期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
PNSS: Unknown Face Presentation Attack Detection with Pseudo Negative Sample Synthesis
1
作者 Hongyang Wang Yichen Shi +2 位作者 Jun Feng Zitong Yu Zhuofu Tao 《Computers, Materials & Continua》 2025年第5期3097-3112,共16页
Face Presentation Attack Detection(fPAD)plays a vital role in securing face recognition systems against various presentation attacks.While supervised learning-based methods demonstrate effectiveness,they are prone to ... Face Presentation Attack Detection(fPAD)plays a vital role in securing face recognition systems against various presentation attacks.While supervised learning-based methods demonstrate effectiveness,they are prone to overfitting to known attack types and struggle to generalize to novel attack scenarios.Recent studies have explored formulating fPAD as an anomaly detection problem or one-class classification task,enabling the training of generalized models for unknown attack detection.However,conventional anomaly detection approaches encounter difficulties in precisely delineating the boundary between bonafide samples and unknown attacks.To address this challenge,we propose a novel framework focusing on unknown attack detection using exclusively bonafide facial data during training.The core innovation lies in our pseudo-negative sample synthesis(PNSS)strategy,which facilitates learning of compact decision boundaries between bonafide faces and potential attack variations.Specifically,PNSS generates synthetic negative samples within low-likelihood regions of the bonafide feature space to represent diverse unknown attack patterns.To overcome the inherent imbalance between positive and synthetic negative samples during iterative training,we implement a dual-loss mechanism combining focal loss for classification optimization with pairwise confusion loss as a regularizer.This architecture effectively mitigates model bias towards bonafide samples while maintaining discriminative power.Comprehensive evaluations across three benchmark datasets validate the framework’s superior performance.Notably,our PNSS achieves 8%–18% average classification error rate(ACER)reduction compared with state-of-the-art one-class fPAD methods in cross-dataset evaluations on Idiap Replay-Attack and MSU-MFSD datasets. 展开更多
关键词 Face presentation attack detection pseudo negative sample anomaly detection one-class classification
在线阅读 下载PDF
Adapting Convolutional Autoencoder for DDoS Attack Detection via Joint Reconstruction Learning and Refined Anomaly Scoring
2
作者 Seulki Han Sangho Son +1 位作者 Won Sakong Haemin Jung 《Computers, Materials & Continua》 2025年第11期2893-2912,共20页
As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic... As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic.Although unsupervised anomaly detection using convolutional autoencoders(CAEs)has gained attention for its ability to model normal network behavior without requiring labeled data,conventional CAEs struggle to effectively distinguish between normal and attack traffic due to over-generalized reconstructions and naive anomaly scoring.To address these limitations,we propose CA-CAE,a novel anomaly detection framework designed to improve DDoS detection through asymmetric joint reconstruction learning and refined anomaly scoring.Our architecture connects two CAEs sequentially with asymmetric filter allocation,which amplifies reconstruction errors for anomalous data while preserving low errors for normal traffic.Additionally,we introduce a scoring mechanism that incorporates exponential decay weighting to emphasize recent anomalies and relative traffic volume adjustment to highlight highrisk instances,enabling more accurate and timely detection.We evaluate CA-CAE on a real-world network traffic dataset collected using Cisco NetFlow,containing over 190,000 normal instances and only 78 anomalous instances—an extremely imbalanced scenario(0.0004% anomalies).We validate the proposed framework through extensive experiments,including statistical tests and comparisons with baseline models.Despite this challenge,our method achieves significant improvement,increasing the F1-score from 0.515 obtained by the baseline CAE to 0.934,and outperforming other models.These results demonstrate the effectiveness,scalability,and practicality of CA-CAE for unsupervised DDoS detection in realistic network environments.By combining lightweight model architecture with a domain-aware scoring strategy,our framework provides a robust solution for early detection of DDoS attacks without relying on labeled attack data. 展开更多
