Before the feature connection,there are multi-layer splicing and convolution to detect more features.The attention mechanisms are used to retain the information of important regions.In order to ensure that the size of the input and output images are the same,down-sampling and up-sampling are employed to resize the feature mappings between the upper and lower levels.In the complex environment,the AUMF can accurately detect the license plate.To validate the effectiveness of the proposed method,we conducted a series of experiments on the AOLP dataset.The experimental results show that our approach effectively improves the performance of license plate detection under the three different license plate environments of AOLP dataset. 展开更多
关键词 attention u-net multilevel fusion license plate detection
原文传递
Attention U-Net在雷达信号图像化分选中的应用研究
8
作者 郭立民 张鹤韬 +2 位作者 莫禹涵 于飒宁 胡懿真 《舰船电子对抗》 2024年第3期78-83,95,共7页
针对海战场复杂电磁环境对雷达信号分选的挑战,采用改进的U-Net网络结合注意力机制提出新的分选方法。首先,将脉冲描述字转化为图像序列以适应深度学习处理。通过优化U-Net架构,融入注意力机制,有效提升模型对关键脉冲特征的识别与提取... 针对海战场复杂电磁环境对雷达信号分选的挑战,采用改进的U-Net网络结合注意力机制提出新的分选方法。首先,将脉冲描述字转化为图像序列以适应深度学习处理。通过优化U-Net架构,融入注意力机制,有效提升模型对关键脉冲特征的识别与提取能力,实现像素级分类。通过此方法,系统能够精准搜索并归类所有雷达脉冲。实验证明,在海战场复杂电磁环境中,该方法显著提升了雷达信号分选准确率,提供了一种应对强干扰环境下的高效解决方案。这一研究成果证实了Attention U-Net在雷达信号智能分选中的优越性和实用性。 展开更多
关键词 雷达信号分选 u-net网络 注意力机制 脉冲描述字
在线阅读 下载PDF
一种基于改进Attention U-net的联合视杯视盘分割方法 被引量:1
9
作者 秦运输 王行甫 《计算机应用与软件》 北大核心 2021年第3期181-189,共9页
青光眼是当前世界范围内致盲的主要病因之一,其发病过程没有明显的特征。视杯盘比是青光眼诊断中最主要的评估指标之一,这使得视杯视盘的分割成为了目前青光眼诊断的关键。已有的视杯视盘分割方法大多基于手工提取的特征,低效且精度不... 青光眼是当前世界范围内致盲的主要病因之一,其发病过程没有明显的特征。视杯盘比是青光眼诊断中最主要的评估指标之一,这使得视杯视盘的分割成为了目前青光眼诊断的关键。已有的视杯视盘分割方法大多基于手工提取的特征,低效且精度不高。提出一种名为MAR2U-net的深度神经网络架构用于青光眼视杯视盘的联合分割。它是基于Attention U-net的一种改进架构,通过在Attention U-net的基础之上引入递归残差卷积模块来提取更加深层次的特征,并结合多尺度的输入和多标签的Focal Tversky损失函数来提升模型的联合分割性能。实验结果表明,该方法在REFUGE数据集上的分割效果较已有方法取得了显著提升,为实现大规模的青光眼诊断筛查提供了基础。 展开更多
关键词 青光眼检测 视杯与视盘 分割 attention u-net
在线阅读 下载PDF
引入卷积块注意力模块的Attention U-Net木材表面裂纹检测方法 被引量:1
10
作者 项晓扬 王明涛 多化琼 《林业工程学报》 CSCD 北大核心 2024年第4期140-146,共7页
木材缺陷会影响木材的使用价值和使用期限,其中木材表面裂纹是严重影响木材外观质量和机械强度的一种木材缺陷。对木材表面裂纹的检测可以尽快发现此类缺陷木材,或为后续处理提供依据。针对现有的人工检测和自动化检测木材表面裂纹效率... 木材缺陷会影响木材的使用价值和使用期限,其中木材表面裂纹是严重影响木材外观质量和机械强度的一种木材缺陷。对木材表面裂纹的检测可以尽快发现此类缺陷木材,或为后续处理提供依据。针对现有的人工检测和自动化检测木材表面裂纹效率低、成本高、漏检率高等问题,采用引入卷积块注意力模块(convolutional block attention module,CBAM)的Attention U-Net深度学习模型对木材表面裂纹图像进行语义分割,从而达到木材表面裂纹检测的目的。引入的CBAM模块包含通道注意力机制和空间注意力机制,分别用于捕捉通道间的依赖关系和像素级的空间关系,该模块被添加到Attention U-Net网络的编码阶段,以增加感兴趣区域的权重并抑制冗余信息。最后,通过消融试验验证了Attention U-Net中加入CBAM对分割性能的提升。采用像素准确率(PA)、类别像素准确率(CPA)、召回率(Recall)、Dice系数、交并比(IoU)和平均交并比(MIoU)等语义分割评价指标评价各模型的优劣,并确定最佳模型及其参数。在自制木材表面数据集的裂纹分割中,使用AdamW优化器引入CBAM的Attention U-Net的PA、木材裂纹Recall、木材裂纹Dice系数、木材裂纹IoU、MIoU分别比使用SGD优化器的Attention U-Net原始模型提高了0.11%,4.14%,2.96%,3.58%和1.84%。结果表明,使用AdamW优化器引入CBAM的Attention U-Net能够较好地分割背景和木材表面裂纹,区分节点、表面纹理和木材裂纹,并将节点和表面纹理分割为背景。 展开更多
关键词 图像处理 语义分割 木材表面裂纹检测 深度学习 u-net模型 注意力机制
在线阅读 下载PDF
基于DA-Attention U-Net编码-解码结构的浮选矿浆相气泡图像分割
11
作者 徐宏祥 李神舟 徐培培 《有色金属(选矿部分)》 CAS 2024年第6期106-115,131,共11页
浮选矿浆相气泡图像是采集自浮选槽内部矿浆溶液中的图像数据,与浮选泡沫相图像数据相比视觉特征显著不同。针对使用特殊设备从浮选槽矿浆溶液中原位采集的气泡图像数据,提出了一种基于DA-Attention U-Net编码-解码结构的气泡分割模型... 浮选矿浆相气泡图像是采集自浮选槽内部矿浆溶液中的图像数据,与浮选泡沫相图像数据相比视觉特征显著不同。针对使用特殊设备从浮选槽矿浆溶液中原位采集的气泡图像数据,提出了一种基于DA-Attention U-Net编码-解码结构的气泡分割模型。模型以U-Net为基础,引入CBAM模块并依据Residual残差连接思想改进模块结构,使模型同时具有通道注意力和空间注意力的优点,给予包含气泡的前景区域更大权重,减少因下采样次数多导致的信息丢失;引入ASPP模块并基于Dense密集连接思想进行改进,从多尺度提取气泡特征及整合前后特征层信息;并在完成气泡分割的基础上使用热力图与显著图对分割结果进行分析。研究结果表明,与原始U-Net相比,所提模型对气泡图像分割效果更优,训练损失、Dice系数降低了0.416、0.2,分别达到了0.015、0.12,MIoU精度值、F1_Score值提升了0.331、0.229,分别达到了0.952、0.985,并通过消融试验验证了各模块有效性。该模型对气泡图像的精确分割,可为后续提取气泡特征奠定基础,对于未来将矿浆相气泡特征信息用于浮选过程智能控制,具有重要意义。 展开更多
