期刊文献+
共找到27,042篇文章
< 1 2 250 >
每页显示 20 50 100
SDN-Enabled IoT Based Transport Layer DDoS Attacks Detection Using RNNs
1
作者 Mohammad Nowsin Amin Sheikh Muhammad Saibtain Raza +4 位作者 I-Shyan Hwang Md.Alamgir Hossain Ihsan Ullah Tahmid Hasan Mohammad Syuhaimi Ab-Rahman 《Computers, Materials & Continua》 2025年第11期4043-4066,共24页
The rapid advancement of the Internet ofThings(IoT)has heightened the importance of security,with a notable increase in Distributed Denial-of-Service(DDoS)attacks targeting IoT devices.Network security specialists fac... The rapid advancement of the Internet ofThings(IoT)has heightened the importance of security,with a notable increase in Distributed Denial-of-Service(DDoS)attacks targeting IoT devices.Network security specialists face the challenge of producing systems to identify and offset these attacks.This researchmanages IoT security through the emerging Software-Defined Networking(SDN)standard by developing a unified framework(RNN-RYU).We thoroughly assess multiple deep learning frameworks,including Convolutional Neural Network(CNN),Long Short-Term Memory(LSTM),Feed-Forward Convolutional Neural Network(FFCNN),and Recurrent Neural Network(RNN),and present the novel usage of Synthetic Minority Over-Sampling Technique(SMOTE)tailored for IoT-SDN contexts to manage class imbalance during training and enhance performance metrics.Our research has significant practical implications as we authenticate the approache using both the self-generated SD_IoT_Smart_City dataset and the publicly available CICIoT23 dataset.The system utilizes only eleven features to identify DDoS attacks efficiently.Results indicate that the RNN can reliably and precisely differentiate between DDoS traffic and benign traffic by easily identifying temporal relationships and sequences in the data. 展开更多
关键词 ddos attack detection IoT-SDN SD_IoT_Smart_City RNNs
在线阅读 下载PDF
Adapting Convolutional Autoencoder for DDoS Attack Detection via Joint Reconstruction Learning and Refined Anomaly Scoring
2
作者 Seulki Han Sangho Son +1 位作者 Won Sakong Haemin Jung 《Computers, Materials & Continua》 2025年第11期2893-2912,共20页
As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic... As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic.Although unsupervised anomaly detection using convolutional autoencoders(CAEs)has gained attention for its ability to model normal network behavior without requiring labeled data,conventional CAEs struggle to effectively distinguish between normal and attack traffic due to over-generalized reconstructions and naive anomaly scoring.To address these limitations,we propose CA-CAE,a novel anomaly detection framework designed to improve DDoS detection through asymmetric joint reconstruction learning and refined anomaly scoring.Our architecture connects two CAEs sequentially with asymmetric filter allocation,which amplifies reconstruction errors for anomalous data while preserving low errors for normal traffic.Additionally,we introduce a scoring mechanism that incorporates exponential decay weighting to emphasize recent anomalies and relative traffic volume adjustment to highlight highrisk instances,enabling more accurate and timely detection.We evaluate CA-CAE