关键词 Anomaly detection DDoS attack detection convolutional autoencoder
在线阅读 下载PDF
Renovated Random Attribute-Based Fennec Fox Optimized Deep Learning Framework in Low-Rate DoS Attack Detection in IoT
3
作者 Prasanalakshmi Balaji Sangita Babu +4 位作者 Maode Ma Zhaoxi Fang Syarifah Bahiyah Rahayu Mariyam Aysha Bivi Mahaveerakannan Renganathan 《Computers, Materials & Continua》 2025年第9期5831-5858,共28页
The rapid progression of the Internet of Things(IoT)technology enables its application across various sectors.However,IoT devices typically acquire inadequate computing power and user interfaces,making them susceptibl... The rapid progression of the Internet of Things(IoT)technology enables its application across various sectors.However,IoT devices typically acquire inadequate computing power and user interfaces,making them susceptible to security threats.One significant risk to cloud networks is Distributed Denial-of-Service(DoS)attacks,where attackers aim to overcome a target system with excessive data and requests.Among these,low-rate DoS(LR-DoS)attacks present a particular challenge to detection.By sending bursts of attacks at irregular intervals,LR-DoS significantly degrades the targeted system’s Quality of Service(QoS).The low-rate nature of these attacks confuses their detection,as they frequently trigger congestion control mechanisms,leading to significant instability in IoT systems.Therefore,to detect the LR-DoS attack,an innovative deep-learning model has been developed for this research work.The standard dataset is utilized to collect the required data.Further,the deep feature extraction process is executed using the Residual Autoencoder with Sparse Attention(ResAE-SA),which helps derive the significant feature required for detection.Ultimately,the Adaptive Dense Recurrent Neural Network(ADRNN)is implemented to detect LR-DoS effectively.To enhance the detection process,the parameters present in the ADRNN are optimized using the Renovated Random Attribute-based Fennec Fox Optimization(RRA-FFA).The proposed optimization reduces the False Discovery Rate and False Positive Rate,maximizing the Matthews Correlation Coefficient from 23,70.8,76.2,84.28 in Dataset 1 and 70.28,73.8,74.1,82.6 in Dataset 2 on EPC-ADRNN,DPO-ADRNN,GTO-ADRNN,FFA-ADRNN respectively to 95.8 on Dataset 1 and 91.7 on Dataset 2 in proposed model.At batch size 4,the accuracy of the designed RRA-FFA-ADRNN model progressed by 9.2%to GTO-ADRNN,11.6%to EFC-ADRNN,10.9%to DPO-ADRNN,and 4%to FFA-ADRNN for Dataset 1.The accuracy of the proposed RRA-FFA-ADRNN is boosted by 12.9%,9.09%,11.6%,and 10.9%over FFCNN,SVM,RNN,and DRNN,using Dataset 2,showing a better improvement in accuracy with that of the proposed RRA-FFA-ADRNN model with 95.7%using Dataset 1 and 94.1%with Dataset 2,which is better than the existing baseline models. 展开更多
关键词 Detecting low-rate DoS attacks adaptive dense recurrent neural network residual autoencoder with sparse attention renovated random attribute-based fennec fox optimization
在线阅读 下载PDF
Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss
4
作者 Thanh-Lam Nguyen HaoKao +2 位作者 Thanh-Tuan Nguyen Mong-Fong Horng Chin-Shiuh Shieh 《Computers, Materials & Continua》 SCIE EI 2024年第2期2181-2205,共25页
Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications i... Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks. 展开更多
关键词 CYBERSECURITY DDoS unknown attack detection machine learning deep learning incremental learning convolutional neural networks(CNN) open-set recognition(OSR) spatial location constraint prototype loss fuzzy c-means CICIDS2017 CICDDoS2019
在线阅读 下载PDF
Anti-D Chain:A Lightweight DDoS Attack Detection Scheme Based on Heterogeneous Ensemble Learning in Blockchain 被引量:9
5
作者 Bin Jia Yongquan Liang 《China Communications》 SCIE CSCD 2020年第9期11-24,共14页
With rapid development of blockchain technology,blockchain and its security theory research and practical application have become crucial.At present,a new DDoS attack has arisen,and it is the DDoS attack in blockchain... With rapid development of blockchain technology,blockchain and its security theory research and practical application have become crucial.At present,a new DDoS attack has arisen,and it is the DDoS attack in blockchain network.The attack is harmful for blockchain technology and many application scenarios.However,the traditional and existing DDoS attack detection and defense means mainly come from the centralized tactics and solution.Aiming at the above problem,the paper proposes the virtual reality parallel