期刊文献+
共找到1,467篇文章
< 1 2 74 >
每页显示 20 50 100
An Attack Modeling Based on Colored Petri Net
1
作者 周世杰 秦志光 +1 位作者 张峰 刘锦德 《Journal of Electronic Science and Technology of China》 2004年第1期47-52,共6页
A color petri net (CPN) based attack modeling approach is addressed. Compared with graph-based modeling, CPN based attack model is flexible enough to model Internet intrusions, because of their static and dynamic feat... A color petri net (CPN) based attack modeling approach is addressed. Compared with graph-based modeling, CPN based attack model is flexible enough to model Internet intrusions, because of their static and dynamic features. The processes and rules of building CPN based attack model from attack tree are also presented. In order to evaluate the risk of intrusion, some cost elements are added to CPN based attack modeling. This extended model is useful in intrusion detection and risk evaluation. Experiences show that it is easy to exploit CPN based attack modeling approach to provide the controlling functions, such as intrusion response and intrusion defense. A case study given in this paper shows that CPN based attack model has many unique characters which attack tree model hasn’t. 展开更多
关键词 petri net color petri net (CPN) intrusion detection and response attack modeling
在线阅读 下载PDF
Study on Anti-ship Missile Saturation Attack Model 被引量:1
2
作者 王光辉 孙学锋 +1 位作者 严建钢 谢宇鹏 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第1期10-15,共6页
Based on the analysis for the interception process of ship-to-air missile system to the anti-ship missile stream, the antagonism of ship-to-air missile and anti-ship missile stream was modeled by Monte Carlo method. T... Based on the analysis for the interception process of ship-to-air missile system to the anti-ship missile stream, the antagonism of ship-to-air missile and anti-ship missile stream was modeled by Monte Carlo method. This model containing the probability of acquiring anti-ship missile, threat estimation, firepower distribution, interception, effectiveness evaluation and firepower turning, can dynamically simulate the antagonism process of anti-ship missile attack stream and anti-air missile weapon system. The anti-ship missile's saturation attack stream for different ship-to-air missile systems can be calculated quantitatively. The simulated results reveal the relations among the anti-ship missile saturation attack and the attack intensity of anti-ship missile, interception mode and the main parameters of anti-air missile weapon system. It provides a theoretical basis for the effective operation of anti-ship missile. 展开更多
关键词 operational research system engineering anti-ship missile ship-to-air missile saturation attack antagonism model penetrate efficiency
在线阅读 下载PDF