on a real-world network traffic dataset collected using Cisco NetFlow,containing over 190,000 normal instances and only 78 anomalous instances—an extremely imbalanced scenario(0.0004% anomalies).We validate the proposed framework through extensive experiments,including statistical tests and comparisons with baseline models.Despite this challenge,our method achieves significant improvement,increasing the F1-score from 0.515 obtained by the baseline CAE to 0.934,and outperforming other models.These results demonstrate the effectiveness,scalability,and practicality of CA-CAE for unsupervised DDoS detection in realistic network environments.By combining lightweight model architecture with a domain-aware scoring strategy,our framework provides a robust solution for early detection of DDoS attacks without relying on labeled attack data. 展开更多
关键词 Anomaly detection ddos attack detection convolutional autoencoder
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
3
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Machine Learning-Based Detection of DDoS Attacks in VANETs for Emergency Vehicle Communication
4
作者 Bappa Muktar Vincent Fono Adama Nouboukpo 《Computers, Materials & Continua》 2025年第12期4705-4727,共23页
Vehicular Ad Hoc Networks(VANETs)are central to Intelligent Transportation Systems(ITS),especially for real-time communication involving emergency vehicles.Yet,Distributed Denial of Service(DDoS)attacks can disrupt sa... Vehicular Ad Hoc Networks(VANETs)are central to Intelligent Transportation Systems(ITS),especially for real-time communication involving emergency vehicles.Yet,Distributed Denial of Service(DDoS)attacks can disrupt safety-critical channels and undermine reliability.This paper presents a robust,scalable framework for detecting DDoS attacks in highway VANETs.We construct a new dataset with Network Simulator 3(NS-3)and Simulation of Urban Mobility(SUMO),enriched with real mobility traces from Germany’s A81 highway(OpenStreetMap).Three traffic classes are modeled:DDoS,Voice over IP(VoIP),and Transmission Control Protocol Based(TCP-based)video streaming(VideoTCP).The pipeline includes normalization,feature selection with SHapley Additive exPlanations(SHAP),and class balancing via Synthetic Minority Over-sampling Technique(SMOTE).Eleven classifiers are benchmarked—including eXtreme Gradient Boosting(XGBoost),Categorical Boosting(CatBoost),Adaptive Boosting(AdaBoost),Gradient Boosting(GB),and an Artificial Neural Network(ANN)—using stratified 5-fold cross-validation.XGBoost,GB,CatBoost and ANN achieve the highest performance(weighted F1-score=97%).To assess robustness under non-ideal conditions,we introduce an adversarial evaluation with packet-loss and traffic-jitter(small-sample deformation);the top models retain strong performance,supporting real-time applicability.Collectively,these results demonstrate that the proposed highway-focused framework is accurate,resilient,and well-suited for deployment in VANET security for emergency communications. 展开更多
关键词 VANET ddos attacks emergency vehicles machine learning intrusion detection NS-3 SUMO traffic classification supervised learning artificial neural network
在线阅读 下载PDF