anti-DDoS chain design philosophy and distributed anti-D Chain detection framework based on hybrid ensemble learning.Here,Ada Boost and Random Forest are used as our ensemble learning strategy,and some different lightweight classifiers are integrated into the same ensemble learning algorithm,such as CART and ID3.Our detection framework in blockchain scene has much stronger generalization performance,universality and complementarity to identify accurately the onslaught features for DDoS attack in P2P network.Extensive experimental results confirm that our distributed heterogeneous anti-D chain detection method has better performance in six important indicators(such as Precision,Recall,F-Score,True Positive Rate,False Positive Rate,and ROC curve). 展开更多
关键词 DDoS attack detection parallel blockchain technology ensemble learning Ada Boost random forest
在线阅读 下载PDF
FEW-NNN: A Fuzzy Entropy Weighted Natural Nearest Neighbor Method for Flow-Based Network Traffic Attack Detection 被引量:7
6
作者 Liangchen Chen Shu Gao +2 位作者 Baoxu Liu Zhigang Lu Zhengwei Jiang 《China Communications》 SCIE CSCD 2020年第5期151-167,共17页
Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the foc... Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the focus of many initiatives. Effectively analyzing massive network security data with high dimensions for suspicious flow diagnosis is a huge challenge. In addition, the uneven distribution of network traffic does not fully reflect the differences of class sample features, resulting in the low accuracy of attack detection. To solve these problems, a novel approach called the fuzzy entropy weighted natural nearest neighbor(FEW-NNN) method is proposed to enhance the accuracy and efficiency of flowbased network traffic attack detection. First, the FEW-NNN method uses the Fisher score and deep graph feature learning algorithm to remove unimportant features and reduce the data dimension. Then, according to the proposed natural nearest neighbor searching algorithm(NNN_Searching), the density of data points, each class center and the smallest enclosing sphere radius are determined correspondingly. Finally, a fuzzy entropy weighted KNN classification method based on affinity is proposed, which mainly includes the following three steps: 1、 the feature weights of samples are calculated based on fuzzy entropy values, 2、 the fuzzy memberships of samples are determined based on affinity among samples, and 3、 K-neighbors are selected according to the class-conditional weighted Euclidean distance, the fuzzy membership value of the testing sample is calculated based on the membership of k-neighbors, and then all testing samples are classified according to the fuzzy membership value of the samples belonging to each class;that is, the attack type is determined. The method has been applied to the problem of attack detection and validated based on the famous KDD99 and CICIDS-2017 datasets. From the experimental results shown in this paper, it is observed that the FEW-NNN method improves the accuracy and efficiency of flow-based network traffic attack detection. 展开更多
关键词 fuzzy entropy weighted KNN network attack detection fuzzy membership natural nearest neighbor network security intrusion detection system
在线阅读 下载PDF
TDOA-based Sybil attack detection scheme for wireless sensor networks 被引量:5
7
作者 温蜜 李辉 +1 位作者 郑燕飞 陈克非 《Journal of Shanghai University(English Edition)》 CAS 2008年第1期66-70,共5页
As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node w... As wireless sensor networks (WSN) are deployed in fire monitoring, object tracking applications, security emerges as a central requirement. A case that Sybil node illegitimately reports messages to the master node with multiple non-existent identities (ID) will cause harmful effects on decision-making or resource allocation in these applications. In this paper, we present an efficient and lightweight solution for Sybil attack detection based on the time difference of arrival (TDOA) between the source node and beacon nodes. This solution can detect the existence of Sybil attacks, and locate the Sybil nodes. We demonstrate efficiency of the solution through experiments. The experiments show that this solution can detect all Sybil attack cases without missing. 展开更多
关键词 attack detection Sybil attack.time difference of arrival (TDOA) wireless sensor networks (WSN)
在线阅读 下载PDF
An Erebus Attack Detection Method Oriented to Blockchain Network Layer 被引量:3
8
作者 Qianyi Dai Bin Zhang +1 位作者 Kaiyong Xu Shuqin Dong 《Computers, Materials & Continua》 SCIE EI 2023年第6期5395-5431,共37页