Machine Learning-Based Detection and Selective Mitigation of Denial-of-Service Attacks in Wireless Sensor Networks
3
作者 Soyoung Joo So-Hyun Park +2 位作者 Hye-Yeon Shim Ye-Sol Oh Il-Gu Lee 《Computers, Materials & Continua》 2025年第2期2475-2494,共20页
As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. Ther... As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response. 展开更多
关键词 Distributed coordinated function mechanism jamming attack machine learning-based attack detection selective attack mitigation model selective attack mitigation model selfish attack
在线阅读 下载PDF
N-Model:多深度学习模型动态组合的智能系统安全弹性增强
4
作者 程泽凯 刘高天 +3 位作者 蒋建春 庞志伟 滕若阑 梅瑞 《计算机系统应用》 2025年第9期57-68,共12页
基于深度学习智能系统面临对抗攻击、供应链攻击等安全威胁问题日益突出,而传统智能系统采用单一模型,其防御机制是静态的、确定的模式,模型的功能存在单点脆弱性,导致智能系统缺乏安全弹性.本文提出了一种多个深度学习模型动态组合的方... 基于深度学习智能系统面临对抗攻击、供应链攻击等安全威胁问题日益突出,而传统智能系统采用单一模型,其防御机制是静态的、确定的模式,模型的功能存在单点脆弱性,导致智能系统缺乏安全弹性.本文提出了一种多个深度学习模型动态组合的方法(N-Model),实现模型的多样性和随机性,通过模型的动态变化增加智能攻击对象及攻击途径的不确定性,结合多模型的表决机制,增强智能系统的安全弹性.理论安全分析表明,N-Model组合模型在攻击情景下相比单一模型具有较高的期望准确率.实验结果进一步证实,在CIFAR-10数据集下,N-Model组合模型可抵御多种对抗攻击,其攻击成功率低于单一模型,表现出良好的综合安全性能. 展开更多
关键词 人工智能安全 深度学习防御 随机模型调度 多模型表决 攻击容忍性 系统安全弹性
在线阅读 下载PDF
Evaluating Privacy Leakage and Memorization Attacks on Large Language Models (LLMs) in Generative AI Applications 被引量:1
5
作者 Harshvardhan Aditya Siddansh Chawla +6 位作者 Gunika Dhingra Parijat Rai Saumil Sood Tanmay Singh Zeba Mohsin Wase Arshdeep Bahga Vijay K. Madisetti 《Journal of Software Engineering and Applications》 2024年第5期421-447,共27页
The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Infor... The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Information (PII) and other confidential or protected information that may have been memorized during training, specifically during a fine-tuning or customization process. We describe different black-box attacks from potential adversaries and study their impact on the amount and type of information that may be recovered from commonly used and deployed LLMs. Our research investigates the relationship between PII leakage, memorization, and factors such as model size, architecture, and the nature of attacks employed. The study utilizes two broad categories of attacks: PII leakage-focused attacks (auto-completion and extraction attacks) and memorization-focused attacks (various membership inference attacks). The findings from these investigations are quantified using an array of evaluative metrics, providing a detailed understanding of LLM vulnerabilities and the effectiveness of different attacks. 展开更多
关键词 Large Language models PII Leakage Privacy Memorization OVERFITTING Membership Inference attack (MIA)
在线阅读 下载PDF
Analysis of SVEIR worm attack model with saturated incidence and partial immunization 被引量:2
6