TIDS: Tensor Based Intrusion Detection System (IDS) and Its Application in Large Scale DDoS Attack Detection
5
作者 Hanqing Sun Xue Li +1 位作者 Qiyuan Fan Puming Wang 《Computers, Materials & Continua》 2025年第7期1659-1679,共21页
The era of big data brings new challenges for information network systems(INS),simultaneously offering unprecedented opportunities for advancing intelligent intrusion detection systems.In this work,we propose a data-d... The era of big data brings new challenges for information network systems(INS),simultaneously offering unprecedented opportunities for advancing intelligent intrusion detection systems.In this work,we propose a data-driven intrusion detection system for Distributed Denial of Service(DDoS)attack detection.The system focuses on intrusion detection from a big data perceptive.As intelligent information processing methods,big data and artificial intelligence have been widely used in information systems.The INS system is an important information system in cyberspace.In advanced INS systems,the network architectures have become more complex.And the smart devices in INS systems collect a large scale of network data.How to improve the performance of a complex intrusion detection system with big data and artificial intelligence is a big challenge.To address the problem,we design a novel intrusion detection system(IDS)from a big data perspective.The IDS system uses tensors to represent large-scale and complex multi-source network data in a unified tensor.Then,a novel tensor decomposition(TD)method is developed to complete big data mining.The TD method seamlessly collaborates with the XGBoost(eXtreme Gradient Boosting)method to complete the intrusion detection.To verify the proposed IDS system,a series of experiments is conducted on two real network datasets.The results revealed that the proposed IDS system attained an impressive accuracy rate over 98%.Additionally,by altering the scale of the datasets,the proposed IDS system still maintains excellent detection performance,which demonstrates the proposed IDS system’s robustness. 展开更多
关键词 Intrusion detection system big data tensor decomposition multi-modal feature ddos
在线阅读 下载PDF
DDoS Attack Tracking Using Multi-Round Iterative Viterbi Algorithm in Satellite Internet
6
作者 Guo Wei Xu Jin +2 位作者 Pei Yukui Yin Liuguo Feng Wei 《China Communications》 2025年第3期148-163,共16页
Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant ... Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI. 展开更多
关键词 ddos tracking iterative Viterbi algorithm satellite Internet 6G
在线阅读 下载PDF
SDN环境下基于Rényi RF XGBoost的DDoS攻击检测研究 被引量:1
7
作者 杨桂芹 张蔚 张若 《兰州交通大学学报》 2025年第1期28-38,共11页
DDoS攻击会对SDN造成毁灭性的打击,如何高效精准地检测出DDoS攻击就显得尤为重要。针对该问题,提出了一种在SDN环境下基于Rényi RF XGBoost的DDoS攻击检测方案。使用Rényi熵提取特征并对随机森林进行改进,通过集成学习将其与X... DDoS攻击会对SDN造成毁灭性的打击,如何高效精准地检测出DDoS攻击就显得尤为重要。针对该问题,提出了一种在SDN环境下基于Rényi RF XGBoost的DDoS攻击检测方案。使用Rényi熵提取特征并对随机森林进行改进,通过集成学习将其与XGBoost进行融合,对网络流量进行分类预测,从而实现针对DDoS攻击的检测。此外,采用交叉熵损失和袋外误差对所提模型进行评价,通过相关检测指标对实验结果进行实时观察验证。结果表明,所提出的方法不仅有较低的交叉熵损失和袋外误差,相比于其他方法还提高了检测精度、精确率和召回率,缩短了检测时间,降低了误报率。 展开更多
关键词 SDN ddos Rényi RF XGBoost
在线阅读 下载PDF
基于混合特征选择的低延时DDoS攻击检测
8
作者 谢丽霞 王嘉敏 +2 位作者 杨宏宇 胡泽 成翔 《计算机应用》 北大核心 2025年第10期3231-3240,共10页