Recently,the Erebus attack has proved to be a security threat to the blockchain network layer,and the existing research has faced challenges in detecting the Erebus attack on the blockchain network layer.The cloud-bas... Recently,the Erebus attack has proved to be a security threat to the blockchain network layer,and the existing research has faced challenges in detecting the Erebus attack on the blockchain network layer.The cloud-based active defense and one-sidedness detection strategies are the hindrances in detecting Erebus attacks.This study designs a detection approach by establishing a ReliefF_WMRmR-based two-stage feature selection algorithm and a deep learning-based multimodal classification detection model for Erebus attacks and responding to security threats to the blockchain network layer.The goal is to improve the performance of Erebus attack detection methods,by combining the traffic behavior with the routing status based on multimodal deep feature learning.The traffic behavior and routing status were first defined and used to describe the attack characteristics at diverse stages of s leak monitoring,hidden traffic overlay,and transaction identity forgery.The goal is to clarify how an Erebus attack affects the routing transfer and traffic state on the blockchain network layer.Consequently,detecting objects is expected to become more relevant and sensitive.A two-stage feature selection algorithm was designed based on ReliefF and weighted maximum relevance minimum redundancy(ReliefF_WMRmR)to alleviate the overfitting of the training model caused by redundant information and noise in multiple source features of the routing status and traffic behavior.The ReliefF algorithm was introduced to select strong correlations and highly informative features of the labeled data.According to WMRmR,a feature selection framework was defined to eliminate weakly correlated features,eliminate redundant information,and reduce the detection overhead of the model.A multimodal deep learning model was constructed based on the multilayer perceptron(MLP)to settle the high false alarm rates incurred by multisource data.Using this model,isolated inputs and deep learning were conducted on the selected routing status and traffic behavior.Redundant intermodal information was removed because of the complementarity of the multimodal network,which was followed by feature fusion and output feature representation to boost classification detection precision.The experimental results demonstrate that the proposed method can detect features,such as traffic data,at key link nodes and route messages in a real blockchain network environment.Additionally,the model can detect Erebus attacks effectively.This study provides novelty to the existing Erebus attack detection by increasing the accuracy detection by 1.05%,the recall rate by 2.01%,and the F1-score by 2.43%. 展开更多
关键词 Blockchain network Erebus attack attack detection machine learning
在线阅读 下载PDF
An Efficient Impersonation Attack Detection Method in Fog Computing 被引量:3
9
作者 Jialin Wan Muhammad Waqas +4 位作者 Shanshan Tu Syed Mudassir Hussain Ahsan Shah Sadaqat Ur Rehman Muhammad Hanif 《Computers, Materials & Continua》 SCIE EI 2021年第7期267-281,共15页
Fog computing paradigm extends computing,communication,storage,and network resources to the network’s edge.As the fog layer is located between cloud and end-users,it can provide more convenience and timely services t... Fog computing paradigm extends computing,communication,storage,and network resources to the network’s edge.As the fog layer is located between cloud and end-users,it can provide more convenience and timely services to end-users.However,in fog computing(FC),attackers can behave as real fog nodes or end-users to provide malicious services in the network.The attacker acts as an impersonator to impersonate other legitimate users.Therefore,in this work,we present a detection technique to secure the FC environment.First,we model a physical layer key generation based on wireless channel characteristics.To generate the secret keys between the legitimate users and avoid impersonators,we then consider a Double Sarsa technique to identify the impersonators at the receiver end.We compare our proposed Double Sarsa technique with the other two methods to validate our work,i.e.,Sarsa and Q-learning.The simulation results demonstrate that the method based on Double Sarsa outperforms Sarsa and Q-learning approaches in terms of false alarm rate(FAR),miss detection rate(MDR),and average error rate(AER). 展开更多
