期刊文献+
共找到2,870篇文章
< 1 2 144 >
每页显示 20 50 100
A survey of backdoor attacks and defenses:From deep neural networks to large language models
1
作者 Ling-Xin Jin Wei Jiang +5 位作者 Xiang-Yu Wen Mei-Yu Lin Jin-Yu Zhan Xing-Zhi Zhou Maregu Assefa Habtie Naoufel Werghi 《Journal of Electronic Science and Technology》 2025年第3期13-35,共23页
Deep neural networks(DNNs)have found extensive applications in safety-critical artificial intelligence systems,such as autonomous driving and facial recognition systems.However,recent research has revealed their susce... Deep neural networks(DNNs)have found extensive applications in safety-critical artificial intelligence systems,such as autonomous driving and facial recognition systems.However,recent research has revealed their susceptibility to backdoors maliciously injected by adversaries.This vulnerability arises due to the intricate architecture and opacity of DNNs,resulting in numerous redundant neurons embedded within the models.Adversaries exploit these vulnerabilities to conceal malicious backdoor information within DNNs,thereby causing erroneous outputs and posing substantial threats to the efficacy of DNN-based applications.This article presents a comprehensive survey of backdoor attacks against DNNs and the countermeasure methods employed to mitigate them.Initially,we trace the evolution of the concept from traditional backdoor attacks to backdoor attacks against DNNs,highlighting the feasibility and practicality of generating backdoor attacks against DNNs.Subsequently,we provide an overview of notable works encompassing various attack and defense strategies,facilitating a comparative analysis of their approaches.Through these discussions,we offer constructive insights aimed at refining these techniques.Finally,we extend our research perspective to the domain of large language models(LLMs)and synthesize the characteristics and developmental trends of backdoor attacks and defense methods targeting LLMs.Through a systematic review of existing studies on backdoor vulnerabilities in LLMs,we identify critical open challenges in this field and propose actionable directions for future research. 展开更多
关键词 Backdoor attacks Backdoor defenses Deep neural networks Large language model
在线阅读 下载PDF
Adaptive Network Sustainability and Defense Based on Artificial Bees Colony Optimization Algorithm for Nature Inspired Cyber Security
2
作者 Chirag Ganguli Shishir Kumar Shandilya +1 位作者 Michal Gregus Oleh Basystiuk 《Computer Systems Science & Engineering》 2024年第3期739-758,共20页
Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algori... Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algorithm(ABC)as an Nature Inspired Cyber Security mechanism to achieve adaptive defense.It experiments on the Denial-Of-Service attack scenarios which involves limiting the traffic flow for each node.Businesses today have adapted their service distribution models to include the use of the Internet,allowing them to effectively manage and interact with their customer data.This shift has created an increased reliance on online services to store vast amounts of confidential customer data,meaning any disruption or outage of these services could be disastrous for the business,leaving them without the knowledge to serve their customers.Adversaries can exploit such an event to gain unauthorized access to the confidential data of the customers.The proposed algorithm utilizes an Adaptive Defense approach to continuously select nodes that could present characteristics of a probable malicious entity.For any changes in network parameters,the cluster of nodes is selected in the prepared solution set as a probable malicious node and the traffic rate with the ratio of packet delivery is managed with respect to the properties of normal nodes to deliver a disaster recovery plan for potential businesses. 展开更多
关键词 Artificial bee colonization adaptive defense cyber attack nature inspired cyber security cyber security cyber physical infrastructure
在线阅读 下载PDF
Optimal Secure Control of Networked Control Systems Under False Data Injection Attacks:A Multi-Stage Attack-Defense Game Approach
3
作者 Dajun Du Yi Zhang +1 位作者 Baoyue Xu Minrui Fei 《IEEE/CAA Journal of Automatica Sinica》 2025年第4期821-823,共3页
Dear Editor,The attacker is always going to intrude covertly networked control systems(NCSs)by dynamically changing false data injection attacks(FDIAs)strategy,while the defender try their best to resist attacks by de... Dear Editor,The attacker is always going to intrude covertly networked control systems(NCSs)by dynamically changing false data injection attacks(FDIAs)strategy,while the defender try their best to resist attacks by designing defense strategy on the basis of identifying attack strategy,maintaining stable operation of NCSs.To solve this attack-defense game problem,this letter investigates optimal secure control of NCSs under FDIAs.First,for the alterations of energy caused by false data,a novel attack-defense game model is constructed,which considers the changes of energy caused by the actions of the defender and attacker in the forward and feedback channels. 展开更多