关键词 浮选矿浆相气泡 语义分割 密集连接机制 注意力集中机制 浮选过程智能控制
在线阅读 下载PDF
A 3D attention U-Net network and its application in geological model parameterization 被引量:1
12
作者 LI Xiaobo LI Xin +4 位作者 YAN Lin ZHOU Tenghua LI Shunming WANG Jiqiang LI Xinhao 《Petroleum Exploration and Development》 2023年第1期183-190,共8页
To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not... To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not using a trained C3D video motion analysis model to extract the style of a 3D model,and applied to complement the details of geologic model lost in the dimension reduction of PCA method in this study.The 3D attention U-Net network was applied to a complex river channel sandstone reservoir to test its effects.The results show that compared with CNN-PCA method,the 3D attention U-Net network could better complement the details of geological model lost in the PCA dimension reduction,better reflect the fluid flow features in the original geologic model,and improve history matching results. 展开更多
关键词 reservoir history matching geological model parameterization deep learning attention mechanism 3D u-net
在线阅读 下载PDF
Gear Pitting Measurement by Multi-Scale Splicing Attention U-Net 被引量:3
13
作者 Yi Qin Dejun Xi +1 位作者 Weiwei Chen Yi Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期140-154,共15页
The judgment of gear failure is based on the pitting area ratio of gear.Traditional gear pitting calculation method mainly rely on manual visual inspection.This method is greatly affected by human factors,and is great... The judgment of gear failure is based on the pitting area ratio of gear.Traditional gear pitting calculation method mainly rely on manual visual inspection.This method is greatly affected by human factors,and is greatly affected by the working experience,training degree and fatigue degree of the detection personnel,so the detection results may be biased.The non-contact computer vision measurement can carry out non-destructive testing and monitoring under the working condition of the machine,and has high detection accuracy.To improve the measurement accuracy of gear pitting,a novel multi-scale splicing attention U-Net(MSSA U-Net)is explored in this study.An image splicing module is first proposed for concatenating the output feature maps of multiple convolutional layers into a splicing feature map with more semantic information.Then,an attention module is applied to select the key features of the splicing feature map.Given that MSSA U-Net adequately uses multi-scale semantic features,it has better segmentation performance on irregular small objects than U-Net and attention U-Net.On the basis of the designed visual detection platform and MSSA U-Net,a methodology for measuring the area ratio of gear pitting is proposed.With three datasets,experimental results show that MSSA U-Net is superior to existing typical image segmentation methods and can accurately segment different levels of pitting due to its strong segmentation ability.Therefore,the proposed methodology can be effectively applied in measuring the pitting area ratio and determining the level of gear pitting. 展开更多
关键词 Gear pitting Image segmentation attention module Computer vision Quantitative detection
在线阅读 下载PDF