作者 WANG Fangwei HUANG Wenyan +1 位作者 SHEN Yulong WANG Changguang 《Journal of Communications and Information Networks》 2016年第4期105-115,共11页
Internet worms can propagate across networks at terrifying speeds,reduce network security to a remarkable extent,and cause heavy economic losses.Thus,the rapid elimination of Internet worms using partial immunization ... Internet worms can propagate across networks at terrifying speeds,reduce network security to a remarkable extent,and cause heavy economic losses.Thus,the rapid elimination of Internet worms using partial immunization becomes a significant matter for sustaining Internet infrastructure.This paper addresses this issue by presenting a novel worm susceptible-vaccinated-exposed-infectious-recovered model,named the SVEIR model.The SVEIR model extends the classical susceptible-exposed-infectious-recovered model(refer to SEIR model)through incorporating a saturated incidence rate and a partial immunization rate.The basic reproduction number in the SVEIR model is obtained.By virtue of the basic reproduction number,we prove the global stabilities of an infection-free equilibrium point and a unique endemic equilibrium point.Numerical methods are used to verify the proposed SVEIR model.Simulation results show that partial immunization is highly effective for eliminating worms,and the SVEIR model is viable for controlling and forecasting Internet worms. 展开更多
关键词 Internet worm attack model STABILITY saturated incidence partial immunization
原文传递
HB-2 high-velocity correlation model at high angles of attack in supersonic wind tunnel tests 被引量:3
7
作者 Djordje VUKOVI? Dijana DAMLJANOVI? 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第7期1565-1576,共12页
Responding to a need for experimental data on a standard wind tunnel model at high angles of attack in the supersonic speed range, and in the absence of suitable reference data, a series of tests of two HB-2 standard ... Responding to a need for experimental data on a standard wind tunnel model at high angles of attack in the supersonic speed range, and in the absence of suitable reference data, a series of tests of two HB-2 standard models of different sizes was performed in the T-38 trisonic wind tunnel of Vojnotehnickˇi Institut(VTI), in the Mach number range 1.5–4.0, at angles of attack up to+30°. Tests were performed at relatively high Reynolds numbers of 2.2 millions to 4.5 millions(based on model forebody diameter). Results were compared with available low angle of attack data from other facilities, and, as a good agreement was found, it was assumed that, by implication, the obtained high angle of attack results were valid as well. Therefore, the results can be used as a reference database for the HB-2 model at high angles of attack in the supersonic speed range, which was not available before. The results are presented in comparison with available reference data, but also contain data for some Mach numbers not given in other publications. 展开更多