关键词 designing defense strategy networked control systems ncss alterations energy networked control systems false data injection attacks fdias strategywhile false data injection attacks optimal secure control identifying attack strategymaintaining
在线阅读 下载PDF
Discussion and Research on Information Security Attack and Defense Platform Construction in Universities Based on Cloud Computing and Virtualization
4
作者 Xiancheng Ding 《Journal of Information Security》 2016年第5期297-303,共7页
This paper puts forward the plan on constructing information security attack and defense platform based on cloud computing and virtualization, provides the hardware topology structure of the platform and technical fra... This paper puts forward the plan on constructing information security attack and defense platform based on cloud computing and virtualization, provides the hardware topology structure of the platform and technical framework of the system and the experimental process and technical principle of the platform. The experiment platform can provide more than 20 attack classes. Using the virtualization technology can build hypothesized target of various types in the laboratory and diversified network structure to carry out attack and defense experiment. 展开更多
关键词 Information security network attack and defense VIRTUALIZATION Experiment Platform
在线阅读 下载PDF
Intelligent Immunity Based Security Defense System for Multi-Access Edge Computing Network 被引量:3
5
作者 Chengcheng Zhou Yanping Yu +1 位作者 Shengsong Yang Haitao Xu 《China Communications》 SCIE CSCD 2021年第1期100-107,共8页
In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to p... In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach. 展开更多
关键词 intelligent immunity security defense multi-access edge computing network security
在线阅读 下载PDF
Cluster DetectionMethod of Endogenous Security Abnormal Attack Behavior in Air Traffic Control Network 被引量:1
6
作者 Ruchun Jia Jianwei Zhang +2 位作者 Yi Lin Yunxiang Han Feike Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2523-2546,共24页
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f... In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network. 展开更多
关键词 Air traffic control network security attack behavior cluster detection behavioral characteristics information gain cluster threshold automatic encoder
在线阅读 下载PDF
A network security situation awareness method based on layered attack graph
7
作者 ZHU Yu-hui SONG Li-peng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第2期182-190,共9页
The real-time of network security situation awareness(NSSA)is always affected by the state explosion problem.To solve this problem,a new NSSA method based on layered attack graph(LAG)is proposed.Firstly,network is div... The real-time of network security situation awareness(NSSA)is always affected by the state explosion problem.To solve this problem,a new NSSA method based on layered attack graph(LAG)is proposed.Firstly,network is divided into several logical subnets by community discovery algorithm.The logical subnets and connections between them constitute the logical network.Then,based on the original and logical networks,the selection of attack path is optimized according to the monotonic principle of attack behavior.The proposed method can sharply reduce the attack path scale and hence tackle the state explosion problem in NSSA.The experiments results show that the generation of attack paths by this method consumes 0.029 s while the counterparts by other methods are more than 56 s.Meanwhile,this method can give the same security strategy with other methods. 展开更多
关键词 network security situation awareness(NSSA) layered attack graph(LAG) state explosion community detection
在线阅读 下载PDF
Reducing Threats by Using Bayesian Networks to Prioritize and Combine Defense in Depth Security Measures
8
作者 Rodney Alexander 《Journal of Information Security》 2020年第3期121-137,共17页