Self-potential inversion based on Attention U-Net deep learning network
14
作者 GUO You-jun CUI Yi-an +3 位作者 CHEN Hang XIE Jing ZHANG Chi LIU Jian-xin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3156-3167,共12页
Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an... Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring. 展开更多
关键词 SELF-POTENTIAL attention mechanism u-net deep learning network INVERSION landfill
在线阅读 下载PDF
CAMU-Net:基于Attention U-Net的视网膜血管分割改进模型 被引量:1
15
作者 唐云飞 但志平 +4 位作者 洪郑天 陈永麟 程沛霖 成果 刘芳婷 《中国医学物理学杂志》 CSCD 2024年第8期960-968,共9页
提出一种改进的U-Net模型(CAMU-Net),以达到精准分割视网膜血管的目的。CAMU-Net模型通过添加残差增强模块来提取区域特征中的重要信息,增强模型对区域特征的了解;通过添加特征细化模块来促进特征的提取,提高新模型的全局特征收集能力;... 提出一种改进的U-Net模型(CAMU-Net),以达到精准分割视网膜血管的目的。CAMU-Net模型通过添加残差增强模块来提取区域特征中的重要信息,增强模型对区域特征的了解;通过添加特征细化模块来促进特征的提取,提高新模型的全局特征收集能力;通过添加通道注意力机制模块来捕捉图像特征,精确分割结果;通过引入多尺度特征融合结构来提升模型感知目标边界等细节的能力。在DRIVE数据集上进行消融实验,得出各模块的实际效果,验证各模块对于本模型视网膜血管分割各方面提升的作用;在DRIVE和STARE数据集上和其他主流网络模型进行对比分析,结果表明CAMU-Net模型优于其他模型。 展开更多
关键词 视网膜血管 图像分割 深度学习 CAMu-net 注意力机制
暂未订购
基于深度学习的Attention U-Net语义分割模型研究 被引量:2
16
作者 薛泽民 邹连旭 +3 位作者 黄志威 冉杰 余若岩 郑国勋 《长春工程学院学报(自然科学版)》 2023年第4期97-101,共5页
针对当前深度神经网络在处理图像分割过程中普遍存在的处理耗时长、实时性低和分割准确率不高的问题,提出了一种融入注意力机制的U-Net网络对GAN扩充的数据集进行训练的模型,试验结果表明:相较于U-Net++、SegNet和DeepLabV1等传统模型,... 针对当前深度神经网络在处理图像分割过程中普遍存在的处理耗时长、实时性低和分割准确率不高的问题,提出了一种融入注意力机制的U-Net网络对GAN扩充的数据集进行训练的模型,试验结果表明:相较于U-Net++、SegNet和DeepLabV1等传统模型,提出模型的平均损失约为129%,与U-Net++、DeepLabV1模型较为接近;平均精确度约为95.4%,比U-Net++提高了1.7%,比SegNet提高了6%,比DeepLabV1提高了1.7%。 展开更多
关键词 数据增强 语义分割 空间注意力机制 生成对抗网络
在线阅读 下载PDF
基于并行卷积核的Attention U-Net虚拟试衣方法研究 被引量:1
17
作者 舒幸哲 《软件工程》 2022年第6期13-17,共5页
针对虚拟试衣中特征提取不足、人物肢体被衣服遮挡的问题,在基于图像特征保留的虚拟试衣方法基础上,提出基于并行卷积核的Attention U-Net虚拟试衣方法。该方法采用并行卷积核代替原有的3×3卷积核来提取特征,并在U-Net网络中融入... 针对虚拟试衣中特征提取不足、人物肢体被衣服遮挡的问题,在基于图像特征保留的虚拟试衣方法基础上,提出基于并行卷积核的Attention U-Net虚拟试衣方法。该方法采用并行卷积核代替原有的3×3卷积核来提取特征,并在U-Net网络中融入注意力机制形成新的Attention U-Net图像合成器,通过不断调整网络学习参数,将模型放在数据集VITON Dataset上进行虚拟试衣实验。实验结果表明,与原方法相比,该方法能提取出更多的细节纹理,在结构相似性上提升了15.6%,虚拟试衣效果更好。 展开更多
关键词 虚拟试衣 特征提取 并行卷积核 注意力机制 结构相似性
在线阅读 下载PDF
SwinHCAD: A Robust Multi-Modality Segmentation Model for Brain Tumors Using Transformer and Channel-Wise Attention
18
作者 Seyong Jin Muhammad Fayaz +2 位作者 L.Minh Dang Hyoung-Kyu Song Hyeonjoon Moon 《Computers, Materials & Continua》 2026年第1期511-533,共23页
Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the b... Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information,existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors.In order to address these challenges and maximize the performance of brain tumor segmentation,this research introduces a novel SwinUNETR-based model by integrating a new decoder block,the Hierarchical Channel-wise Attention Decoder(HCAD),into a powerful SwinUNETR encoder.The HCAD decoder block utilizes hierarchical features and channelspecific attention mechanisms to further fuse information at different scales transmitted from the encoder and preserve spatial details throughout the reconstruction phase.Rigorous evaluations on the recent BraTS GLI datasets demonstrate that the proposed SwinHCAD model achieved superior and improved segmentation accuracy on both the Dice score and HD95 metrics across all tumor subregions(WT,TC,and ET)compared to baseline models.In particular,the rationale and contribution of the model design were clarified through ablation studies to verify the effectiveness of the proposed HCAD decoder block.The results of this study are expected to greatly contribute to enhancing the efficiency of clinical diagnosis and treatment planning by increasing the precision of automated brain tumor segmentation. 展开更多
