Zero-click attacks represent an advanced cybersecurity threat,capable of compromising devices without user interaction.High-profile examples such as Pegasus,Simjacker,Bluebugging,and Bluesnarfing exploit hidden vulner...Zero-click attacks represent an advanced cybersecurity threat,capable of compromising devices without user interaction.High-profile examples such as Pegasus,Simjacker,Bluebugging,and Bluesnarfing exploit hidden vulnerabilities in software and communication protocols to silently gain access,exfiltrate data,and enable long-term surveillance.Their stealth and ability to evade traditional defenses make detection and mitigation highly challenging.This paper addresses these threats by systematically mapping the tactics and techniques of zero-click attacks using the MITRE ATT&CK framework,a widely adopted standard for modeling adversarial behavior.Through this mapping,we categorize real-world attack vectors and better understand how such attacks operate across the cyber-kill chain.To support threat detection efforts,we propose an Active Learning-based method to efficiently label the Pegasus spyware dataset in alignment with the MITRE ATT&CK framework.This approach reduces the effort of manually annotating data while improving the quality of the labeled data,which is essential to train robust cybersecurity models.In addition,our analysis highlights the structured execution paths of zero-click attacks and reveals gaps in current defense strategies.The findings emphasize the importance of forward-looking strategies such as continuous surveillance,dynamic threat profiling,and security education.By bridging zero-click attack analysis with the MITRE ATT&CK framework and leveraging machine learning for dataset annotation,this work provides a foundation for more accurate threat detection and the development of more resilient and structured cybersecurity frameworks.展开更多
Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Althoug...Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Although adversarial examples can strategically undermine the accuracy of BCSD models and protect critical code,existing techniques predominantly depend on inserting artificial instructions,which incur high computational costs and offer limited diversity of perturbations.To address these limitations,we propose AIMA,a novel gradient-guided assembly instruction relocation method.Our method decouples the detection model into tokenization,embedding,and encoding layers to enable efficient gradient computation.Since token IDs of instructions are discrete and nondifferentiable,we compute gradients in the continuous embedding space to evaluate the influence of each token.The most critical tokens are identified by calculating the L2 norm of their embedding gradients.We then establish a mapping between instructions and their corresponding tokens to aggregate token-level importance into instructionlevel significance.To maximize adversarial impact,a sliding window algorithm selects the most influential contiguous segments for relocation,ensuring optimal perturbation with minimal length.This approach efficiently locates critical code regions without expensive search operations.The selected segments are relocated outside their original function boundaries via a jump mechanism,which preserves runtime control flow and functionality while introducing“deletion”effects in the static instruction sequence.Extensive experiments show that AIMA reduces similarity scores by up to 35.8%in state-of-the-art BCSD models.When incorporated into training data,it also enhances model robustness,achieving a 5.9%improvement in AUROC.展开更多
The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)an...The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security.展开更多
Objective To determine the safety and efficacy of fresh frozen plasma (FFP) iniusion for the treat- ment of hereditary angioedema (FIAE). Methods The medical records of patients with HAE admitted to Peking Union ...Objective To determine the safety and efficacy of fresh frozen plasma (FFP) iniusion for the treat- ment of hereditary angioedema (FIAE). Methods The medical records of patients with HAE admitted to Peking Union Medical College Fiospital who had received FFP infusion during 2004 and 2010 were reviewed and PubMed database iFom 1966 to the present were searched using the following key words: hereditary angioedema and fresh frozen plasma. The patient's age, sex, body location of HAE attacks, the dose of FFP infusion, time of beginning to improvenaent, time to complete remission, complication, C 1 inhibitor activity, and outcome were analyzed. Results A total of 13 enrolled patients (7 male and 6 female) received 16 times of FFP infusion, in- cluding 2 patients undergoing FFP infusion in Peking Union Medical College Hospital and 11 patients re- ported in the literature. The mean dosage of FFP infusion was 586±337 mL. Two cases suffered from wors- ening abdominal pain and one case experienced skin rash. Only I patient had no improvement in symptom owing to transfusion related reaction. There was a definite improvement in symptom 49± 19 minutes after beginning FFP infusion. The remission time decreased from 61.7±27.0 hours to 3.3 (2.0, 12.0) hours after FFP infusion. FFP infusion was effective for both type I and type Ⅱ HAE. Conclusion FFP seems to be safe and effective for acute attacks of HAE.展开更多
Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise ...Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate.展开更多
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method...This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.展开更多
Watermarking is embedding visible or invisible data within media to verify its authenticity or protect copyright.The watermark is embedded in significant spatial or frequency features of the media to make it more resi...Watermarking is embedding visible or invisible data within media to verify its authenticity or protect copyright.The watermark is embedded in significant spatial or frequency features of the media to make it more resistant to intentional or unintentional modification.Some of these features are important perceptual features according to the human visual system(HVS),which means that the embedded watermark should be imperceptible in these features.Therefore,both the designers of watermarking algorithms and potential attackers must consider these perceptual features when carrying out their actions.The two roles will be considered in this paper when designing a robust watermarking algorithm against the most harmful attacks,like volumetric scaling,histogram equalization,and non-conventional watermarking attacks like the Denoising Convolution Neural Network(DnCNN),which must be considered in watermarking algorithm design due to its rising role in the state-of-the-art attacks.The DnCNN is initialized and trained using watermarked image samples created by our proposed Covert and Severe Attacks Resistant Watermarking Algorithm(CSRWA)to prove its robustness.For this algorithm to satisfy the robustness and imperceptibility tradeoff,implementing the Dither Modulation(DM)algorithm is boosted by utilizing the Just Noticeable Distortion(JND)principle to get an improved performance in this sense.Sensitivity,luminance,inter and intra-block contrast are used to adjust the JND values.展开更多
As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. Ther...As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response.展开更多
This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional m...This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional methods by considering both denial-of-service(DoS)and false data injection(FDI)attacks simultaneously.Additionally,the stability conditions for the system under these hybrid attacks are established.It is technically challenging to design the control strategy by predicting attacker actions based on Stcakelberg game to ensure the system stability under hybrid attacks.Another technical difficulty lies in establishing the conditions for mean-square asymptotic stability due to the complexity of the attack scenarios Finally,simulations on an unstable batch reactor system under hybrid attacks demonstrate the effectiveness of the proposed strategy.展开更多
Ballet is one of the finalists of the block cipher project in the 2019 National Cryptographic Algorithm Design Competition.This study aims to conduct a comprehensive security evaluation of Ballet from the perspective ...Ballet is one of the finalists of the block cipher project in the 2019 National Cryptographic Algorithm Design Competition.This study aims to conduct a comprehensive security evaluation of Ballet from the perspective of differential-linear(DL)cryptanalysis.Specifically,we present an automated search for the DL distinguishers of Ballet based on MILP/MIQCP.For the versions with block sizes of 128 and 256 bits,we obtain 16 and 22 rounds distinguishers with estimated correlations of 2^(-59.89)and 2^(-116.80),both of which are the publicly longest distinguishers.In addition,this study incorporates the complexity information of key-recovery attacks into the automated model,to search for the optimal key-recovery attack structures based on DL distinguishers.As a result,we mount the key-recovery attacks on 16-round Ballet-128/128,17-round Ballet-128/256,and 21-round Ballet-256/256.The data/time complexities for these attacks are 2^(108.36)/2^(120.36),2^(115.90)/2^(192),and 2^(227.62)/2^(240.67),respectively.展开更多
Attribute-based encryption(ABE)is a cryptographic framework that provides flexible access control by allowing encryption based on user attributes.ABE is widely applied in cloud storage,file sharing,e-Health,and digita...Attribute-based encryption(ABE)is a cryptographic framework that provides flexible access control by allowing encryption based on user attributes.ABE is widely applied in cloud storage,file sharing,e-Health,and digital rightsmanagement.ABE schemes rely on hard cryptographic assumptions such as pairings and others(pairingfree)to ensure their security against external and internal attacks.Internal attacks are carried out by authorized users who misuse their access to compromise security with potentially malicious intent.One common internal attack is the attribute collusion attack,in which users with different attribute keys collaborate to decrypt data they could not