许多分布式拒绝服务(DDoS)攻击检测方法侧重提升模型性能,但忽略流量样本分布和特征维度对检测性能的影响,导致模型学习多余信息。针对网络流量类不平衡和特征冗余问题,提出一种基于多评价标准的混合特征选择方法(HFS-MEC)。首先,综合... 许多分布式拒绝服务(DDoS)攻击检测方法侧重提升模型性能,但忽略流量样本分布和特征维度对检测性能的影响,导致模型学习多余信息。针对网络流量类不平衡和特征冗余问题,提出一种基于多评价标准的混合特征选择方法(HFS-MEC)。首先,综合考虑皮尔逊相关系数(PCC)和互信息(MI),选出相关性特征;其次,设计基于方差膨胀因子(VIF)的序列后向选择(SBS)算法,减少特征冗余,进一步降低特征维度;同时,为了平衡检测性能和计算时间,设计基于简单循环单元(SRU)的低延时DDoS攻击检测(L-DDoS-SRU)模型。在CICIDS2017和CICDDoS2019数据集上的实验结果表明,HFS-MEC将特征维度从78和88分别减少至31和41。在CICDDoS2019数据集上,L-DDoS-SRU检测时间仅40.34 s;召回率达99.38%,与长短期记忆(LSTM)相比提高了8.47%,与门控循环单元(GRU)相比提高了9.76%。以上验证了所提方法能有效提高检测性能并减少检测时间。 展开更多
关键词 类不平衡 特征冗余 混合特征选择 低延时 分布式拒绝服务攻击检测 简单循环单元
在线阅读 下载PDF
基于CNN-BiLSTM的ICMPv6 DDoS攻击检测方法
9
作者 王春兰 郭峰 +2 位作者 刘晋州 王明华 韩宝安 《火力与指挥控制》 北大核心 2025年第4期71-78,84,共9页
针对ICMPv6网络中DDoS攻击检测问题,提出一种基于CNN-BiLSTM网络的检测算法。通过将带有注意力机制、DropConnect和Dropout混合使用加入到CNN-BiLSTM算法中,防止在训练过程中产生过拟合问题,同时更准确提取数据的特性数据。通过实验表明... 针对ICMPv6网络中DDoS攻击检测问题,提出一种基于CNN-BiLSTM网络的检测算法。通过将带有注意力机制、DropConnect和Dropout混合使用加入到CNN-BiLSTM算法中,防止在训练过程中产生过拟合问题,同时更准确提取数据的特性数据。通过实验表明:提出的算法在多次实验中的检测准确率、误报率与漏报率平均值分别为92.84%、4.49%和10.54%,检测算法泛化性较强,性能优于其他算法,能够有效处理ICMPv6 DDoS攻击检测问题。 展开更多
关键词 分布式拒绝服务攻击 攻击检测 ICMPV6 CNN BiLSTM
在线阅读 下载PDF
面向物联网边缘的轻量化DDoS攻击检测方法 被引量:1
10
作者 唐亚东 程光 赵玉宇 《小型微型计算机系统》 北大核心 2025年第4期940-947,共8页
物联网(Internet of Things,IoT)技术的发展给工业界和日常生活带来便利的同时,海量易受到各种攻击和破坏的IoT设备也降低了分布式拒绝服务(Distributed Denial of Service,DDoS)攻击发起的成本,使被攻击方无法响应正常用户访问.为了在... 物联网(Internet of Things,IoT)技术的发展给工业界和日常生活带来便利的同时,海量易受到各种攻击和破坏的IoT设备也降低了分布式拒绝服务(Distributed Denial of Service,DDoS)攻击发起的成本,使被攻击方无法响应正常用户访问.为了在物联网边缘中快速、准确地完成DDoS攻击检测,弥补现有方法资源开销大、不精确的缺陷,本文提出了一种基于轻量化卷积神经网络(Lightweight Convolutional Neural Networks,LCNN)的DDoS检测方法.面向物联网流量特性,方法首先提取包级特征和经冗余分析筛选得到的流级特征.之后设计了低参数和运算量的卷积神经网络LCNN,最后基于变维后的特征,快速检测定位攻击.实验结果表明,方法检测准确率达99.4%.同时LCNN在FPGA中能够以较少的资源消耗,保证在1ms时间内完成对一条流的推理判断. 展开更多
关键词 物联网边缘 可编程交换机 轻量化卷积神经网络 特征选择 ddos检测
在线阅读 下载PDF
一种模糊层次分析法驱动的DDoS危害性量化评估方法
11
作者 刘延华 许贻杰 +4 位作者 陈辉 陈洪 林睫菲 李小燕 吴德铿 《福州大学学报(自然科学版)》 北大核心 2025年第5期517-523,共7页
针对分布式拒绝服务攻击(DDoS)危害性量化评估存在的主观性强、缺乏量化评估体系等问题,提出一种基于模糊层次分析法(FAHP)的DDoS危害性量化评估方法.首先,从网络服务质量、网络性能、系统基础性能角度,构建多层次的DDoS危害性量化评估... 针对分布式拒绝服务攻击(DDoS)危害性量化评估存在的主观性强、缺乏量化评估体系等问题,提出一种基于模糊层次分析法(FAHP)的DDoS危害性量化评估方法.首先,从网络服务质量、网络性能、系统基础性能角度,构建多层次的DDoS危害性量化评估指标体系.然后,设计基于FAHP的评估指标权重计算方法,在判断矩阵中引入三角模糊数量化评估指标间的隶属度,提出危害性量化指标权重计算方法,实现DDoS危害性大小评估计算.设计原型系统,用于DDoS实时检测和主动防御.相较于现有方法全面考虑指标间依赖关系,仿真实验表明,所提出的技术方法可以准确识别和量化不同危害性的攻击,为主动防御提供了重要手段. 展开更多
关键词 分布式拒绝服务攻击 主动防御 模糊层次分析法 三角模糊数 量化评估方法
在线阅读 下载PDF
SDN中DDoS攻击检测与混合防御技术 被引量:3
12
作者 李小菲 陈义 《现代电子技术》 北大核心 2025年第2期85-89,共5页
DDoS攻击是软件定义网络(SDN)安全领域的一大威胁,严重威胁网络控制器及交换机等设备的正常运行,因此提出一种SDN中DDoS攻击检测与混合防御技术。在DDoS攻击检测方面,利用卡方检验值对SDN中控制器收到的Packet_In数据流内数据帧数量进... DDoS攻击是软件定义网络(SDN)安全领域的一大威胁,严重威胁网络控制器及交换机等设备的正常运行,因此提出一种SDN中DDoS攻击检测与混合防御技术。在DDoS攻击检测方面,利用卡方检验值对SDN中控制器收到的Packet_In数据流内数据帧数量进行统计分析,将高于数据流卡方阈值的数据流初步判断为可疑流;继续计算数据流与可疑流的相对Sibson距离,区分可疑流是DDoS攻击流还是正常突发流;最后通过计算数据流之间的Sibson距离,根据DDoS攻击流的特征,确定攻击流是否为DDoS攻击流。在DDoS攻击防御方面,采用共享流表空间支持和Packet_In报文过滤方法混合防御,被DDoS攻击的交换机流表空间过载,将过载流表引流到其他交换机,从而完成数据层的防御;溯源得到DDoS攻击MAC地址并进行Packet_In数据流过滤,完成控制层的防御。实验结果表明,所提方法可有效检测软件定义网络交换机和控制器内的DDoS攻击流,能够防御不同的DDoS攻击。 展开更多
关键词 软件定义网络 ddos攻击流 攻击检测 混合防御 卡方检验值 Sibson距离 流表空间共享
在线阅读 下载PDF
Explainable AI-Based DDoS Attacks Classification Using Deep Transfer Learning
13