Studied in this article is whether the Bayesian Network Model (BNM) can be effectively applied to the prioritization of defense in-depth security tools and procedures and to the combining of those measures to reduce c... Studied in this article is whether the Bayesian Network Model (BNM) can be effectively applied to the prioritization of defense in-depth security tools and procedures and to the combining of those measures to reduce cyber threats. The methods used in this study consisted of scanning 24 peer reviewed Cybersecurity Articles from prominent Cybersecurity Journals using the Likert Scale Model for the article’s list of defense in depth measures (tools and procedures) and the threats that those measures were designed to reduce. The defense in depth tools and procedures are then compared to see whether the Likert scale and the Bayesian Network Model could be effectively applied to prioritize and combine the measures to reduce cyber threats attacks against organizational and private computing systems. The findings of the research reject the H0 null hypothesis that BNM does not affect the relationship between the prioritization and combining of 24 Cybersecurity Article’s defense in depth tools and procedures (independent variables) and cyber threats (dependent variables). 展开更多
关键词 Information Assurance Bayesian networks Influence Diagrams defense in Depth Information Technology network security CYBERsecurity
在线阅读 下载PDF
DSGNN:Dual-Shield Defense for Robust Graph Neural Networks
9
作者 Xiaohan Chen Yuanfang Chen +2 位作者 Gyu Myoung Lee Noel Crespi Pierluigi Siano 《Computers, Materials & Continua》 2025年第10期1733-1750,共18页
Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),t... Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),to enhance structural reasoning,knowledge retrieval,and memory management.The expansion of their application scope imposes higher requirements on the robustness of GNNs.However,as GNNs are applied to more dynamic and heterogeneous environments,they become increasingly vulnerable to real-world perturbations.In particular,graph data frequently encounters joint adversarial perturbations that simultaneously affect both structures and features,which are significantly more challenging than isolated attacks.These disruptions,caused by incomplete data,malicious attacks,or inherent noise,pose substantial threats to the stable and reliable performance of traditional GNN models.To address this issue,this study proposes the Dual-Shield Graph Neural Network(DSGNN),a defense model that simultaneously mitigates structural and feature perturbations.DSGNN utilizes two parallel GNN channels to independently process structural noise and feature noise,and introduces an adaptive fusion mechanism that integrates information from both pathways to generate robust node representations.Theoretical analysis demonstrates that DSGNN achieves a tighter robustness boundary under joint perturbations compared to conventional single-channel methods.Experimental evaluations across Cora,CiteSeer,and Industry datasets show that DSGNN achieves the highest average classification accuracy under various adversarial settings,reaching 81.24%,71.94%,and 81.66%,respectively,outperforming GNNGuard,GCN-Jaccard,GCN-SVD,RGCN,and NoisyGNN.These results underscore the importance of multi-view perturbation decoupling in constructing resilient GNN models for real-world applications. 展开更多
关键词 Graph neural networks adversarial attacks dual-shield defense certified robustness node classification
在线阅读 下载PDF
Ensemble Encoder-Based Attack Traffic Classification for Secure 5G Slicing Networks
10
作者 Min-Gyu Kim Hwankuk Kim 《Computer Modeling in Engineering & Sciences》 2025年第5期2391-2415,共25页
This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method u... This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks. 展开更多
关键词 5G slicing networks attack traffic classification ensemble encoders autoencoder AI-based security
在线阅读 下载PDF
Robust Control and Stabilization of Autonomous Vehicular Systems under Deception Attacks and Switching Signed Networks
11
作者 Muflih Alhazmi Waqar Ul Hassan +5 位作者 Saba Shaheen Mohammed M.A.Almazah Azmat Ullah Khan Niazi Nafisa A.Albasheir Ameni Gargouri Naveed Iqbal 《Computer Modeling in Engineering & Sciences》 2025年第11期1903-1940,共38页
This paper proposes a model-based control framework for vehicle platooning systems with secondorder nonlinear dynamics operating over switching signed networks,time-varying delays,and deception attacks.The study inclu... This paper proposes a model-based control framework for vehicle platooning systems with secondorder nonlinear dynamics operating over switching signed networks,time-varying delays,and deception attacks.The study includes two configurations:a leaderless structure using Finite-Time Non-Singular Terminal Bipartite Consensus(FNTBC)and Fixed-Time Bipartite Consensus(FXTBC),and a leader—follower structure ensuring structural balance and robustness against deceptive signals.In the leaderless model,a bipartite controller based on impulsive control theory,gauge transformation,and Markovian switching Lyapunov functions ensures mean-square stability and coordination under deception attacks and communication delays.The FNTBC achieves finite-time convergence depending on initial