individually access.This paper focuses on the ciphertext-policy ABE(CP-ABE),a type of ABE where ciphertexts are produced with access policies.Our firstwork is to carry out the attribute collusion attack against several existing pairingfree CP-ABE schemes.As a main contribution,we introduce a novel attack,termed the anonymous key-leakage attack,concerning the context in which users could anonymously publish their secret keys associated with certain attributes on public platforms without the risk of detection.This kind of internal attack has not been defined or investigated in the literature.We then show that several prominent pairing-based CP-ABE schemes are vulnerable to this attack.We believe that this work will contribute to helping the community evaluate suitable CP-ABE schemes for secure deployment in real-life applications.展开更多
Among the four candidate algorithms in the fourth round of NIST standardization,the BIKE(Bit Flipping Key Encapsulation)scheme has a small key size and high efficiency,showing good prospects for application.However,th...Among the four candidate algorithms in the fourth round of NIST standardization,the BIKE(Bit Flipping Key Encapsulation)scheme has a small key size and high efficiency,showing good prospects for application.However,the BIKE scheme based on QC-MDPC(Quasi Cyclic Medium Density Parity Check)codes still faces challenges such as the GJS attack and weak key attacks targeting the decoding failure rate(DFR).This paper analyzes the BGF decoding algorithm of the BIKE scheme,revealing two deep factors that lead to DFR,and proposes a weak key optimization attack method for the BGF decoding algorithm based on these two factors.The proposed method constructs a new weak key set,and experiment results eventually indicate that,considering BIKE’s parameter set targeting 128-bit security,the average decryption failure rate is lowerly bounded by.This result not only highlights a significant vulnerability in the BIKE scheme but also provides valuable insights for future improvements in its design.By addressing these weaknesses,the robustness of QC-MDPC code-based cryptographic systems can be enhanced,paving the way for more secure post-quantum cryptographic solutions.展开更多
In this paper, the attack detection problem is investigated for a class of closed-loop systems subjected to unknownbutbounded noises in the presence of stealthy attacks. The measurement outputs from the sensors are qu...In this paper, the attack detection problem is investigated for a class of closed-loop systems subjected to unknownbutbounded noises in the presence of stealthy attacks. The measurement outputs from the sensors are quantized before transmission.A specific type of perfect stealthy attack, which meets certain rather stringent conditions, is taken into account. Such attacks could be injected by adversaries into both the sensor-toestimator and controller-to-actuator channels, with the aim of disrupting the normal data flow. For the purpose of defending against these perfect stealthy attacks, a novel scheme based on watermarks is developed. This scheme includes the injection of watermarks(applied to data prior to quantization) and the recovery of data(implemented before the data reaches the estimator).The watermark-based scheme is designed to be both timevarying and hidden from adversaries through incorporating a time-varying and bounded watermark signal. Subsequently, a watermark-based attack detection strategy is proposed which thoroughly considers the characteristics of perfect stealthy attacks,thereby ensuring that an alarm is activated upon the occurrence of such attacks. An example is provided to demonstrate the efficacy of the proposed mechanism for detecting attacks.展开更多
Dear Editor,The attacker is always going to intrude covertly networked control systems(NCSs)by dynamically changing false data injection attacks(FDIAs)strategy,while the defender try their best to resist attacks by de...Dear Editor,The attacker is always going to intrude covertly networked control systems(NCSs)by dynamically changing false data injection attacks(FDIAs)strategy,while the defender try their best to resist attacks by designing defense strategy on the basis of identifying attack strategy,maintaining stable operation of NCSs.To solve this attack-defense game problem,this letter investigates optimal secure control of NCSs under FDIAs.First,for the alterations of energy caused by false data,a novel attack-defense game model is constructed,which considers the changes of energy caused by the actions of the defender and attacker in the forward and feedback channels.展开更多