关键词 Base pressure Experimental AERODYNAMICS High angle of attack Standard model WIND TUNNEL
原文传递
A Novel Shilling Attack Detection Model Based on Particle Filter and Gravitation 被引量:1
8
作者 Lingtao Qi Haiping Huang +2 位作者 Feng Li Reza Malekian Ruchuan Wang 《China Communications》 SCIE CSCD 2019年第10期112-132,共21页
With the rapid development of e-commerce, the security issues of collaborative filtering recommender systems have been widely investigated. Malicious users can benefit from injecting a great quantities of fake profile... With the rapid development of e-commerce, the security issues of collaborative filtering recommender systems have been widely investigated. Malicious users can benefit from injecting a great quantities of fake profiles into recommender systems to manipulate recommendation results. As one of the most important attack methods in recommender systems, the shilling attack has been paid considerable attention, especially to its model and the way to detect it. Among them, the loose version of Group Shilling Attack Generation Algorithm (GSAGenl) has outstanding performance. It can be immune to some PCC (Pearson Correlation Coefficient)-based detectors due to the nature of anti-Pearson correlation. In order to overcome the vulnerabilities caused by GSAGenl, a gravitation-based detection model (GBDM) is presented, integrated with a sophisticated gravitational detector and a decider. And meanwhile two new basic attributes and a particle filter algorithm are used for tracking prediction. And then, whether an attack occurs can be judged according to the law of universal gravitation in decision-making. The detection performances of GBDM, HHT-SVM, UnRAP, AP-UnRAP Semi-SAD,SVM-TIA and PCA-P are compared and evaluated. And simulation results show the effectiveness and availability of GBDM. 展开更多
关键词 shilling attack detection model collaborative filtering recommender systems gravitation-based detection model particle filter algorithm
在线阅读 下载PDF
Unsteady aerodynamic modeling at high angles of attack using support vector machines 被引量:28
9
作者 Wang Qing Qian Weiqi He Kaifeng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第3期659-668,共10页
Abstract Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determ... Abstract Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs) based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle.-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as sele, ction of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM) models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfving learning and generalization performance of LS-SVMs. 展开更多