conditions,while the FXTBC guarantees fixed-time convergence independent of them,providing adaptability to different operating states.In the leader—follower case,a discontinuous impulsive control law synchronizes all followers with the leader despite deceptive attacks and switching topologies,maintaining robust coordination through nonlinear corrective mechanisms.To validate the approach,simulations are conducted on systems of five and seventeen vehicles in both leaderless and leader—follower configurations.The results demonstrate that the proposed framework achieves rapid consensus,strong robustness,and high resistance to deception attacks,offering a secure and scalable model-based control solution for modern vehicular communication networks. 展开更多
关键词 Autonomous vehicles vehicle platooning STABILIZATION decision and control systems switching signed networks leader–follower coordination gauge transformation Lyapunov stability deception and cybe-security attacks secure vehicular networks
在线阅读 下载PDF
Active resilient defense control against false data injection attacks in smart grids
12
作者 Xiaoyuan Luo Lingjie Hou +3 位作者 Xinyu Wang Ruiyang Gao Shuzheng Wang Xinping Guan 《Control Theory and Technology》 EI CSCD 2023年第4期515-529,共15页
The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defe... The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defense control scheme based on interval observer detection is proposed in this paper to protect smart grids.The proposed active defense highlights the integration of detection and defense against FDIAs in smart girds.First,a dynamic physical grid model under FDIAs is modeled,in which model uncertainty and parameter uncertainty are taken into account.Then,an interval observer-based detection method against FDIAs is proposed,where a detection criteria using interval residual is put forward.Corresponding to the detection results,the resilient defense controller is triggered to defense the FDIAs if the system states are affected by FDIAs.Linear matrix inequality(LMI)approach is applied to design the resilient controller with H_(∞)performance.The system with the resilient defense controller can be robust to FDIAs and the gain of the resilient controller has a certain gain margin.Our active resilient defense approach can be built in real time and show accurate and quick respond to the injected FDIAs.The effectiveness of the proposed defense scheme is verified by the simulation results on an IEEE 30-bus grid system. 展开更多
关键词 Active resilient defense attack detection Cyber attacks Cyber-attack detection Cyber grid elements Cyber threat False data injection attack Smart grids security Interval observer
原文传递
Security Risk Assessment and Risk-oriented Defense Resource Allocation for Cyber-physical Distribution Networks Against Coordinated Cyber Attacks
13
作者 Shuheng Wei Zaijun Wu +2 位作者 Junjun Xu Yanzhe Cheng Qinran Hu 《Journal of Modern Power Systems and Clean Energy》 2025年第1期312-324,共13页
With the proliferation of advanced communication technologies and the deepening interdependence between cyber and physical components,power distribution networks are subject to miscellaneous security risks induced by ... With the proliferation of advanced communication technologies and the deepening interdependence between cyber and physical components,power distribution networks are subject to miscellaneous security risks induced by malicious attackers.To address the issue,this paper proposes a security risk assessment method and a risk-oriented defense resource allocation strategy for cyber-physical distribution networks(CPDNs)against coordinated cyber attacks.First,an attack graph-based CPDN architecture is constructed,and representative cyber-attack paths are drawn considering the CPDN topology and the risk propagation process.The probability of a successful coordinated cyber attack and incurred security risks are quantitatively assessed based on the absorbing Markov chain model and National Institute of Standards and Technology(NIST)standard.Next,a risk-oriented defense resource allocation strategy is proposed for CPDNs in different attack scenarios.The tradeoff between security risk and limited resource budget is formulated as a multi-objective optimization(MOO)problem,which is solved by an efficient optimal Pareto solution generation approach.By employing a generational distance metric,the optimal solution is prioritized from the optimal Pareto set of the MOO and leveraged for subsequent atomic allocation of defense resources.Several case studies on a modified IEEE 123-node test feeder substantiate the efficacy of the proposed security risk assessment method and risk-oriented defense resource allocation strategy. 展开更多