Blockchain interoperability enables seamless communication and asset transfer across isolated permissioned blockchain systems,but it introduces significant security and privacy vulnerabilities.This review aims to syst...Blockchain interoperability enables seamless communication and asset transfer across isolated permissioned blockchain systems,but it introduces significant security and privacy vulnerabilities.This review aims to systematically assess the security and privacy landscape of interoperability protocols for permissioned blockchains,identifying key properties,attack vectors,and countermeasures.Using PRISMA 2020 guidelines,we analysed 56 peerreviewed studies published between 2020 and 2025,retrieved from Scopus,ScienceDirect,Web of Science,and IEEE Xplore.The review focused on interoperability protocols for permissioned blockchains with security and privacy analyses,including only English-language journal articles and conference proceedings.Risk of bias in the included studies was assessed using the MMAT.Methods for presenting and synthesizing results included descriptive analysis,bibliometric analysis,and content analysis,with findings organized into tables,charts,and comparative summaries.The review classifies interoperability protocols into relay,sidechain,notary scheme,HTLC,and hybrid types and identifies 18 security and privacy properties along with 31 known attack types.Relay-based protocols showed the broadest security coverage,while HTLC and notary schemes demonstrated significant security gaps.Notably,93% of studies examined fewer than four properties or attack types,indicating a fragmented research landscape.The review identifies underexplored areas such as ACID properties,decentralization,and cross-chain attack resilience.It further highlights effective countermeasures,including cryptographic techniques,trusted execution environments,zero-knowledge proofs,and decentralized identity schemes.The findings suggest that despite growing adoption,current interoperability protocols lack comprehensive security evaluations.More holistic research is needed to ensure the resilience,trustworthiness,and scalability of cross-chain operations in permissioned blockchain ecosystems.展开更多
文摘Zero-click attacks represent an advanced cybersecurity threat,capable of compromising devices without user interaction.High-profile examples such as Pegasus,Simjacker,Bluebugging,and Bluesnarfing exploit hidden vulnerabilities in software and communication protocols to silently gain access,exfiltrate data,and enable long-term surveillance.Their stealth and ability to evade traditional defenses make detection and mitigation highly challenging.This paper addresses these threats by systematically mapping the tactics and techniques of zero-click attacks using the MITRE ATT&CK framework,a widely adopted standard for modeling adversarial behavior.Through this mapping,we categorize real-world attack vectors and better understand how such attacks operate across the cyber-kill chain.To support threat detection efforts,we propose an Active Learning-based method to efficiently label the Pegasus spyware dataset in alignment with the MITRE ATT&CK framework.This approach reduces the effort of manually annotating data while improving the quality of the labeled data,which is essential to train robust cybersecurity models.In addition,our analysis highlights the structured execution paths of zero-click attacks and reveals gaps in current defense strategies.The findings emphasize the importance of forward-looking strategies such as continuous surveillance,dynamic threat profiling,and security education.By bridging zero-click attack analysis with the MITRE ATT&CK framework and leveraging machine learning for dataset annotation,this work provides a foundation for more accurate threat detection and the development of more resilient and structured cybersecurity frameworks.
基金supported by Key Laboratory of Cyberspace Security,Ministry of Education,China。
文摘Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Although adversarial examples can strategically undermine the accuracy of BCSD models and protect critical code,existing techniques predominantly depend on inserting artificial instructions,which incur high computational costs and offer limited diversity of perturbations.To address these limitations,we propose AIMA,a novel gradient-guided assembly instruction relocation method.Our method decouples the detection model into tokenization,embedding,and encoding layers to enable efficient gradient computation.Since token IDs of instructions are discrete and nondifferentiable,we compute gradients in the continuous embedding space to evaluate the influence of each token.The most critical tokens are identified by calculating the L2 norm of their embedding gradients.We then establish a mapping between instructions and their corresponding tokens to aggregate token-level importance into instructionlevel significance.To maximize adversarial impact,a sliding window algorithm selects the most influential contiguous segments for relocation,ensuring optimal perturbation with minimal length.This approach efficiently locates critical code regions without expensive search operations.The selected segments are relocated outside their original function boundaries via a jump mechanism,which preserves runtime control flow and functionality while introducing“deletion”effects in the static instruction sequence.Extensive experiments show that AIMA reduces similarity scores by up to 35.8%in state-of-the-art BCSD models.When incorporated into training data,it also enhances model robustness,achieving a 5.9%improvement in AUROC.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2025R97)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security.