关键词 Fog computing double Sarsa attack detection physical layer key security
在线阅读 下载PDF
RP-NBSR: A Novel Network Attack Detection Model Based on Machine Learning 被引量:2
10
作者 Zihao Shen Hui Wang +3 位作者 Kun Liu Peiqian Liu Menglong Ba MengYao Zhao 《Computer Systems Science & Engineering》 SCIE EI 2021年第4期121-133,共13页
The rapid progress of the Internet has exposed networks to an increasednumber of threats. Intrusion detection technology can effectively protect networksecurity against malicious attacks. In this paper, we propose a R... The rapid progress of the Internet has exposed networks to an increasednumber of threats. Intrusion detection technology can effectively protect networksecurity against malicious attacks. In this paper, we propose a ReliefF-P-NaiveBayes and softmax regression (RP-NBSR) model based on machine learningfor network attack detection to improve the false detection rate and F1 score ofunknown intrusion behavior. In the proposed model, the Pearson correlation coef-ficient is introduced to compensate for deficiencies in correlation analysis betweenfeatures by the ReliefF feature selection algorithm, and a ReliefF-Pearson correlation coefficient (ReliefF-P) algorithm is proposed. Then, the Relief-P algorithm isused to preprocess the UNSW-NB15 dataset to remove irrelevant features andobtain a new feature subset. Finally, naïve Bayes and softmax regression (NBSR)classifier is constructed by cascading the naïve Bayes classifier and softmaxregression classifier, and an attack detection model based on RP-NBSR is established. The experimental results on the UNSW-NB15 dataset show that the attackdetection model based on RP-NBSR has a lower false detection rate and higherF1 score than other detection models. 展开更多
关键词 Naïve Bayes softmax regression machine learning ReliefF-P attack detection
在线阅读 下载PDF
DDoS Attack Detection via Multi-Scale Convolutional Neural Network 被引量:2
11
作者 Jieren Cheng Yifu Liu +3 位作者 Xiangyan Tang Victor SSheng Mengyang Li Junqi Li 《Computers, Materials & Continua》 SCIE EI 2020年第3期1317-1333,共17页
Distributed Denial-of-Service(DDoS)has caused great damage to the network in the big data environment.Existing methods are characterized by low computational efficiency,high false alarm rate and high false alarm rate.... Distributed Denial-of-Service(DDoS)has caused great damage to the network in the big data environment.Existing methods are characterized by low computational efficiency,high false alarm rate and high false alarm rate.In this paper,we propose a DDoS attack detection method based on network flow grayscale matrix feature via multi-scale convolutional neural network(CNN).According to the different characteristics of the attack flow and the normal flow in the IP protocol,the seven-tuple is defined to describe the network flow characteristics and converted into a grayscale feature by binary.Based on the network flow grayscale matrix feature(GMF),the convolution kernel of different spatial scales is used to improve the accuracy of feature segmentation,global features and local features of the network flow are extracted.A DDoS attack classifier based on multi-scale convolution neural network is constructed.Experiments show that compared with correlation methods,this method can improve the robustness of the classifier,reduce the false alarm rate and the missing alarm rate. 展开更多
关键词 DDoS attack detection convolutional neural network network flow feature extraction
在线阅读 下载PDF
Intelligent DoS Attack Detection with Congestion Control Technique for VANETs 被引量:1
12
作者 R.Gopi Mahantesh Mathapati +4 位作者 B.Prasad Sultan Ahmad Fahd N.Al-Wesabi Manal Abdullah Alohali Anwer Mustafa Hilal 《Computers, Materials & Continua》 SCIE EI 2022年第7期141-156,共16页
VehicularAd hoc Network(VANET)has become an integral part of Intelligent Transportation Systems(ITS)in today’s life.VANET is a network that can be heavily scaled up with a number of vehicles and road side units that ... VehicularAd hoc Network(VANET)has become an integral part of Intelligent Transportation Systems(ITS)in today’s life.VANET is a network that can be heavily scaled up with a number of vehicles and road side units that keep fluctuating in real world.VANET is susceptible to security issues,particularly DoS attacks,owing to maximum unpredictability in location.So,effective identification and the classification of attacks have become the major requirements for secure data transmission in VANET.At the same time,congestion control is also one of the key research problems in VANET which aims at minimizing the