关键词 Coordinated cyber attack defense resource allocation multi-objective optimization power distribution network security risk assessment
原文传递
Wireless Sensor Network Modeling and Analysis for Attack Detection
14
作者 Tamara Zhukabayeva Vasily Desnitsky Assel Abdildayeva 《Computer Modeling in Engineering & Sciences》 2025年第8期2591-2625,共35页
Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smar... Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smart cities.However,such networks are inherently vulnerable to different types of attacks because they operate in open environments with limited resources and constrained communication capabilities.Thepaper addresses challenges related to modeling and analysis of wireless sensor networks and their susceptibility to attacks.Its objective is to create versatile modeling tools capable of detecting attacks against network devices and identifying anomalies caused either by legitimate user errors or malicious activities.A proposed integrated approach for data collection,preprocessing,and analysis in WSN outlines a series of steps applicable throughout both the design phase and operation stage.This ensures effective detection of attacks and anomalies within WSNs.An introduced attackmodel specifies potential types of unauthorized network layer attacks targeting network nodes,transmitted data,and services offered by the WSN.Furthermore,a graph-based analytical framework was designed to detect attacks by evaluating real-time events from network nodes and determining if an attack is underway.Additionally,a simulation model based on sequences of imperative rules defining behaviors of both regular and compromised nodes is presented.Overall,this technique was experimentally verified using a segment of a WSN embedded in a smart city infrastructure,simulating a wormhole attack.Results demonstrate the viability and practical significance of the technique for enhancing future information security measures.Validation tests confirmed high levels of accuracy and efficiency when applied specifically to detecting wormhole attacks targeting routing protocols in WSNs.Precision and recall rates averaged above the benchmark value of 0.95,thus validating the broad applicability of the proposed models across varied scenarios. 展开更多
关键词 Wireless sensor network MODELING security attack DETECTION MONITORING
在线阅读 下载PDF
Adaptive Multi-Layer Defense Mechanism for Trusted Federated Learning in Network Security Assessment
15
作者 Lincong Zhao Liandong Chen +3 位作者 Peipei Shen Zizhou Liu Chengzhu Li Fanqin Zhou 《Computers, Materials & Continua》 2025年第12期5057-5071,共15页
The rapid growth of Internet of things devices and the emergence of rapidly evolving network threats have made traditional security assessment methods inadequate.Federated learning offers a promising solution to exped... The rapid growth of Internet of things devices and the emergence of rapidly evolving network threats have made traditional security assessment methods inadequate.Federated learning offers a promising solution to expedite the training of security assessment models.However,ensuring the trustworthiness and robustness of federated learning under multi-party collaboration scenarios remains a challenge.To address these issues,this study proposes a shard aggregation network structure and a malicious node detection mechanism,along with improvements to the federated learning training process.First,we extract the data features of the participants by using spectral clustering methods combined with a Gaussian kernel function.Then,we introduce a multi-objective decision-making approach that combines data distribution consistency,consensus communication overhead,and consensus result reliability in order to determine the final network sharing scheme.Finally,by integrating the federated learning aggregation process with the malicious node detection mechanism,we improve the traditional decentralized learning process.Our proposed ShardFed algorithm outperforms conventional classification algorithms and state-of-the-art machine learning methods like FedProx and FedCurv in convergence speed,robustness against data interference,and adaptability across multiple scenarios.Experimental results demonstrate that the proposed approach improves model accuracy by up to 2.33%under non-independent and identically distributed data conditions,maintains higher performance with malicious nodes containing poisoned data ratios of 20%–50%,and significantly enhances model resistance to low-quality data. 展开更多
关键词 Trusted federated learning adaptive defense mechanism network security assessment participant trustworthiness scoring hybrid anomaly detection
在线阅读 下载PDF
Attack and Defense Game with Intuitionistic Fuzzy Payoffs in Infrastructure Networks
16