作者 Ahmad Alzu’bi Amjad Albashayreh +1 位作者 Abdelrahman Abuarqoub Mai A.M.Alfawair 《Computers, Materials & Continua》 SCIE EI 2024年第9期3785-3802,共18页
In the era of the Internet of Things(IoT),the proliferation of connected devices has raised security concerns,increasing the risk of intrusions into diverse systems.Despite the convenience and efficiency offered by Io... In the era of the Internet of Things(IoT),the proliferation of connected devices has raised security concerns,increasing the risk of intrusions into diverse systems.Despite the convenience and efficiency offered by IoT technology,the growing number of IoT devices escalates the likelihood of attacks,emphasizing the need for robust security tools to automatically detect and explain threats.This paper introduces a deep learning methodology for detecting and classifying distributed denial of service(DDoS)attacks,addressing a significant security concern within IoT environments.An effective procedure of deep transfer learning is applied to utilize deep learning backbones,which is then evaluated on two benchmarking datasets of DDoS attacks in terms of accuracy and time complexity.By leveraging several deep architectures,the study conducts thorough binary and multiclass experiments,each varying in the complexity of classifying attack types and demonstrating real-world scenarios.Additionally,this study employs an explainable artificial intelligence(XAI)AI technique to elucidate the contribution of extracted features in the process of attack detection.The experimental results demonstrate the effectiveness of the proposed method,achieving a recall of 99.39%by the XAI bidirectional long short-term memory(XAI-BiLSTM)model. 展开更多
关键词 ddos attack classification deep learning explainable AI CYBERSECURITY
在线阅读 下载PDF
基于异步个性化联邦学习的DDoS攻击检测与缓解 被引量:3
14
作者 朱海婷 魏明岗 +2 位作者 刘丰宁 何高峰 张璐 《计算机学报》 北大核心 2025年第4期808-827,共20页
网络流量分类在网络管理和安全中至关重要,尤其是精准识别分布式拒绝服务(Distributed Denial of Service,DDoS)攻击这一威胁。DDoS攻击会导致服务中断、资源耗尽和经济损失,严重影响服务质量(QoS)。尽管集中式模型在DDoS攻击检测中取... 网络流量分类在网络管理和安全中至关重要,尤其是精准识别分布式拒绝服务(Distributed Denial of Service,DDoS)攻击这一威胁。DDoS攻击会导致服务中断、资源耗尽和经济损失,严重影响服务质量(QoS)。尽管集中式模型在DDoS攻击检测中取得了一定成效,但在实际应用中存在挑战:数据分布不均、数据集中传输困难,以及异构设备和动态网络环境的限制,从而难以实现实时检测。为应对这些问题,本文提出了一种基于异步个性化联邦学习的DDoS攻击检测与缓解方法AdaPerFed(Adaptive Personalized Federated Learning)。首先,通过定制的ResNet架构高效处理一维流量数据,并集成Net模块增强特征提取能力。然后,通过软件定义网络(SDN,Software-Defined Networking)模拟复杂动态网络环境,并引入完善的缓解系统应对多样化攻击场景。个性化联邦学习框架有效处理了非独立同分布(Non-IID,Non-Independent and Identically Distributed)数据问题,并通过异步学习机制适应异构设备和网络条件的差异,提升了系统的鲁棒性和扩展性。实验结果表明,AdaPerFed在CICDDoS2019、CIC-IDS2017和InSDN等数据集上均优于其他联邦学习算法,在不同客户端数量下展现出更快的收敛速度和更强的鲁棒性,DDoS检测准确率提升了15%~20%。消融实验进一步验证了个性化聚合模块对系统性能的显著提升。 展开更多
关键词 联邦学习 分布式拒绝服务(ddos) 深度学习 ResNet 软件定义网络(SDN)
在线阅读 下载PDF
基于区块链的DDoS防护研究综述
15
作者 唐梅 万武南 +1 位作者 张仕斌 张金全 《计算机应用》 北大核心 2025年第11期3416-3423,共8页
随着网络安全威胁的日益加剧,分布式拒绝服务(DDoS)攻击一直是网络安全领域的研究难题。传统的DDoS防护方案通常依赖中心化架构,存在单点故障、数据篡改等问题,难以应对复杂多样的攻击场景。区块链技术凭借去中心化、不可篡改和透明性... 随着网络安全威胁的日益加剧,分布式拒绝服务(DDoS)攻击一直是网络安全领域的研究难题。传统的DDoS防护方案通常依赖中心化架构,存在单点故障、数据篡改等问题,难以应对复杂多样的攻击场景。区块链技术凭借去中心化、不可篡改和透明性等特性,为DDoS防护提供了新的解决思路。针对DDoS防护中的技术挑战,总结了基于区块链的DDoS防护研究进展。首先,介绍DDoS攻击的基本概念及其对传统网络、物联网(IoT)和软件定义网络(SDN)等环境的威胁,分析引入区块链技术的必要性与潜在优势;其次,从区块链结合智能合约、深度学习、跨域协作等方面,归纳并对比现有的DDoS防护机制;最后,结合区块链性能优化、多域协作以及实时响应等方面的技术难点,展望未来基于区块链的DDoS防护技术的发展方向,从而为网络安全领域的研究者提供理论参考,进一步推动区块链在DDoS防护中的实际应用。 展开更多