文摘Objective To determine the safety and efficacy of fresh frozen plasma (FFP) iniusion for the treat- ment of hereditary angioedema (FIAE). Methods The medical records of patients with HAE admitted to Peking Union Medical College Fiospital who had received FFP infusion during 2004 and 2010 were reviewed and PubMed database iFom 1966 to the present were searched using the following key words: hereditary angioedema and fresh frozen plasma. The patient's age, sex, body location of HAE attacks, the dose of FFP infusion, time of beginning to improvenaent, time to complete remission, complication, C 1 inhibitor activity, and outcome were analyzed. Results A total of 13 enrolled patients (7 male and 6 female) received 16 times of FFP infusion, in- cluding 2 patients undergoing FFP infusion in Peking Union Medical College Hospital and 11 patients re- ported in the literature. The mean dosage of FFP infusion was 586±337 mL. Two cases suffered from wors- ening abdominal pain and one case experienced skin rash. Only I patient had no improvement in symptom owing to transfusion related reaction. There was a definite improvement in symptom 49± 19 minutes after beginning FFP infusion. The remission time decreased from 61.7±27.0 hours to 3.3 (2.0, 12.0) hours after FFP infusion. FFP infusion was effective for both type I and type Ⅱ HAE. Conclusion FFP seems to be safe and effective for acute attacks of HAE.
基金funding from Deanship of Scientific Research in King Faisal University with Grant Number KFU 241085.
文摘Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate.
基金The National Natural Science Foundation of China(W2431048)The Science and Technology Research Program of Chongqing Municipal Education Commission,China(KJZDK202300807)The Chongqing Natural Science Foundation,China(CSTB2024NSCQQCXMX0052).
文摘This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.
文摘Watermarking is embedding visible or invisible data within media to verify its authenticity or protect copyright.The watermark is embedded in significant spatial or frequency features of the media to make it more resistant to intentional or unintentional modification.Some of these features are important perceptual features according to the human visual system(HVS),which means that the embedded watermark should be imperceptible in these features.Therefore,both the designers of watermarking algorithms and potential attackers must consider these perceptual features when carrying out their actions.The two roles will be considered in this paper when designing a robust watermarking algorithm against the most harmful attacks,like volumetric scaling,histogram equalization,and non-conventional watermarking attacks like the Denoising Convolution Neural Network(DnCNN),which must be considered in watermarking algorithm design due to its rising role in the state-of-the-art attacks.The DnCNN is initialized and trained using watermarked image samples created by our proposed Covert and Severe Attacks Resistant Watermarking Algorithm(CSRWA)to prove its robustness.For this algorithm to satisfy the robustness and imperceptibility tradeoff,implementing the Dither Modulation(DM)algorithm is boosted by utilizing the Just Noticeable Distortion(JND)principle to get an improved performance in this sense.Sensitivity,luminance,inter and intra-block contrast are used to adjust the JND values.
基金supported by the Ministry of Trade,Industry and Energy(MOTIE)under Training Industrial Security Specialist for High-Tech Industry(RS-2024-00415520)supervised by the Korea Institute for Advancement of Technology(KIAT)the Ministry of Science and ICT(MSIT)under the ICT Challenge and Advanced Network of HRD(ICAN)Program(No.IITP-2022-RS-2022-00156310)supervised by the Institute of Information&Communication Technology Planning&Evaluation(IITP).
文摘As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response.
基金supported in part by Shanghai Rising-Star Program,China under grant 22QA1409400in part by National Natural Science Foundation of China under grant 62473287 and 62088101in part by Shanghai Municipal Science and Technology Major Project under grant 2021SHZDZX0100.