关键词 attention mechanism brain tumor segmentation channel-wise attention decoder deep learning medical imaging MRI TRANSFORMER u-net
在线阅读 下载PDF
GFL-SAR: Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement
19
作者 Hefei Wang Ruichun Gu +2 位作者 Jingyu Wang Xiaolin Zhang Hui Wei 《Computers, Materials & Continua》 2026年第1期1683-1702,共20页
Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,exi... Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks. 展开更多
关键词 Graph federated learning GCN GNNs attention mechanism
在线阅读 下载PDF
DAUNet: Unsupervised Neural Network Based on Dual Attention for Clock Synchronization in Multi-Agent Wireless Ad Hoc Networks
20
作者 Haihao He Xianzhou Dong +2 位作者 Shuangshuang Wang Chengzhang Zhu Xiaotong Zhao 《Computers, Materials & Continua》 2026年第1期847-869,共23页
Clock synchronization has important applications in multi-agent collaboration(such as drone light shows,intelligent transportation systems,and game AI),group decision-making,and emergency rescue operations.Synchroniza... Clock synchronization has important applications in multi-agent collaboration(such as drone light shows,intelligent transportation systems,and game AI),group decision-making,and emergency rescue operations.Synchronization method based on pulse-coupled oscillators(PCOs)provides an effective solution for clock synchronization in wireless networks.However,the existing clock synchronization algorithms in multi-agent ad hoc networks are difficult to meet the requirements of high precision and high stability of synchronization clock in group cooperation.Hence,this paper constructs a network model,named DAUNet(unsupervised neural network based on dual attention),to enhance clock synchronization accuracy in multi-agent wireless ad hoc networks.Specifically,we design an unsupervised distributed neural network framework as the backbone,building upon classical PCO-based synchronization methods.This framework resolves issues such as prolonged time synchronization message exchange between nodes,difficulties in centralized node coordination,and challenges in distributed training.Furthermore,we introduce a dual-attention mechanism as the core module of DAUNet.By integrating a Multi-Head Attention module and a Gated Attention module,the model significantly improves information extraction capabilities while reducing computational complexity,effectively mitigating synchronization inaccuracies and instability in multi-agent ad hoc networks.To evaluate the effectiveness of the proposed model,comparative experiments and ablation studies were conducted against classical methods and existing deep learning models.The research results show that,compared with the deep learning networks based on DASA and LSTM,DAUNet can reduce the mean normalized phase difference(NPD)by 1 to 2 orders of magnitude.Compared with the attention models based on additive attention and self-attention mechanisms,the performance of DAUNet has improved by more than ten times.This study demonstrates DAUNet’s potential in advancing multi-agent ad hoc networking technologies. 展开更多
关键词 Clock synchronization deep learning dual attention mechanism pulse-coupled oscillator
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部