关键词 Aerodynamic modeling High angle of attack Support vector machines(SVMs) Unsteady aerodynamics Wind tunnel test
原文传递
Algebraic Attack on Filter-Combiner Model Keystream Generators
10
作者 WUZhi-ping YEDing-feng MAWei-ju 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第1期259-262,共4页
Algebraic attack was applied to attack Filter-Combintr model keystreamgenerators. We proposed the technique of function composition to improve the model, and the improvedmodel can resist the algebraic attack. A new cr... Algebraic attack was applied to attack Filter-Combintr model keystreamgenerators. We proposed the technique of function composition to improve the model, and the improvedmodel can resist the algebraic attack. A new criterion for designing Filter-Combiner model was alsoproposed: the total length I. of Linear Finite State Machines used in the model should be largeenough and the degree d of Filter-Combiner function should be approximate [L/2]. 展开更多
关键词 algebraic attack Filter-Combiner model stream cipher 'XL' algorithm function composition
在线阅读 下载PDF
基于图神经网络模型校准的成员推理攻击 被引量:2
11
作者 谢丽霞 史镜琛 +2 位作者 杨宏宇 胡泽 成翔 《电子与信息学报》 北大核心 2025年第3期780-791,共12页
针对图神经网络(GNN)模型在其预测中常处于欠自信状态,导致该状态下实施成员推理攻击难度大且攻击漏报率高的问题,该文提出一种基于GNN模型校准的成员推理攻击方法。首先,设计一种基于因果推断的GNN模型校准方法,通过基于注意力机制的... 针对图神经网络(GNN)模型在其预测中常处于欠自信状态,导致该状态下实施成员推理攻击难度大且攻击漏报率高的问题,该文提出一种基于GNN模型校准的成员推理攻击方法。首先,设计一种基于因果推断的GNN模型校准方法,通过基于注意力机制的因果图提取、因果图与非因果图解耦、后门路径调整策略和因果关联图生成过程,构建用于训练GNN模型的因果关联图。其次,使用与目标因果关联图在相同数据分布下的影子因果关联图构建影子GNN模型,模拟目标GNN模型的预测行为。最后,使用影子GNN模型的后验概率构建攻击数据集以训练攻击模型,根据目标GNN模型对目标节点的后验概率输出推断其是否属于目标GNN模型的训练数据。在4个数据集上的实验结果表明,该文方法在2种攻击模式下面对不同架构的GNN模型进行攻击时,攻击准确率最高为92.6%,性能指标优于基线攻击方法,可有效地实施成员推理攻击。 展开更多
关键词 图神经网络 成员推理攻击 模型校准 因果推断 隐私风险
在线阅读 下载PDF
面向模型量化的安全性研究综述 被引量:1
12
作者 陈晋音 曹志骐 +1 位作者 郑海斌 郑雅羽 《小型微型计算机系统》 北大核心 2025年第6期1473-1490,共18页
随着边缘智能设备的飞速发展,为了在资源受限的边缘端设备上部署参数和存储需求巨大的深度模型,模型压缩技术显得至关重要.现有的模型压缩主要包含剪枝、量化、知识蒸馏和低秩分解4类,量化凭借推理快、功耗低、存储少的优势,使它成为了... 随着边缘智能设备的飞速发展,为了在资源受限的边缘端设备上部署参数和存储需求巨大的深度模型,模型压缩技术显得至关重要.现有的模型压缩主要包含剪枝、量化、知识蒸馏和低秩分解4类,量化凭借推理快、功耗低、存储少的优势,使它成为了边缘端部署的常用技术.然而,已有的量化方法主要关注的是模型量化后的模型精度损失和内存占用情况,而忽略模型量化可能面临的安全性威胁.因此,针对模型量化的安全性研究显得尤为重要.本文首次针对模型量化的安全性问题展开分析,首先定义了模型量化的攻防理论,其次按照模型量化前和模型量化过程中两个阶段对量化攻击方法和量化防御方法进行分析归纳,整理了针对不同攻击任务进行的通用基准数据集与主要评价指标,最后探讨了模型量化的安全性研究及其应用,以及未来潜在研究方向,进一步推动模型量化的安全性研究发展和应用. 展开更多
关键词 模型量化 模型安全 对抗攻击 后门攻击 隐私窃取 公平性 模型防御
在线阅读 下载PDF
基于工业控制系统的跨域攻击建模与分析
13
作者 张蕾 万金晶 陈平 《现代电子技术》 北大核心 2025年第17期98-103,共6页
电力系统的运行和控制逐渐依赖于智能测控设备、实时通信网络和集成软件系统,在提高系统效率和灵活性的同时,也带来了新的安全隐患,特别是跨域攻击的威胁。文中将系统性地探讨物理信息系统中的跨域攻击形式及其潜在风险,通过收集和分析... 电力系统的运行和控制逐渐依赖于智能测控设备、实时通信网络和集成软件系统,在提高系统效率和灵活性的同时,也带来了新的安全隐患,特别是跨域攻击的威胁。文中将系统性地探讨物理信息系统中的跨域攻击形式及其潜在风险,通过收集和分析历史上发生的跨域攻击事件,建立一个全面的漏洞知识库,针对CPS中各个资产之间的关联关系进行深入分析。通过构建基于攻击模型的跨域攻击机理,揭示潜在的攻击路径和薄弱环节。在技术实现方面,将采用有向攻击图模型,通过深度遍历算法分析可能的攻击路径,并设计一种创新的跨域攻击预测算法,文中研究旨在为工业控制系统安全分析提供一种实用策略,为该领域进一步探讨提供理论支持,增强电力系统的抗风险能力。 展开更多