作者 Yibo Dong Jin Liu +2 位作者 Jiaqi Ren Zhe Li Weili Li 《Tsinghua Science and Technology》 2025年第1期384-401,共18页
Due to our increasing dependence on infrastructure networks,the attack and defense game in these networks has draw great concerns from security agencies.Moreover,when it comes to evaluating the payoffs in practical at... Due to our increasing dependence on infrastructure networks,the attack and defense game in these networks has draw great concerns from security agencies.Moreover,when it comes to evaluating the payoffs in practical attack and defense games in infrastructure networks,the lack of consideration for the fuzziness and uncertainty of subjective human judgment brings forth significant challenges to the analysis of strategic interactions among decision makers.This paper employs intuitionistic fuzzy sets(IFSs)to depict such uncertain payoffs,and introduce a theoretical framework for analyzing the attack and defense game in infrastructure networks based on intuitionistic fuzzy theory.We take the changes in three complex network metrics as the universe of discourse,and intuitionistic fuzzy sets are employed based on this universe of discourse to reflect the satisfaction of decision makers.We employ an algorithm based on intuitionistic fuzzy theory to find the Nash equilibrium,and conduct experiments on both local and global networks.Results show that:(1)the utilization of intuitionistic fuzzy sets to depict the payoffs of attack and defense games in infrastructure networks can reflect the unique characteristics of decision makers’subjective preferences.(2)the use of differently weighted proportions of the three complex network metrics has little impact on decision makers’choices of different strategies. 展开更多
关键词 infrastructure networks attack and defense game intuitionistic fuzzy set Nash equilibrium
原文传递
Adversarial Attacks and Defenses in Deep Learning 被引量:23
17
作者 Kui Ren Tianhang Zheng +1 位作者 Zhan Qin Xue Liu 《Engineering》 SCIE EI 2020年第3期346-360,共15页
With the rapid developments of artificial intelligence(AI)and deep learning(DL)techniques,it is critical to ensure the security and robustness of the deployed algorithms.Recently,the security vulnerability of DL algor... With the rapid developments of artificial intelligence(AI)and deep learning(DL)techniques,it is critical to ensure the security and robustness of the deployed algorithms.Recently,the security vulnerability of DL algorithms to adversarial samples has been widely recognized.The fabricated samples can lead to various misbehaviors of the DL models while being perceived as benign by humans.Successful implementations of adversarial attacks in real physical-world scenarios further demonstrate their practicality.Hence,adversarial attack and defense techniques have attracted increasing attention from both machine learning and security communities and have become a hot research topic in recent years.In this paper,we first introduce the theoretical foundations,algorithms,and applications of adversarial attack techniques.We then describe a few research efforts on the defense techniques,which cover the broad frontier in the field.Several open problems and challenges are subsequently discussed,which we hope will provoke further research efforts in this critical area. 展开更多
关键词 Machine learning Deep neural network Adversarial example Adversarial attack Adversarial defense
在线阅读 下载PDF
Flooding attack and defence in Ad hoc networks 被引量:5
18
作者 Yi Ping Hou Yafei +2 位作者 Zhong Yiping Zhang Shiyong Dai Zhoulin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期410-416,共7页
Mobile ad hoc networks are particularly vulnerable to denial of service (DOS) attacks launched through compromised nodes or intruders. In this paper, we present a new DOS attack and its defense in ad hoc networks. T... Mobile ad hoc networks are particularly vulnerable to denial of service (DOS) attacks launched through compromised nodes or intruders. In this paper, we present a new DOS attack and its defense in ad hoc networks. The new DOS attack, called AA hoc Flooding Attack(AHFA), is that intruder broadcasts mass Route Request packets to exhaust the communication bandwidth and node resource so that the valid communication can not be kept. After analyzed AM hoc Flooding Attack, we develop Flooding Attack Prevention (FAP), a genetic defense against the AM hoc Flooding Attack. When the intruder broadcasts exceeding packets of Route Request, the immediate neighbors of the intruder record the rate of Route Request. Once the threshold is exceeded, nodes deny any future request packets from the intruder. The results of our implementation show FAP can prevent the AM hoe Flooding attack efficiently. 展开更多
关键词 computer networks security mobile Ad hoe networks routing protocol denial of service Ad hoc flooding attack.