time expended on roads and calculating travel time as well as waiting time at intersections,for a traveler.With this motivation,the current research paper presents an intelligent DoS attack detection with Congestion Control(IDoS-CC)technique for VANET.The presented IDoSCC technique involves two-stage processes namely,Teaching and Learning Based Optimization(TLBO)-based Congestion Control(TLBO-CC)and Gated Recurrent Unit(GRU)-based DoS detection(GRU-DoSD).The goal of IDoS-CC technique is to reduce the level of congestion and detect the attacks that exist in the network.TLBO algorithm is also involved in IDoS-CC technique for optimization of the routes taken by vehicles via traffic signals and to minimize the congestion on a particular route instantaneously so as to assure minimal fuel utilization.TLBO is applied to avoid congestion on roadways.Besides,GRU-DoSD model is employed as a classification model to effectively discriminate the compromised and genuine vehicles in the network.The outcomes from a series of simulation analyses highlight the supremacy of the proposed IDoS-CC technique as it reduced the congestion and successfully identified the DoS attacks in network. 展开更多
关键词 VANET intelligent transportation systems congestion control attack detection dos attack deep learning
在线阅读 下载PDF
A Novel Shilling Attack Detection Model Based on Particle Filter and Gravitation 被引量:1
13
作者 Lingtao Qi Haiping Huang +2 位作者 Feng Li Reza Malekian Ruchuan Wang 《China Communications》 SCIE CSCD 2019年第10期112-132,共21页
With the rapid development of e-commerce, the security issues of collaborative filtering recommender systems have been widely investigated. Malicious users can benefit from injecting a great quantities of fake profile... With the rapid development of e-commerce, the security issues of collaborative filtering recommender systems have been widely investigated. Malicious users can benefit from injecting a great quantities of fake profiles into recommender systems to manipulate recommendation results. As one of the most important attack methods in recommender systems, the shilling attack has been paid considerable attention, especially to its model and the way to detect it. Among them, the loose version of Group Shilling Attack Generation Algorithm (GSAGenl) has outstanding performance. It can be immune to some PCC (Pearson Correlation Coefficient)-based detectors due to the nature of anti-Pearson correlation. In order to overcome the vulnerabilities caused by GSAGenl, a gravitation-based detection model (GBDM) is presented, integrated with a sophisticated gravitational detector and a decider. And meanwhile two new basic attributes and a particle filter algorithm are used for tracking prediction. And then, whether an attack occurs can be judged according to the law of universal gravitation in decision-making. The detection performances of GBDM, HHT-SVM, UnRAP, AP-UnRAP Semi-SAD,SVM-TIA and PCA-P are compared and evaluated. And simulation results show the effectiveness and availability of GBDM. 展开更多
关键词 shilling attack detection model collaborative filtering recommender systems gravitation-based detection model particle filter algorithm
在线阅读 下载PDF
Dynamic load-altering attack detection based on adaptive fading Kalman filter in power systems 被引量:1
14
作者 Qiang Ma Zheng Xu +4 位作者 Wenting Wang Lin Lin Tiancheng Ren Shuxian Yang Jian Li 《Global Energy Interconnection》 CAS CSCD 2021年第2期184-192,共9页
This paper presents an effective and feasible method for detecting dynamic load-altering attacks(D-LAAs)in a smart grid.First,a smart grid discrete system model is established in view of D-LAAs.Second,an adaptive fadi... This paper presents an effective and feasible method for detecting dynamic load-altering attacks(D-LAAs)in a smart grid.First,a smart grid discrete system model is established in view of D-LAAs.Second,an adaptive fading Kalman filter(AFKF)is designed for estimating the state of the smart grid.The AFKF can completely filter out the Gaussian noise of the power system,and obtain a more accurate state change curve(including consideration of the attack).A Euclidean distance ratio detection algorithm based on the AFKF is proposed for detecting D-LAAs.Amplifying imperceptible D-LAAs through the new Euclidean distance ratio improves the D-LAA detection sensitivity,especially for very weak D-LAA attacks.Finally,the feasibility and effectiveness of the Euclidean distance ratio detection algorithm are verified based on simulations. 展开更多
关键词 Adaptive fading Kalman filter Dynamic load attack detection.
