With serious cybersecurity situations and frequent network attacks,the demands for automated pentests continue to increase,and the key issue lies in attack planning.Considering the limited viewpoint of the attacker,at...With serious cybersecurity situations and frequent network attacks,the demands for automated pentests continue to increase,and the key issue lies in attack planning.Considering the limited viewpoint of the attacker,attack planning under uncertainty is more suitable and practical for pentesting than is the traditional planning approach,but it also poses some challenges.To address the efficiency problem in uncertainty planning,we propose the APU-D*Lite algorithm in this paper.First,the pentest framework is mapped to the planning problem with the Planning Domain Definition Language(PDDL).Next,we develop the pentest information graph to organize network information and assess relevant exploitation actions,which helps to simplify the problem scale.Then,the APU-D*Lite algorithm is introduced based on the idea of incremental heuristic searching.This method plans for both hosts and actions,which meets the requirements of pentesting.With the pentest information graph as the input,the output is an alternating host and action sequence.In experiments,we use the attack success rate to represent the uncertainty level of the environment.The result shows that APU-D*Lite displays better reliability and efficiency than classical planning algorithms at different attack success rates.展开更多
This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits...This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment.展开更多
This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing...This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing the time consumption of attack and maximizing the expected damage to group targets are taken into consideration simultaneously. These operational objectives result in a hierarchical mixed-variable optimization problem which includes two types of subproblems, namely the multi-objective missile-target assignment(MOMTA) problem at the upper level and the time-optimal coordinated path planning(TOCPP) problems at the lower level. In order to solve the challenging problem, a recently proposed coordinated path planning method is employed to solve the TOCPP problems to achieve the soonest salvo attack against each target. With the aim of finding a more competent solver for MOMTA, three state-of-the-art multi-objective optimization methods(MOMs),namely NSGA-II, MOEA/D and DMOEA-εC, are adopted. Finally, a typical example is used to demonstrate the advantage of the proposed method. A simple rule-based method is also employed for comparison. Comparative results show that DMOEA-εC is the best choice among the three MOMs for solving the MOMTA problem. The combination of DMOEA-εC for MOMTA and the coordinated path planning method for TOCPP can generate obviously better salvo attack schemes than the rule-based method.展开更多
文摘With serious cybersecurity situations and frequent network attacks,the demands for automated pentests continue to increase,and the key issue lies in attack planning.Considering the limited viewpoint of the attacker,attack planning under uncertainty is more suitable and practical for pentesting than is the traditional planning approach,but it also poses some challenges.To address the efficiency problem in uncertainty planning,we propose the APU-D*Lite algorithm in this paper.First,the pentest framework is mapped to the planning problem with the Planning Domain Definition Language(PDDL).Next,we develop the pentest information graph to organize network information and assess relevant exploitation actions,which helps to simplify the problem scale.Then,the APU-D*Lite algorithm is introduced based on the idea of incremental heuristic searching.This method plans for both hosts and actions,which meets the requirements of pentesting.With the pentest information graph as the input,the output is an alternating host and action sequence.In experiments,we use the attack success rate to represent the uncertainty level of the environment.The result shows that APU-D*Lite displays better reliability and efficiency than classical planning algorithms at different attack success rates.
基金supported by the National Defense Foundation of China(No.403060103)
文摘This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment.
基金supported by the National Natural Science Foundation of China under Grant No.61673058the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization under Grant No.U1609214
文摘This paper proposes a solution for the problem of cooperative salvo attack of multiple cruise missiles against targets in a group. Synchronization of the arrival time of missiles to hit their common target, minimizing the time consumption of attack and maximizing the expected damage to group targets are taken into consideration simultaneously. These operational objectives result in a hierarchical mixed-variable optimization problem which includes two types of subproblems, namely the multi-objective missile-target assignment(MOMTA) problem at the upper level and the time-optimal coordinated path planning(TOCPP) problems at the lower level. In order to solve the challenging problem, a recently proposed coordinated path planning method is employed to solve the TOCPP problems to achieve the soonest salvo attack against each target. With the aim of finding a more competent solver for MOMTA, three state-of-the-art multi-objective optimization methods(MOMs),namely NSGA-II, MOEA/D and DMOEA-εC, are adopted. Finally, a typical example is used to demonstrate the advantage of the proposed method. A simple rule-based method is also employed for comparison. Comparative results show that DMOEA-εC is the best choice among the three MOMs for solving the MOMTA problem. The combination of DMOEA-εC for MOMTA and the coordinated path planning method for TOCPP can generate obviously better salvo attack schemes than the rule-based method.