在线阅读 下载PDF
LINEAR PROVABLE SECURITY FOR A CLASS OF UNBALANCED FEISTEL NETWORK 被引量:3
19
作者 Wang Nianping Jin Chenhui Yu Zhaoping 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第4期401-406,共6页
A structure iterated by the unbalanced Feistel networks is introduced. It is showed that this structure is provable resistant against linear attack. The main result of this paper is that the upper bound of r-round (r... A structure iterated by the unbalanced Feistel networks is introduced. It is showed that this structure is provable resistant against linear attack. The main result of this paper is that the upper bound of r-round (r≥2m) linear hull probabilities are bounded by q^2 when around function F is bijective and the maximal linear hull probabilities of round function F is q. Application of this structure to block cipher designs brings out the provable security against linear attack with the upper bounds of probabilities. 展开更多
关键词 unbalanced Feistel networks provable security against linear attack linear hull probabilities upper bound.
在线阅读 下载PDF
Game theory in network security for digital twins in industry 被引量:2
20
作者 Hailin Feng Dongliang Chen +1 位作者 Haibin Lv Zhihan Lv 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1068-1078,共11页
To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From ... To ensure the safe operation of industrial digital twins network and avoid the harm to the system caused by hacker invasion,a series of discussions on network security issues are carried out based on game theory.From the perspective of the life cycle of network vulnerabilities,mining and repairing vulnerabilities are analyzed by applying evolutionary game theory.The evolution process of knowledge sharing among white hats under various conditions is simulated,and a game model of the vulnerability patch cooperative development strategy among manufacturers is constructed.On this basis,the differential evolution is introduced into the update mechanism of the Wolf Colony Algorithm(WCA)to produce better replacement individuals with greater probability from the perspective of both attack and defense.Through the simulation experiment,it is found that the convergence speed of the probability(X)of white Hat 1 choosing the knowledge sharing policy is related to the probability(x0)of white Hat 2 choosing the knowledge sharing policy initially,and the probability(y0)of white hat 2 choosing the knowledge sharing policy initially.When y0?0.9,X converges rapidly in a relatively short time.When y0 is constant and x0 is small,the probability curve of the“cooperative development”strategy converges to 0.It is concluded that the higher the trust among the white hat members in the temporary team,the stronger their willingness to share knowledge,which is conducive to the mining of loopholes in the system.The greater the probability of a hacker attacking the vulnerability before it is fully disclosed,the lower the willingness of manufacturers to choose the"cooperative development"of vulnerability patches.Applying the improved wolf colonyco-evolution algorithm can obtain the equilibrium solution of the"attack and defense game model",and allocate the security protection resources according to the importance of nodes.This study can provide an effective solution to protect the network security for digital twins in the industry. 展开更多
关键词 Digital twins Industrial internet of things network security Game theory attack and defense
在线阅读 下载PDF
上一页 1 2 144 下一页 到第
使用帮助 返回顶部