关键词 工业控制系统 跨域攻击 信息物理系统 风险分析 漏洞知识库 攻击模型
在线阅读 下载PDF
基于代理生成对抗网络的服务质量感知云API推荐系统投毒攻击 被引量:1
14
作者 陈真 刘伟 +3 位作者 吕瑞民 马佳洁 冯佳音 尤殿龙 《通信学报》 北大核心 2025年第3期174-186,共13页
针对现有投毒攻击方法生成的虚假用户攻击数据存在攻击效果差且易被检测的不足,提出一种基于代理生成对抗网络的投毒攻击方法。首先,在生成对抗网络中采用K-means算法将数据分类,并引入自注意力机制学习每个类中的全局特征,解决生成对... 针对现有投毒攻击方法生成的虚假用户攻击数据存在攻击效果差且易被检测的不足,提出一种基于代理生成对抗网络的投毒攻击方法。首先,在生成对抗网络中采用K-means算法将数据分类,并引入自注意力机制学习每个类中的全局特征,解决生成对抗网络在数据稀疏时难以有效捕捉真实用户复杂行为模式这一问题,提升虚假用户的隐蔽性。其次,引入代理模型评估生成对抗网络生成的虚假用户的攻击效果,将评估结果作为代理损失优化生成对抗网络,进而实现在兼顾虚假用户隐蔽性的同时增强攻击效果。云API服务质量数据集上的实验表明,所提方法在兼顾攻击的有效性和隐蔽性方面均优于现有方法。 展开更多
关键词 推荐系统 云API 投毒攻击 生成对抗网络 代理模型
在线阅读 下载PDF
针对SAM下游模型脆弱模块的对抗迁移攻击
15
作者 丁熠 林能健 +2 位作者 蒋昀陶 钟宇浩 曹明生 《计算机研究与发展》 北大核心 2025年第10期2455-2467,共13页
SAM(segment anything model)作为一种通用的视觉基础模型,已被广泛应用于多种图像分割任务,但其在对抗性攻击面前表现出脆弱性.提出一种针对SAM下游模型脆弱模块的对抗迁移攻击方法FSGR(fragile section gradient robustness).该方法... SAM(segment anything model)作为一种通用的视觉基础模型,已被广泛应用于多种图像分割任务,但其在对抗性攻击面前表现出脆弱性.提出一种针对SAM下游模型脆弱模块的对抗迁移攻击方法FSGR(fragile section gradient robustness).该方法在无需知晓下游微调细节的前提下,可有效生成对抗样本,实现对SAM下游模型的攻击.该方法运用“脆弱层精准定位+局部强化迁移”策略,通过特征相似度筛选出跨任务共享且最易被激活的模块,针对性地强化攻击效果;同时,引入梯度稳健损失以消除目标模型与下游任务模型间的梯度差异. FSGR方法融合了脆弱层攻击与梯度稳健损失机制,在多个数据集上均实现了相对性能的提升.实验结果表明,FSGR在多种微调模型(如医学分割、阴影分割和伪装分割)的迁移攻击中显著降低了模型性能,证明了其正确性和实用性.与基线方法相比,FSGR不仅在攻击成功率上表现出色,还通过结合脆弱层攻击和梯度稳健损失,实现了相对性能的提升. 展开更多
关键词 图像分割 对抗攻击 迁移攻击 特征相似度 模型鲁棒性
在线阅读 下载PDF
双端异步DoS攻击下基于数模联动的ICPS多模态综合安全控制
16
作者 李亚洁 李钢 +1 位作者 李炜 路晨静 《北京航空航天大学学报》 北大核心 2025年第10期3354-3367,共14页
针对一类双端异步拒绝服务(DoS)攻击与执行器故障共存的工业信息物理系统(ICPS),通过将数据驱动技术与模型机理解析方法相融合,对多模态综合安全控制与通讯间的协同设计问题进行研究。设计一种触发阈值可随系统行为动态变化的自适应离... 针对一类双端异步拒绝服务(DoS)攻击与执行器故障共存的工业信息物理系统(ICPS),通过将数据驱动技术与模型机理解析方法相融合,对多模态综合安全控制与通讯间的协同设计问题进行研究。设计一种触发阈值可随系统行为动态变化的自适应离散事件触发通讯机制(ADETCS),并构建可同时抵御双端异步DoS攻击与执行器故障的ICPS多模态综合安全控制架构;针对不同能量等级的DoS攻击,采用“分而治之”的思想,借助长短期记忆(LSTM)网络与弹性控制方法,提出基于数模联动的主-被动协同混合容侵策略。基于Lyapunov稳定性理论进行观测器与控制器的推证,进而采用K-Means++聚类算法及模糊融合方法,在线对不同模态下的控制器进行加权融合,实现不同控制模态间的软切换;通过四容水箱实例,验证了双端异步DoS攻击下基于数模联动的多模态综合安全控制方法的正确性。实验结果表明:数模联动的方法增强了ICPS抵御双端异步DoS攻击的能力,多模态综合安全控制器的设计实现了控制模态与ADETCS间的双向自适应协同控制。 展开更多
关键词 工业信息物理系统 双端异步DoS攻击 数模联动 自适应离散事件触发通讯机制 多模态综合安全控制
原文传递
特征感知变换自编码器防御模型偏斜式投毒攻击
17
作者 罗文华 杨立圣 张鹏 《小型微型计算机系统》 北大核心 2025年第8期2033-2040,共8页
流量分类模型更新易受数据投毒攻击,现有模型偏斜式投毒攻击防御方法聚焦特征固定的图像分类任务,面对特征复杂的流量分类问题适用性有限.针对上述问题,设计少特征攻击的投影梯度下降法,生成对抗样本进行偏斜式投毒攻击;提出特征感知变... 流量分类模型更新易受数据投毒攻击,现有模型偏斜式投毒攻击防御方法聚焦特征固定的图像分类任务,面对特征复杂的流量分类问题适用性有限.针对上述问题,设计少特征攻击的投影梯度下降法,生成对抗样本进行偏斜式投毒攻击;提出特征感知变换自编码器的模型偏斜式投毒防御方法,在自编码器训练阶段引入特征感知噪声扰动,以限制扰动范围并增强自编码器对抗样本噪声过滤能力.通过构建流量数据变换自编码器重构并消除对抗样本的对抗性,利用变换后的样本数据与原始数据进行预测差异性判定,实现对抗样本判别过滤.实验结果表明,该方法能够有效识别新增训练样本中的对抗样本,降低偏斜式数据投毒攻击对流量分类模型的负面影响. 展开更多
关键词 数据投毒攻击 流量分类模型 对抗样本 自编码器
在线阅读 下载PDF
聚乙烯醇纤维增强地聚物抗硫酸盐侵蚀性能分析及强度预测
18
作者 姜天华 王帅 胡宇成 《武汉科技大学学报》 北大核心 2025年第3期185-191,共7页