文摘This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional methods by considering both denial-of-service(DoS)and false data injection(FDI)attacks simultaneously.Additionally,the stability conditions for the system under these hybrid attacks are established.It is technically challenging to design the control strategy by predicting attacker actions based on Stcakelberg game to ensure the system stability under hybrid attacks.Another technical difficulty lies in establishing the conditions for mean-square asymptotic stability due to the complexity of the attack scenarios Finally,simulations on an unstable batch reactor system under hybrid attacks demonstrate the effectiveness of the proposed strategy.
基金National Natural Science Foundation of China(62272147,12471492,62072161,12401687)Shandong Provincial Natural Science Foundation(ZR2024QA205)+1 种基金Science and Technology on Communication Security Laboratory Foundation(6142103012207)Innovation Group Project of the Natural Science Foundation of Hubei Province of China(2023AFA021)。
文摘Ballet is one of the finalists of the block cipher project in the 2019 National Cryptographic Algorithm Design Competition.This study aims to conduct a comprehensive security evaluation of Ballet from the perspective of differential-linear(DL)cryptanalysis.Specifically,we present an automated search for the DL distinguishers of Ballet based on MILP/MIQCP.For the versions with block sizes of 128 and 256 bits,we obtain 16 and 22 rounds distinguishers with estimated correlations of 2^(-59.89)and 2^(-116.80),both of which are the publicly longest distinguishers.In addition,this study incorporates the complexity information of key-recovery attacks into the automated model,to search for the optimal key-recovery attack structures based on DL distinguishers.As a result,we mount the key-recovery attacks on 16-round Ballet-128/128,17-round Ballet-128/256,and 21-round Ballet-256/256.The data/time complexities for these attacks are 2^(108.36)/2^(120.36),2^(115.90)/2^(192),and 2^(227.62)/2^(240.67),respectively.
文摘Attribute-based encryption(ABE)is a cryptographic framework that provides flexible access control by allowing encryption based on user attributes.ABE is widely applied in cloud storage,file sharing,e-Health,and digital rightsmanagement.ABE schemes rely on hard cryptographic assumptions such as pairings and others(pairingfree)to ensure their security against external and internal attacks.Internal attacks are carried out by authorized users who misuse their access to compromise security with potentially malicious intent.One common internal attack is the attribute collusion attack,in which users with different attribute keys collaborate to decrypt data they could not individually access.This paper focuses on the ciphertext-policy ABE(CP-ABE),a type of ABE where ciphertexts are produced with access policies.Our firstwork is to carry out the attribute collusion attack against several existing pairingfree CP-ABE schemes.As a main contribution,we introduce a novel attack,termed the anonymous key-leakage attack,concerning the context in which users could anonymously publish their secret keys associated with certain attributes on public platforms without the risk of detection.This kind of internal attack has not been defined or investigated in the literature.We then show that several prominent pairing-based CP-ABE schemes are vulnerable to this attack.We believe that this work will contribute to helping the community evaluate suitable CP-ABE schemes for secure deployment in real-life applications.
基金funded by Beijing Institute of Electronic Science and Technology Postgraduate Excellence Demonstration Course Project(20230002Z0452).
文摘Among the four candidate algorithms in the fourth round of NIST standardization,the BIKE(Bit Flipping Key Encapsulation)scheme has a small key size and high efficiency,showing good prospects for application.However,the BIKE scheme based on QC-MDPC(Quasi Cyclic Medium Density Parity Check)codes still faces challenges such as the GJS attack and weak key attacks targeting the decoding failure rate(DFR).This paper analyzes the BGF decoding algorithm of the BIKE scheme,revealing two deep factors that lead to DFR,and proposes a weak key optimization attack method for the BGF decoding algorithm based on these two factors.The proposed method constructs a new weak key set,and experiment results eventually indicate that,considering BIKE’s parameter set targeting 128-bit security,the average decryption failure rate is lowerly bounded by.This result not only highlights a significant vulnerability in the BIKE scheme but also provides valuable insights for future improvements in its design.By addressing these weaknesses,the robustness of QC-MDPC code-based cryptographic systems can be enhanced,paving the way for more secure post-quantum cryptographic solutions.