关键词 分布式拒绝服务攻击 区块链 物联网 软件定义网络 网络安全
在线阅读 下载PDF
可编程数据平面DDoS检测与防御机制
16
作者 武文浩 张磊磊 +3 位作者 潘恒 李恩晗 周建二 李振宇 《软件学报》 北大核心 2025年第8期3831-3857,共27页
传统的分布式拒绝服务攻击(DDoS)检测与防御机制需要对网络流量进行镜像、采集以及远程集中式的攻击特征分析,这直接造成额外的性能开销,无法满足高性能网络的实时安全防护需求.随着可编程交换机等新型网络设备的发展,可编程数据平面能... 传统的分布式拒绝服务攻击(DDoS)检测与防御机制需要对网络流量进行镜像、采集以及远程集中式的攻击特征分析,这直接造成额外的性能开销,无法满足高性能网络的实时安全防护需求.随着可编程交换机等新型网络设备的发展,可编程数据平面能力得到增强,为直接在数据面进行高性能的DDoS攻击检测提供了实现基础.然而,当前已有的基于可编程数据面的DDoS攻击检测方法准确率低,同时受限于编程约束,难以在可编程交换机(如Intel Tofino)中进行直接部署.针对上述问题,提出了一种基于可编程交换机的DDoS攻击检测与防御机制.首先,使用基于源目地址熵值差的攻击检测机制判断DDoS攻击是否发生.在DDoS攻击发生时,设计了一种基于源目地址计数值差的攻击流量过滤机制,实现对DDoS攻击的实时防御.实验结果表明,该机制能够有效地检测并防御多种DDoS攻击.相较于现有工作,该机制在观察窗口级攻击检测中的准确率平均提升了17.75%,在数据包级攻击流量过滤中的准确率平均提升了3.7%. 展开更多
关键词 分布式拒绝服务攻击 可编程数据平面 异常检测 P4 网络安全
在线阅读 下载PDF
Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss
17
作者 Thanh-Lam Nguyen HaoKao +2 位作者 Thanh-Tuan Nguyen Mong-Fong Horng Chin-Shiuh Shieh 《Computers, Materials & Continua》 SCIE EI 2024年第2期2181-2205,共25页
Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications i... Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks. 展开更多
关键词 CYBERSECURITY ddos unknown attack detection machine learning deep learning incremental learning convolutional neural networks(CNN) open-set recognition(OSR) spatial location constraint prototype loss fuzzy c-means CICIDS2017 CICddos2019
在线阅读 下载PDF
Optimization of Stealthwatch Network Security System for the Detection and Mitigation of Distributed Denial of Service (DDoS) Attack: Application to Smart Grid System
18
作者 Emmanuel S. Kolawole Penrose S. Cofie +4 位作者 John H. Fuller Cajetan M. Akujuobi Emmanuel A. Dada Justin F. Foreman Pamela H. Obiomon 《Communications and Network》 2024年第3期108-134,共27页
The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communicati... The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene. 展开更多
关键词 Smart Grid System Distributed Denial of Service (ddos) attack Intrusion Detection and Prevention Systems DETECTION Mitigation and Stealthwatch
在线阅读 下载PDF
Detection of Real-Time Distributed Denial-of-Service (DDoS) Attacks on Internet of Things (IoT) Networks Using Machine Learning Algorithms
19
作者 Zaed Mahdi Nada Abdalhussien +1 位作者 Naba Mahmood Rana Zaki 《Computers, Materials & Continua》 SCIE EI 2024年第8期2139-2159,共21页
The primary concern of modern technology is cyber attacks targeting the Internet of Things.As it is one of the most widely used networks today and vulnerable to attacks.Real-time threats pose with modern cyber attacks... The primary concern of modern technology is cyber attacks targeting the Internet of Things.As it is one of the most widely used networks today and vulnerable to attacks.Real-time threats pose with modern cyber attacks that pose a great danger to the Internet of Things(IoT)networks,as devices can be monitored or service isolated from them and affect users in one way or another.Securing Internet of Things networks is an important matter,as it requires the use of modern technologies and methods,and real and up-to-date data to design and train systems to keep pace with the modernity that attackers use to confront these attacks.One of the most common types of attacks against IoT devices is