为探究聚乙烯醇(PVA)纤维对粉煤灰-矿渣基地聚物抗硫酸盐侵蚀性能的影响,对掺入不同纤维长度及体积掺量的PVA纤维增强地聚物进行硫酸盐干湿循环侵蚀试验,分析了硫酸盐侵蚀前后试件的质量及抗压强度变化规律;利用灰色系统理论,建立硫酸... 为探究聚乙烯醇(PVA)纤维对粉煤灰-矿渣基地聚物抗硫酸盐侵蚀性能的影响,对掺入不同纤维长度及体积掺量的PVA纤维增强地聚物进行硫酸盐干湿循环侵蚀试验,分析了硫酸盐侵蚀前后试件的质量及抗压强度变化规律;利用灰色系统理论,建立硫酸盐干湿循环作用下PVA纤维增强地聚物抗压强度GM(1,1)预测模型。研究结果表明:掺入适量PVA纤维能有效提升试件抗硫酸盐侵蚀性能,但掺入过量则会起反作用,在本研究9个配比方案中,加入体积掺量为0.10%的18 mm PVA纤维时效果最佳;采用建立的GM(1,1)模型对试件抗压强度进行预测,在纤维体积掺量不超过0.20%时具有较高精度。 展开更多
关键词 地聚物 聚乙烯醇纤维 干湿循环 硫酸盐侵蚀 GM(1 1)预测模型 抗压强度
在线阅读 下载PDF
考虑竞争效应的空铁联运网络脆弱性修复策略研究
19
作者 赵桂红 郭家羽 邹灿 《北京交通大学学报》 北大核心 2025年第2期36-47,共12页
为探究高铁快速发展对民航运输造成的竞争冲击,进一步优化空铁联运复合交通网络结构稳定性,提出一种考虑竞争效应的空铁联运网络脆弱性评估和修复方法 .首先,基于旅客出行需求与运输供给的动态平衡关系,引入空铁竞争效应指标,改进网络... 为探究高铁快速发展对民航运输造成的竞争冲击,进一步优化空铁联运复合交通网络结构稳定性,提出一种考虑竞争效应的空铁联运网络脆弱性评估和修复方法 .首先,基于旅客出行需求与运输供给的动态平衡关系,引入空铁竞争效应指标,改进网络脆弱性评估模型;其次,针对不同攻击策略和失效情景,提出修复成本和脆弱性能同时最小化目标的修复模型,采用粒子群算法求解模型;最后,以东航国铁联运网络为案例开展多情景对比分析,得出不同情景下的最优网络修复序列.研究结果表明:空铁竞争效应指标的加入使得各节点脆弱性指数平均提升约2倍,关键节点辨识度和准确性显著增强.通过划分城市节点的网络脆弱等级,主要识别出上海、南京、广州、深圳、厦门等15个重度脆弱城市;蓄意攻击下节点和区域失效方案的修复效果最好,流量分配更加均匀,修复成本平均增加23%,网络性能提升2倍以上. 展开更多
关键词 空铁联运 竞争效应 网络脆弱性 攻击策略 修复模型
在线阅读 下载PDF
GUARDIAN: A Multi-Tiered Defense Architecture for Thwarting Prompt Injection Attacks on LLMs
20
作者 Parijat Rai Saumil Sood +1 位作者 Vijay K. Madisetti Arshdeep Bahga 《Journal of Software Engineering and Applications》 2024年第1期43-68,共26页
This paper introduces a novel multi-tiered defense architecture to protect language models from adversarial prompt attacks. We construct adversarial prompts using strategies like role emulation and manipulative assist... This paper introduces a novel multi-tiered defense architecture to protect language models from adversarial prompt attacks. We construct adversarial prompts using strategies like role emulation and manipulative assistance to simulate real threats. We introduce a comprehensive, multi-tiered defense framework named GUARDIAN (Guardrails for Upholding Ethics in Language Models) comprising a system prompt filter, pre-processing filter leveraging a toxic classifier and ethical prompt generator, and pre-display filter using the model itself for output screening. Extensive testing on Meta’s Llama-2 model demonstrates the capability to block 100% of attack prompts. The approach also auto-suggests safer prompt alternatives, thereby bolstering language model security. Quantitatively evaluated defense layers and an ethical substitution mechanism represent key innovations to counter sophisticated attacks. The integrated methodology not only fortifies smaller LLMs against emerging cyber threats but also guides the broader application of LLMs in a secure and ethical manner. 展开更多
关键词 Large Language models (LLMs) Adversarial attack Prompt Injection Filter Defense Artificial Intelligence Machine Learning CYBERSECURITY
在线阅读 下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部