在线阅读 下载PDF
A Novel DDoS Attack Detection Method Using Optimized Generalized Multiple Kernel Learning
15
作者 Jieren Cheng Junqi Li +3 位作者 Xiangyan Tang Victor SSheng Chen Zhang Mengyang Li 《Computers, Materials & Continua》 SCIE EI 2020年第3期1423-1443,共21页
Distributed Denial of Service(DDoS)attack has become one of the most destructive network attacks which can pose a mortal threat to Internet security.Existing detection methods cannot effectively detect early attacks.I... Distributed Denial of Service(DDoS)attack has become one of the most destructive network attacks which can pose a mortal threat to Internet security.Existing detection methods cannot effectively detect early attacks.In this paper,we propose a detection method of DDoS attacks based on generalized multiple kernel learning(GMKL)combining with the constructed parameter R.The super-fusion feature value(SFV)and comprehensive degree of feature(CDF)are defined to describe the characteristic of attack flow and normal flow.A method for calculating R based on SFV and CDF is proposed to select the combination of kernel function and regularization paradigm.A DDoS attack detection classifier is generated by using the trained GMKL model with R parameter.The experimental results show that kernel function and regularization parameter selection method based on R parameter reduce the randomness of parameter selection and the error of model detection,and the proposed method can effectively detect DDoS attacks in complex environments with higher detection rate and lower error rate. 展开更多
关键词 DDoS attack detection GMKL parameter optimization
在线阅读 下载PDF
NADSA:A Novel Approach for Detection of Sinkhole Attacks Based on RPL Protocol in 6LowPAN Network
16
作者 Atena Shiranzaei Emad Alizadeh +2 位作者 Mahdi Rabbani Sajjad Bagheri Baba Ahmadi Mohsen Tajgardan 《Computers, Materials & Continua》 2025年第9期5381-5402,共22页
The sinkhole attack is one of the most damaging threats in the Internet of Things(IoT).It deceptively attracts neighboring nodes and initiates malicious activity,often disrupting the network when combined with other a... The sinkhole attack is one of the most damaging threats in the Internet of Things(IoT).It deceptively attracts neighboring nodes and initiates malicious activity,often disrupting the network when combined with other attacks.This study proposes a novel approach,named NADSA,to detect and isolate sinkhole attacks.NADSA is based on the RPL protocol and consists of two detection phases.In the first phase,the minimum possible hop count between the sender and receiver is calculated and compared with the sender’s reported hop count.The second phase utilizes the number of DIO messages to identify suspicious nodes and then applies a fuzzification process using RSSI,ETX,and distance measurements to confirm the presence of a malicious node.The proposed method is extensively simulated in highly lossy and sparse network environments with varying numbers of nodes.The results demonstrate that NADSA achieves high efficiency,with PDRs of 68%,70%,and 73%;E2EDs of 81,72,and 60 ms;TPRs of 89%,83%,and 80%;and FPRs of 24%,28%,and 33%.NADSA outperforms existing methods in challenging network conditions,where traditional approaches typically degrade in effectiveness. 展开更多
关键词 Internet of Things security RPL intrusion detection sinkhole attack detection RSSI
在线阅读 下载PDF
SDN-Enabled IoT Based Transport Layer DDoS Attacks Detection Using RNNs
17
作者 Mohammad Nowsin Amin Sheikh Muhammad Saibtain Raza +4 位作者 I-Shyan Hwang Md.Alamgir Hossain Ihsan Ullah Tahmid Hasan Mohammad Syuhaimi Ab-Rahman 《Computers, Materials & Continua》 2025年第11期4043-4066,共24页
The rapid advancement of the Internet ofThings(IoT)has heightened the importance of security,with a notable increase in Distributed Denial-of-Service(DDoS)attacks targeting IoT devices.Network security specialists fac... The rapid advancement of the Internet ofThings(IoT)has heightened the importance of security,with a notable increase in Distributed Denial-of-Service(DDoS)attacks targeting IoT devices.Network security specialists face the challenge of producing systems to identify and offset these attacks.This researchmanages IoT security through the emerging Software-Defined Networking(SDN)standard by developing a unified framework(RNN-RYU).We thoroughly assess multiple deep learning frameworks,including Convolutional Neural Network(CNN),Long Short-Term Memory(LSTM),Feed-Forward Convolutional Neural Network(FFCNN),and Recurrent Neural Network(RNN),and present the novel usage of Synthetic Minority Over-Sampling Technique(SMOTE)tailored for IoT-SDN contexts to manage class imbalance during training and enhance performance metrics.Our research has significant practical implications as we authenticate the approache using both the self-generated SD_IoT_Smart_City dataset and the publicly available CICIoT23 dataset.The system utilizes only eleven features to identify DDoS attacks efficiently.Results indicate that the RNN can reliably and precisely differentiate between DDoS traffic and benign traffic by easily identifying temporal relationships and sequences in the data. 展开更多