Distributed Denial-of-Service(DDoS)attacks.Our paper makes a unique contribution that differs from existing studies,in that we use recent data that contains real traffic and real attacks on IoT networks.And a hybrid method for selecting relevant features,And also how to choose highly efficient algorithms.What gives the model a high ability to detect distributed denial-of-service attacks.the model proposed is based on a two-stage process:selecting essential features and constructing a detection model using the K-neighbors algorithm with two classifier algorithms logistic regression and Stochastic Gradient Descent classifier(SGD),combining these classifiers through ensemble machine learning(stacking),and optimizing parameters through Grid Search-CV to enhance system accuracy.Experiments were conducted to evaluate the effectiveness of the proposed model using the CIC-IoT2023 and CIC-DDoS2019 datasets.Performance evaluation demonstrated the potential of our model in robust intrusion detection in IoT networks,achieving an accuracy of 99.965%and a detection time of 0.20 s for the CIC-IoT2023 dataset,and 99.968%accuracy with a detection time of 0.23 s for the CIC-DDoS 2019 dataset.Furthermore,a comparative analysis with recent related works highlighted the superiority of our methodology in intrusion detection,showing improvements in accuracy,recall,and detection time. 展开更多
关键词 ddos Service NETWORKS
在线阅读 下载PDF
Cybernet Model:A New Deep Learning Model for Cyber DDoS Attacks Detection and Recognition
20
作者 Azar Abid Salih Maiwan Bahjat Abdulrazaq 《Computers, Materials & Continua》 SCIE EI 2024年第1期1275-1295,共21页
Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being... Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts.The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns.This study presents novel lightweight DL models,known as Cybernet models,for the detection and recognition of various cyber Distributed Denial of Service(DDoS)attacks.These models were constructed to have a reasonable number of learnable parameters,i.e.,less than 225,000,hence the name“lightweight.”This not only helps reduce the number of computations required but also results in faster training and inference times.Additionally,these models were designed to extract features in parallel from 1D Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM),which makes them unique compared to earlier existing architectures and results in better performance measures.To validate their robustness and effectiveness,they were tested on the CIC-DDoS2019 dataset,which is an imbalanced and large dataset that contains different types of DDoS attacks.Experimental results revealed that bothmodels yielded promising results,with 99.99% for the detectionmodel and 99.76% for the recognition model in terms of accuracy,precision,recall,and F1 score.Furthermore,they outperformed the existing state-of-the-art models proposed for the same task.Thus,the proposed models can be used in cyber security research domains to successfully identify different types of attacks with a high detection and recognition rate. 展开更多
关键词 Deep learning CNN LSTM Cybernet model ddos recognition
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部