基金supported in part by the National Natural Science Foundation of China(61933007,62273087,62273088,U21A2019)the Shanghai Pujiang Program of China(22PJ1400400)+2 种基金the Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the Royal Society of U.K.the Alexander von Humboldt Foundation of Germany
文摘In this paper, the attack detection problem is investigated for a class of closed-loop systems subjected to unknownbutbounded noises in the presence of stealthy attacks. The measurement outputs from the sensors are quantized before transmission.A specific type of perfect stealthy attack, which meets certain rather stringent conditions, is taken into account. Such attacks could be injected by adversaries into both the sensor-toestimator and controller-to-actuator channels, with the aim of disrupting the normal data flow. For the purpose of defending against these perfect stealthy attacks, a novel scheme based on watermarks is developed. This scheme includes the injection of watermarks(applied to data prior to quantization) and the recovery of data(implemented before the data reaches the estimator).The watermark-based scheme is designed to be both timevarying and hidden from adversaries through incorporating a time-varying and bounded watermark signal. Subsequently, a watermark-based attack detection strategy is proposed which thoroughly considers the characteristics of perfect stealthy attacks,thereby ensuring that an alarm is activated upon the occurrence of such attacks. An example is provided to demonstrate the efficacy of the proposed mechanism for detecting attacks.
基金supported in part by the National Science Foundation of China(62373240,62273224,U24A20259).
文摘Dear Editor,The attacker is always going to intrude covertly networked control systems(NCSs)by dynamically changing false data injection attacks(FDIAs)strategy,while the defender try their best to resist attacks by designing defense strategy on the basis of identifying attack strategy,maintaining stable operation of NCSs.To solve this attack-defense game problem,this letter investigates optimal secure control of NCSs under FDIAs.First,for the alterations of energy caused by false data,a novel attack-defense game model is constructed,which considers the changes of energy caused by the actions of the defender and attacker in the forward and feedback channels.
基金supported by the International Scientific and Technological Cooperation Project of Huangpu and Development Districts in Guangzhou(2023GH17)the National Science and Technology Council in Taiwan under grant number NSTC-113-2224-E-027-001,Private Funding(PV009-2023)the KW IPPP(Research Maintenance Fee)Individual/Centre/Group(RMF1506-2021)at Universiti Malaya,Malaysia.
文摘Blockchain interoperability enables seamless communication and asset transfer across isolated permissioned blockchain systems,but it introduces significant security and privacy vulnerabilities.This review aims to systematically assess the security and privacy landscape of interoperability protocols for permissioned blockchains,identifying key properties,attack vectors,and countermeasures.Using PRISMA 2020 guidelines,we analysed 56 peerreviewed studies published between 2020 and 2025,retrieved from Scopus,ScienceDirect,Web of Science,and IEEE Xplore.The review focused on interoperability protocols for permissioned blockchains with security and privacy analyses,including only English-language journal articles and conference proceedings.Risk of bias in the included studies was assessed using the MMAT.Methods for presenting and synthesizing results included descriptive analysis,bibliometric analysis,and content analysis,with findings organized into tables,charts,and comparative summaries.The review classifies interoperability protocols into relay,sidechain,notary scheme,HTLC,and hybrid types and identifies 18 security and privacy properties along with 31 known attack types.Relay-based protocols showed the broadest security coverage,while HTLC and notary schemes demonstrated significant security gaps.Notably,93% of studies examined fewer than four properties or attack types,indicating a fragmented research landscape.The review identifies underexplored areas such as ACID properties,decentralization,and cross-chain attack resilience.It further highlights effective countermeasures,including cryptographic techniques,trusted execution environments,zero-knowledge proofs,and decentralized identity schemes.The findings suggest that despite growing adoption,current interoperability protocols lack comprehensive security evaluations.More holistic research is needed to ensure the resilience,trustworthiness,and scalability of cross-chain operations in permissioned blockchain ecosystems.