关键词 DDoS attack detection IoT-SDN SD_IoT_Smart_City RNNs
在线阅读 下载PDF
Detection of Perfect Stealthy Attacks on Cyber-Physical Systems Subject to Measurement Quantizations: A Watermark-Based Strategy
18
作者 Yu-Ang Wang Zidong Wang +2 位作者 Lei Zou Bo Shen Hongli Dong 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期114-125,共12页
In this paper, the attack detection problem is investigated for a class of closed-loop systems subjected to unknownbutbounded noises in the presence of stealthy attacks. The measurement outputs from the sensors are qu... In this paper, the attack detection problem is investigated for a class of closed-loop systems subjected to unknownbutbounded noises in the presence of stealthy attacks. The measurement outputs from the sensors are quantized before transmission.A specific type of perfect stealthy attack, which meets certain rather stringent conditions, is taken into account. Such attacks could be injected by adversaries into both the sensor-toestimator and controller-to-actuator channels, with the aim of disrupting the normal data flow. For the purpose of defending against these perfect stealthy attacks, a novel scheme based on watermarks is developed. This scheme includes the injection of watermarks(applied to data prior to quantization) and the recovery of data(implemented before the data reaches the estimator).The watermark-based scheme is designed to be both timevarying and hidden from adversaries through incorporating a time-varying and bounded watermark signal. Subsequently, a watermark-based attack detection strategy is proposed which thoroughly considers the characteristics of perfect stealthy attacks,thereby ensuring that an alarm is activated upon the occurrence of such attacks. An example is provided to demonstrate the efficacy of the proposed mechanism for detecting attacks. 展开更多
关键词 attack detection cyber-physical systems(CPSs) perfect stealthy attacks watermark-based strategy
在线阅读 下载PDF
Machine Learning-Based Detection and Selective Mitigation of Denial-of-Service Attacks in Wireless Sensor Networks
19
作者 Soyoung Joo So-Hyun Park +2 位作者 Hye-Yeon Shim Ye-Sol Oh Il-Gu Lee 《Computers, Materials & Continua》 2025年第2期2475-2494,共20页
As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. Ther... As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response. 展开更多
关键词 Distributed coordinated function mechanism jamming attack machine learning-based attack detection selective attack mitigation model selective attack mitigation model selfish attack
在线阅读 下载PDF
PhishNet: A Real-Time, Scalable Ensemble Framework for Smishing Attack Detection Using Transformers and LLMs
20
作者 Abeer Alhuzali Qamar Al-Qahtani +2 位作者 Asmaa Niyazi Lama Alshehri Fatemah Alharbi 《Computers, Materials & Continua》 2026年第1期2194-2212,共19页
The surge in smishing attacks underscores the urgent need for robust,real-time detection systems powered by advanced deep learning models.This paper introduces PhishNet,a novel ensemble learning framework that integra... The surge in smishing attacks underscores the urgent need for robust,real-time detection systems powered by advanced deep learning models.This paper introduces PhishNet,a novel ensemble learning framework that integrates transformer-based models(RoBERTa)and large language models(LLMs)(GPT-OSS 120B,LLaMA3.370B,and Qwen332B)to enhance smishing detection performance significantly.To mitigate class imbalance,we apply synthetic data augmentation using T5 and leverage various text preprocessing techniques.Our system employs a duallayer voting mechanism:weighted majority voting among LLMs and a final ensemble vote to classify messages as ham,spam,or smishing.Experimental results show an average accuracy improvement from 96%to 98.5%compared to the best standalone transformer,and from 93%to 98.5%when compared to LLMs across datasets.Furthermore,we present a real-time,user-friendly application to operationalize our detection model for practical use.PhishNet demonstrates superior scalability,usability,and detection accuracy,filling critical gaps in current smishing detection methodologies. 展开更多
关键词 Smishing attack detection phishing attacks ensemble learning cybersecurity deep learning transformer-based models large language models
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部